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Abstract. In this work, we obtain (p,q)-analogues of generalized Opial’s integral inequalities. We also present
some further extensions of the new analogues. The fundamental theorem of (p,g)-calculus and the (p, q)-Holder’s

integral inequality were employed to establish the results.
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1. INTRODUCTION

Opial established an inequality involving integral of a function and its derivative in [13] as

W [sos o< [ora,

where f € C'[0,4], such that £(0) = f(h) =0, f'(¢) >0 and ¢ € [0,h]. The coefficient //4 is
the best constant possible.
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This inequality, due to its significance, experienced a lot of extensions and generalizations over
time in the classical field. See [3], [4], [5] and [16], among others.

In [16], generalizations of the classical Opial’s inequality were established as

b —a) b
@ [ s @lar< C00 [0
and
b —g) b
G [lrer@lar< @30 [0 ax

where the coefficients (b —a)/2 and (b — a) /4 are their respective best constants possible.
(p,q)-Calculus is a generalization of g-calculus. There has been a lot of development in the
study of (p, g)-calculus. Recently, Sadjang [15] investigated on fundamental concepts of (p,q)-
calculus. In [8], (p,q)-derivatives and (p, g)-integrals and their properties are also presented.

In [7], the authors established a (p,q)-analogue of a generalized Opial type inequality as

b b b
@ | 1@2)1Dp @0y g < § [0 ) P g

where @ € C[0,b] with ®(0) = @(b) =0and0< g< p < 1.

See also [1], [2], [7] and [11] for more analogues of the Opial’s type inequalities.

The Opial inequality plays essential role in establishing the existence and uniqueness of initial
and boundary values problems for both ordinary and partial differential equations [2] and [7].
The objective of this paper is to establish (p,q)-analogues of the generalized Opial integral

inequalities (2) and (3).

2. PRELIMINARIES

The basic concepts and terminologies of (p,g)-calculus which will be used to prove our results
are presented in this section. The definitions provided can also be seen in [8], [9] [11], [14],

[12] and [15].

Definition 2.1. [8] For any arbitrary function f in the real-line, the (p,q)-derivative is defined

as

f(px) — f(gx)

p_ax 70

5 Dp.,qf(x) =



ON (p,q)-ANALOGUES OF SOME GENERALIZED OPIAL’S INTEGRAL INEQUALITIES 6775

Definition 2.2. [8] For any positive real «, the twin basic number or the (p,g)-Number o is

defined as

(6) [o)pg="—"—=p* " +p* g+ +pg* t+q* ",

0<g<p<l, ocR".

The (p, q)-Derivative of sum or difference of f and g is defined as

(7 DP’CZ(af(x) +Bg(x)) = O‘Dp,qf(x) + BDp,qg(x>-

The (p, q)-Derivative of product of f and g is defined as

Dy g(f(x)8(x)) = g(px)Dp g f (x) + f(qx)Dp g8 (x)
() = f(px)ang(x) + g(qx)ngf(x)-

The (p,q)-Derivative of a quotient of f and g is defined as

f(x) ( )qu() f( )qug(x)
Dp’q(goc))‘ ¢ (pX)2(ax)

( x)Dp o f (x) — f(gx)Dp 48(x)
g(px)g(gx) ’

©) = g(px)g(gx) # 0.

Definition 2.3. [6] (Composite Rule) Let f be a function of a power function g, the (p,q)-
derivative of f(g(x)) is defined as

(10) Dpq(f(8(x))) = Dy gf (8(x)) Dp 48(x),

where £ is real and index of g.

Lemma 2.1. Let o € RT, then

(1D Dp4(x—a)* = [O‘]pﬂ(x_a)a_l-
Proof.
«_ Px—a)® —((x—a)g)”
Prab =) = e —a)
(r—q%) )]
-
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This completes the proof.

Definition 2.4. [15] Let f : [0,b] — R be a continuous function and 0 < g < p < 1. The definite

(p,q)-integral of f on [0,D] is defined as

(12) /f dpt=(p— qg; (;go.
If a € (0,b), the definite (p,g)-integral of f on [a,b] is defined as
b b a
(13) /f@%MZAf@%M—AfW%ﬂ
a

Remark 2.1. Taking p = 1, equation (12) reduces to the well known Jackson g-integral [10]
b o .
(14) | r@dx= (1= Y s b
j=0

Definition 2.5. [12]The function f defined on [a,b] is called (p,q)-increasing or (p,q)-

decreasing on [a,b], if f(gx) < f(px)(f(gx) > f(px)), for gx, px € [a,b].

It is easily observed that if the function f is increasing (decreasing), then it is also (p,q)-

increasing ((p, q)-decreasing).

Definition 2.6. [15](Fundamental Theorem of (p,q)-Calculus) If f € C[a,b], F is an antideriv-

ative of f on x € [a, b], then

(15) F(x)= / " ()t

Lemma 2.2. [17] ((p,q)—Hdlder’s Inequality ) Let o, 3 > 1 and é —|—% =1. If f and g are

continuous real-valued functions on |a, D), then

1 b 1
(16) / |f(x)g(x)|dpgx < (/ f(x)[* pqx) (/a |g(x)’ﬁdp7qx>ﬁa

holds. With equality when |g(x)| = c|f(x)|*~!. If « = B =2, the inequality becomes (p,q)-
Cauchy-Bunyakovsky-Schwartz’s Integral Inequality.
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3. MAIN RESULTS

Lemma 3.1. Let h : [a,b] — R be an absolutely continuous and a differentiable function, such

that Dy gh € Lgla,b], 1 <P < ooand 0 < q < p < 1. Then

b B e
a7 ([ 1Drldyar) < 6= [ 1Dy 0P
holds.

Proof. Applying (p,q)-Holder’s inequality we have

b B b 1 o B
(/a |Dp,qh(x)|dp,qx> = (/a lﬁ’Dp,qh(x)V de,qx)
1
b B b 1. B B
< (/ f|Dp7qh(x)|ﬁdp,qx) (/ (t ﬁ)ﬁldpﬂx)
b b p-1
:/ f\Dpvqh(xﬂﬁdp,qx (/f ﬁldpvqx)

b
= (0=aP " [ 1Dy Py

This completes the proof.

Theorem 3.1. Let h: [a,b] — R be an absolutely continuous function, such that D), 4h € Lg|a, b],
h(a)=0,(or h(b)=0),1 <P <e0and0<gq<p<1. Then

b B b—a)P-!
I e MO

holds.

Proof. Let ¢ be a convex function on [0,0) with ¢(0) = 0, x € [a,b], h(a) =0 and
y(x) = /: |Dpgh(t)|dpqt-

Then

(19 10 = 00 =0 ([ 1Dsh0ldyat )

Since D) 4y(x) = |Dpgh(x)| and |A(x)| < y(x), then we have

(20) Dp gJ(x) = Dpq¢ (y(x))|Dpgh(x)| = Dp @ (|h(x)[)|Dp,gh(x)].
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Thus

b b
QO [ DI (6dpx =9 0 () = 00(@) = [ Dy (1B5)DIDp (0l dp g

Since ¢(0) =0, (21) becomes

b b
@) [ Dra IR 3 <0 [ 1D ).
Letting ¢ (x) = % for 1 < B < e in (22) we obtain

b B
(23) [mﬁ g |quh( )||h(Px)’B_1dp7qx§ % (/a |Dp.,qh(x)|dp,qx) :

Applying Lemma 3.1 to (23) yields

[Blp.q
B

which implies

(b—a)l~!

49 10 (0P < E=E [y ) P

b B b— aﬁ 1
[ a0y < = [ 1D, )P
a Pq

This completes the proof.
Remark 3.1. Letting B = 2, p = 1 and taking limit of (26) as ¢ — 1 yields (2).

Remark 3.2. Putting 8 = 3 into (18) yields
(b—a)®

b
m/a Dy gh(x)Pdp gx.

b
e3) | 105 )0 P <
a
This simplifies to

b a b
. (pz)£b3 ! / [Dp gh(x)*dp g

b
| 105 ) (p) P <

)3
(26) 2+pq+q /| pgh(X) [ dp gx.

which is the (p, g)-extension of (2).

Theorem 3.2. Let h € C"[a, b be a differentiable function, such that h(a) =0, for 1 <i<n-—1,
1<B<ewcand0<q<p<1. Then

b b— Bn—1 (b
(27) /a (X—Cl)nfl‘Dg,qh(x)\\h(Px)\ﬁfldp,qx < %/ﬂ ’Dmh(xﬂﬁdp,qx

holds.
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Proof. Let ¢ be a convex function on [0,00) with ¢(0) =0, x € [a,b], h(a) =0 and

X [Xn—1 X1 (n)
y(x) :/ / / 1Dp.gh(s)|dp.gsdpgxt - dpgXn—1.
a a a

So that
DY) y(x) = [DYIR(x)], y(x) > |h(x)| and  D{y(x) >0

By [15], it follows that
(28) DY y(x) < (x—a)DitVy(x), xelab], 0<i<n-—2.

It implies that

(29) h(x)| < y(x) < (x—a)Dpgy(x) < -~ < (x—a)" DY Vy(x).
Consider
(30) W(x) = ¢((x—a) "Dy, Vy(x)).

Applying Lemma 2.1, then

Dy W(x) = Dpyd((x—a) "Dy y(x)D,4(x — a) "D, Vy(x)]

= Dy 0((x— )" VDY () Dl Uy PEZ D = e )

pa YX))Ppgq

(p—q)(x—a)
(x—a)" DD, Dy y(x)
=Dy ((x— )" IDY (@) [ — 1 (x—a) DDy V()

31) +(x—a) DDy ().

From (31) we have

(32) — Dy ® (1)) (x— )" VDY A(x)].

6779
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Thus
[ D (g = 6((6—ay Dl 3(0) ~ 9(0)
(33) > / Dy g ¢ (1)) (x — @)~ DY) dp g

Since ¢ (0) = 0, (33) becomes

b b
cH Dp,q¢<|h<x>|><x—a>"—1|D§I,’21h<x>|dp,qxs¢((b—a>”—' / Dg;gymdwx),

which results

b
[ D (1) (x = @) D) d 1

b
(35) <9 ((b—a)“ / |D£’?%h<x>\dp,qx) ~

Considering ¢ (x) = %ﬁ for 1 < B <0 in (35) we obtain

b
Els /a (x—a)" Dy ()| |A(px) [P~ dp g

B

(36) E((b ay'- 1/ DY) h( )|dpqx)ﬁ.
This simplifies to

Bt [y D0 )P
(37) S%(/ |qu )|dpqx>ﬁ'
Applying Lemma 3.1 to the right-hand side of (37) yields

B [ DL () P

(38) < (b— a)ﬁ(n;) (b—a)P-! /ab ]Dgleh(x) |ﬁdp,qx,
which implies
(39) /ab(X—a)nIID(n)quh(x)Hh(Px)‘ﬁldzaqx < (b[;i/ ‘qu ()P dp gx.

This completes the proof.

Remark 3.3. By letting f =2,n =1 p =1 and taking limit of (41) as ¢ — 1 yields (2).
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Remark 3.4. Putting B =4 in (27) yields

b n—1p") 3 (b 04" ! 4
(40) /a (x—a)"" " |Dpgh(x)||h(px)| dp7qx<[—/ |qu x)|"dp gx.

This simplifies to

b 4n—1 b
n— n pP— b—a n
[t D P < =D [ D)

(b o a)4n71

41) —
P+ p?q+pg*+q

P4
3/a |Dp.gh(x)["dp,qx,

forn > 1.
which is the (p, g)-extension of (2).

Theorem 3.3. Let h: [a,b] — R be an absolutely continuous function, such that D), 4h € Lg|a, b],
h(a)=h(b)=0,1<B <occand0<q<p<1. Then

b aﬁ1
@) [ 120 Py g1 < = [ 10y )Py

holds.

Proof. Let ¢ be a convex function on [0,o0) with ¢(0) =0, x € [a,b], h(a) =0 and

X
x) :/a IDpgh(t)|dp 4t

Then
3) 10 = 0069 =0 [ IDpahldyar ).
Since D) 4y(x) = |Dpgh(x)| and |h(x)| < y(x), then
(44) Dy 4J(x) = Dp g (y(x))|Dp gh(x)| = Dp 4@ (|h(x))|Dp gh(x)].
Also, let
b
@s) 20 = [ 1Dpgh0) dt

for h(b) =0, then

) ) =~0(c) =~ ([ 1Dyt ).
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Since D) 42(x) = —|Dp sh(x)| and  |h(x)| < z(x), then

47) Dp,qT(x) = Dp7q¢(z(x))|Dp,qh(x)| = Dpyq¢(‘h(x)|)|Dp,qh(x)|~

Let [a,%f2] and [“f2,b] be subintervals of [a,b].

By (44) we obtain

a+b
2

Dy dnx =0 (»(“52) ) ~00(a)

@$) > [ Dpgd(H)IDp (0l dp g

a

Since ¢ (0) = 0, (48) becomes

(49) ¢</

Also, by (47) we obtain

[ PoaT s = o)~ (:(57)

(50) > [ Db (A1) D0l

D, i \d,,qx> [ D (MDD (0

Since ¢ (0) = 0, (50) becomes

b b
(51) () (/Hb ‘Dp,qh(x)‘dp,qx) > /Hb Dp,q‘P(’h(x)')’Dp,qh<x)’dpvqx'

Adding inequalities (49) and (51) we obtain

atb

b 2
/a Dp 49 (|h(x)])[Dpgh(x)|dpqex < @ (/a |Dp7qh(x)|dp7qx>
b
(52) +9 ( 1., 1Ppahe) yd,,,qx) .

Now, for ¢ (x) = %, 1 < B < = in (52) we have

= ﬁ’
pq/ ’quh )Hh(Px)‘ﬁ ldpq E(/

1 b B
(53) + B ([Hb [Dp.gh(x )|dp,qx) :

a+b

B
D, gh(x) ]dpﬂx)
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Applying Lemma 3.1 to (53) yields

B [y 0P < O [ D
(54) % b Dy ()| dp g,
which simplifies to
(55) /ab Dy gh(x)|[A(px)[P~1d), gx < % ab 1D, gh(x)[Pdp g

This completes the proof.

Remark 3.5. The inequality 55 is sharper than the inequality 39 .

Remark 3.6. By letting f =2, p = 1 and taking limit of (55) as ¢ — 1 we obtain (3).

Remark 3.7. Putting 8 = 3 into (42) yields

b 2 (b—a)* [P 3
(56) [P0 @) 1(p2) Py g < T [T 1D ) g
a 4[3]177‘1 a
This simplifies to

_ —612 b
(p4(g3>(—bq3)> /a [Dpgh(x)*dpgx

(b—a)?

b
57 = / D, h(x)Pdyx,

b
| 1D 1) Pl g <

which is the (p, g)-extension of (3).

Theorem 3.4. Let h: [a,b] — R be an absolutely continuous function, such that D ;h € Lg|a,b),

hia)=0,1<B<eccandd<qg<p<l.

(58) / ’

holds.

(b—a)P
B+1

b
+1
hﬁ(x)Dp,qh(x) dpgx < /|Dp,qh(x)|ﬁ dp.gX

Proof. Letx € [a,b], 0 < g < p <1 and by [15] we have

(59) y(x) = / Dy gh(t)]dp gt
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So that
Dp 4y(x) = [Dp 4h(x)| and |h(x)| < y(x).

It follows that

b b
/a |hﬁ(x)Dp7qh(x)|dp,qx§/a yﬁ(x)ngy(x)dp?qx
1

— B,
i ()
But
b B+1
(60 $800) = ([ Dpahtoldner)
Implying that
b 1 b p+1
(61) /a WP (X)Dp gh(x)|dp gx < B+1 (/a |Dp,qh(x)|dp,qx> ‘
Applying Lemma 3.1 to (61) we obtain
b B (b—a)ﬁ b B+1
(©2) [ @D () < T [T 1D ()P g

This completes the proof.
Remark 3.8. By letting B = 1, p = 1 and taking limit of (62) as ¢ — 1 we obtain (2).

CONCLUSION

In this work, (p,q)-analogues of generalized Opial’s integral inequalities and their further ex-
tensions were established. The basic definitions of (p,q)-calculus, the fundamental theorem of
(p,q)-calculus and convexity properties of functions were employed to obtain the results. The
(p,q)-Holder’s integral inequality was also applied in proving the theorems. It is hoped that

these results will be very useful to the mathematics community.
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