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Abstract. A lot of ecological studies deal with the coexistence of interacting species. The dynamics of this interac-

tion helps in proper understanding of specie coexistence and resource conservation. In this work, we considered a

prey-predator model with Holling type II functional response with threshold parameter incorporating a prey refuge.

In order to understand the specie coexistence, we analyzed the long term dynamics of the model using a threshold

parameter P0 and a prey refuge parameter mε[0,1). We discussed the stability of the steady states and also carried

out some numerical simulation in order to validate our analytical results.
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1. INTRODUCTION

Ecologists are often confronted with handling issues like the net effect of predation on the

population dynamics of prey, variations in biomass of both prey and predator due to inter-

action, conditions for coexistence of interacting species using some parameter combinations

and so on. The preservation of the ecological niche of species is salient to ecologists along-

side the longevity of interacting species. Dawed et. al [2020] recommended that coexistence
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among predators and prey in the same environment is possible provided a good management of

some factors (such as contacts between species, additional food supply, growth rate of species,

etc).There are many ecological systems which describe the interaction between predator and

prey and proper understanding of how the species coexist is a challenge in ecology (Holling,

[1965]; Kar et al.,[2010]; Das et al, [2013]; Chauhan et al, [2017]; Sinha and Kumar, [2016];

Moustafa et al,[2018]). There are a lot of research works that have studied the dynamics of eco-

logical systems with concentration on single predator and prey populations (Rosenzweig and

MacArthur,[1963]). Kar [2006] looked at modelling and analysis of a harvested prey-predator

system incorporating a prey refuge.

2. PREY-PREDATOR MODEL FOR A COEXISTENCE ECOSYSTEM

We shall look at a single prey-predator system. In this work, we note that the ecological niche

of the two species are not affected by external factors such as drought, fires, epidemics and so

on. Besides the model description assumption and definition of variable and parameters, it is

assumed that a constant proportion m ∈ [0,1) of the prey can take refuge to avoid predation.

This leaves (1−m)x of the prey available for predation and hence the model under the above

assumptions with Holling type II functional response is given by:

(1)

dx
dt

= αx
(

1− x
k

)
− β (1−m)xy

1+a(1−m)x

dy
dt

=−γy+
cβ (1−m)xy
1+a(1−m)x

A real life example is the interaction between the zebra (x) and the lion (y). The description of

the variables and parameters that are used in the model (1) can be seen in Table 1.

2.1. Steady States of model (1). We obtain the following equilibrium points from the system

(1) as follows:

(2)

E1(x,y) = (0,0).

E2(x,y) = (k,0).

E3(x∗,y∗) =
(

γ

(1−m)(cβ − γa)
,

αcγ(1+a(1−m)k
k(1−m)2(cβ − γa)2 (P0−1)

)
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Variables/Parameters Meaning Unit

x Population density of prey g/m2

y Population density of predator g/m2

α Growth rate of x /year

k Carrying capacity of x g/m2

β x removal by y /year

a x when y is half g/m2

c Conversion of x biomass into y biomass Dimensionless

γ Reduction of y due to other factors /year
TABLE 1. Description of parameters and variables for model (1)

We remark that for each of the equilibrium points Ei (for i = 1,2,3) to exist, the inequalities

0≤ x≤ k must be satisfied by each of them. Furthermore, for the equilibrium point E3 to exist,

it must each satisfy the inequality:

cβ − γa > 0.

We make use of a threshold quantity (predation number denoted by P0 ) which gives a condition

for the stability of the system around the equilibrium points. This quantity can also be likened

to the basic reproduction number R0 (Van Den Driessche and Watmough, [2002]) in epidemi-

ological models. Its calculation is done in like manner by the approach of the next generation

matrix (Collins and Duffy, [2016]):

(3) P0 =
cβ (1−m)k

γ[1+a(1−m)k]
,

In ecological terms, we can describe P0 as the combination of parameters which quantifies the

prey consumption required for survival. So, P0 = 1 implies that the predator uses prey biomass

at a rate almost corresponding to their own biomass loss. For P0 < 1 less prey is ingested per

unit of predator biomass loss. For P0 > 1 more prey is devoured per unit of predator biomass

loss.
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2.2. Stability analyses of model (1). The investigation of the stability of this model is a tool

that will assist us in describing the entire dynamics of the system. We will examine the stability

using the threshold quantity P0.

Theorem 1. The equilibrium point E1 is unstable no matter the value of P0.

Proof. It suffices to show that at least one of the eigenvalues of the Jacobian of the model

(1), evaluated at the equilibrium point, has a positive real part.The eigenvalues of (1) at the

trivial equilibrium point E1 are λ1 = α,λ2 = −γ . Hence, E1 is unstable despite the value of

P0. 2

Theorem 2.The equilibrium point E2 is stable if P0 ≤ 1 and unstable otherwise.

Proof. When we evaluate the eigenvalues of (1) at E2 we obtain

λ1 =−α and λ2 = γ

[
cβ (1−m)k

γ[1+a(1−m)k]
−1

]
Similarly, in terms of the prey refuge parameter, the system will be stable if

m >
(cβ − γa)k− γ

(cβk− γak)
.

Theorem 3.The equilibrium point E3 is stable if P0 > 1.

Proof. We shall make use of the characteristic equation. This is given as:

[
α− 2αx∗

k
− β (1−m)y∗

[1+a(1−m)x∗]2
−λ

][
cβ (1−m)x∗

1+a(1−m)x∗
− γ−λ

]
+

[
β (1−m)x∗

1+a(1−m)x∗

][
cβ (1−m)y∗

[1+a(1−m)x∗]2

]
= 0

If we set β (1−m)
1+a(1−m)x∗ = A, then we will have that

λ
2 +λ

[
Ay∗

1+a(1−m)x∗
+

(
2α

k
− cA

)
x∗+(γ−α)

]
+

[
cAαx∗

(
1− 2x∗

k

)
+αγ

(
2x∗

k
−1

)
+

Aγy∗

1+a(1−m)x∗

]
= 0

The coexistence equilibrium point is stable if λ1 +λ2 is negative and λ1λ2 is positive.

λ1 +λ2 = (α− γ +

(
cA− 2α

k

)
x∗− Ay∗

1+a(1−m)x∗
.
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For x∗ = β (1−m)
1+a(1−m)x∗ , y∗ = αcγ[a(1−m)k+1](C0−1)

k[(cβ−γa)(1−m) , A = β (1−m)
1+a(1−m)x∗ , then we have that

λ1 +λ2 = (α− γ)+

[
cβ (1−m

1+a(1−m)x∗
+

2α

k

]
x∗− β (1−m)y∗

1+a(1−m)x∗

= (α− γ)+

[
cβ (1−m)(cβ − γ

k

][
γ

(1−m)(cβ − γa

]
−
[

αcγ[a(1−m)k+1](P0−1
ck(cβ − γa)(1−m)

]
= (α− γ)+ γ− 2αγ

k[(1−m)(cβ
− αγ[a(1−m)k+1](P0−1)

k[(cβ − γa(1−m)

=
α

k

[
kcβ − kcmβ + γakmP0− γakP0 + γ2− γ2P0−2γ

(1−m)(cβ − γa)

]
=

α

k

[
kcβ (1−m)+ γ[akP0(m−1)−2]+ γ2(1−P0)

(1−m)(cβ − γa)

]
We see that λ1 +λ2 is negative for P0 > 1.

Similarly, using the product of roots:

λ1λ2 =

[
cAαx∗

(
1− 2x∗

k

)
+αγ

(
2x∗

k
−1

)
+

Aγy∗

1+a(1−m)x∗

]
where A = β (1−m)

1+a(1−m)x∗ , x∗ = γ

(1−m)(cβ−γa) , y∗ = αcγ[a(1−m)k+1]P0−1
k[(cβ−γa)(1−m)]2

We then have [
αγ2aP0−αγ2akmP0 +αγ2aP0−αγ2ak+αγ2akm−αγ2a

kcβ

]

=
αγ2ak(P0−1)+αγ2akm(1−P0)+αγ2a(P0−1)

kcβ

=
αγ2a
kcβ

[k(P0−1)+(P0−1)mk+(P0−1)]

=
αγ2ak(P0−1)+αγ2akm(1−P0)+αγ2a(P0−1)

kcβ

=
αγ2a
kcβ

[k(P0−1)+mk(P0−1)+(P0−1)]

=
αγ2ak(P0−1)+αγ2akm(1−P0)+αγ2a(P0−1)

kcβ

=
αγ2a
kcβ

[k(P0−1)+(P0−1)−mk(P0−1)]

=
αγ2ak(P0−1)+αγ2akm(1−P0)+αγ2a(P0−1)

kcβ
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=
αγ2a
kcβ

[(P0−1)(1−m)k+1]> 0, if P0 > 1 since m ∈ [0,1).

3. MODEL SIMULATION AND DISCUSSION OF RESULTS

In order to validate our analytical results, we examine the long-term dynamics of the model

by carrying out numerical simulations using the parameter values given in Table 2.

Parameters Parameter values Source

α 0.18 Estimated

β 0.6 Sinha and Kumar, [2016]

a 0.02 Sinha and Kumar, [2016]

m 0−0.6 Estimated

c 0.02 Sinha and Kumar, [2016]

γ 0.3−0.45 Estimated
TABLE 2. Parameter values for numerical simulations

FIGURE 1. Dynamics of prey-predator model for P0<1
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FIGURE 2. Dynamics of prey-predator model for P0<1

FIGURE 3. Dynamics of prey-predator model for m = 0.4

3.1. Discussion of Results. To validate our analytical results, we examine the long-term dy-

namics of the model by carrying out numerical simulations using the parameter values given

in Table 2 and varying γ (Figures 1-2) and m (Figures 3-5). γ is varied because its alteration

easily affects the predation number. For Figure 5, γ = 0.45 results in P0 = 0.889. For Figure ??,

γ = 0.3 results in P0 = 1.333. From Figure 5, the trajectory of the predator biomass increases

and then decreases due as the prey biomass decreases. So, less prey is devoured per unit of

predator biomass loss. From Figure ??, when the predation number is greater than one, the
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FIGURE 4. Dynamics of prey-predator model for m = 0.5

FIGURE 5. Dynamics of prey-predator model for m = 0.6

trajectories for both prey and predator become periodic or cyclic. So, more prey is eaten up

per unit of predator biomass loss. From Figures 3-5, we see the degree of decline in the prey

biomass for different increased values of m.

When we understand the dynamics of certain ecosystem, it helps in the preservation of the co-

existing species. An insight into a homogeneous community of a single predator and prey helps

to study the dynamics of their interaction and useful in analysis. We illustrated this using x as

the prey with y as the associated predator. In order to identify system stability, we computed a
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threshold parameter, P0 (Predation number) which summarizes most of the parameters. Also,

we see that the prey refuge parameter also contributes to investigating the survival of both prey

and predator. A possibility to introduce heterogeneity in the population will change the entire

dynamics and generate more interesting result for specie coexistence. In general, this work can

be extended to a heterogeneous population in order to account for multiple species coexistence.

We can also use a different functional response apart from Holling type II which will give us a

widespread view in our analysis.

3.2. Authors’ Contribution. This present work discussed the coexistence of both species us-

ing both a threshold parameter and a prey refuge parameter. A threshold quantity, the predation

number P0 was introduced to evaluate prey consumption per equivalent of predator biomass

(Collins and Duffy,[2016]). In addition to this, we investigated how to promote long term co-

existence of both species in relation to the prey refuge parameter mε[0,1). The first and corre-

sponding author originated the work, supervised and performed the simulations. The co-author

contributed also by handling the analysis.
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