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Abstract: Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), which is spreading all over the world and the main causes of worldwide death. For this 

reason, the control analysis of this coronavirus disease 2019 has a significant importance prevent the spread of it. In 

this paper, we present the modeling, mathematical analysis, and adaptive control of spreading coronavirus disease 

2019. The mathematical analysis shows that the two fixed points of the coronavirus disease 2019 are globally 

asymptotically stable and the basic reproduction ratio R0 is obtained, which characterizes the disease transmission. 

Moreover, an adaptive control is designed to control and treat coronavirus outbreak. The sufficient control conditions 

are derived for the existence of stable coronavirus disease 2019 free is presented. 
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1. INTRODUCTION 

Infectious diseases mainly caused by pathogenic microorganisms, such as bacteria, viruses, fungi, 

and parasites. The diseases can spread directly or indirectly from one person to another or from 

animals/birds to humans. These diseases are one of the main causes of worldwide death. 

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China in 

December 2019 [24]. The disease has since spread worldwide more than 150 countries across the 

world. On 8 March 2020, the WHO announced COVID-19 as a global pandemic [34]. As of 29 

May 2021, there are over 170 million reported cases, and a death toll exceeding 3 million. 

Transmission of COVID-19 occurs when people are exposed to virus-containing 

respiratory droplets and airborne particles exhaled by an infected person. Those particles may be 

inhaled or may reach the mouth, nose, or eyes of a person through touching or direct deposition 

such as being coughed. The risk of infection is highest when people are in proximity for a long 

time, but particles can be inhaled over longer distances, particularly indoors in poorly ventilated 

and crowded spaces. In those conditions small particles can remain suspended in the air for minutes 

to hours. Touching a contaminated surface or object may lead to infection. Symptoms of COVID-

19 are including fever, cough, headache, fatigue, breathing difficulties, and loss of smell and taste 

[1, 10, 16, 26, 27]. Symptoms may begin one to fourteen days after exposure to the virus. The most 

81% develop mild to moderate symptoms, while 14% develop severe symptoms, and 5% suffer 

critical symptoms.  

Mathematical models have been developed to study the transmission dynamics of COVID-

19 [5, 10, 22, 28]. Several mathematical models have already been formulated to analyze the 

complex transmission pattern of the COVID-19 pandemic, using ordinary differential equations 

[18, 27, 31], delay differential equations [11], stochastic differential equations [30]. At present, the 

SIS [21, 32], SIR [7] and SEIR [2, 3] models provide another way for the simulation of epidemics.  

Lots of research works have been reported. It shows that SIS, SIR and SEIR models can reflect the 

dynamics of different epidemics well, these models have been used to model the COVID-19 [9, 
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29]. For instance, the SIR model is commonly used for disease modeling for the COVID-1 9 

analysis [4, 8, 23], Tang et al. [29] investigated a general SEIR type epidemiological model where 

quarantine, isolation and treatment are considered. Moreover, there are also other methods for 

modeling of the COVID-19 [35]. Wang et al. [33] applied the phase-adjusted estimation for the 

number of coronavirus disease 2019 cases in Wuhan.  

Recently, many scholars have studied the optimal control of COVID-19 introducing 

different control variables and given the corresponding control strategies [12, 17, 25]. In fact, the 

optimal control theory can only aim at the systems with known parameters and obtain the system 

inputs by minimizing the cost function. It is worth noting that there are various uncertainties in the 

transmission of COVID-19. If there are uncertain parameters in the system, it is impossible for 

optimal control theory to obtain the desired results, which need to identify the system parameters 

in advance. Fortunately, adaptive control can update the system parameters by using adaptive laws 

and guarantee the stability of closed loop system [6]. 

In this paper, we present the modeling, mathematical analysis, and adaptive control of 

spreading coronavirus disease. First, we discuss the description of the proposed model. Then, we 

present its mathematical analysis, the two fixed points of the system are globally asymptotically 

stable by using Lasalle’s theorem and the basic reproduction ratio R0 is obtained, which 

characterizes the disease transmission. Next, we design adaptive control for globally stabilize a 

general coronavirus disease 2019 model by using Lyapunov stability theory. Finally, the 

conclusion this paper is presented. 

 

2. PRELIMINARIES 

Consider a dynamical system which satisfies, 

                          𝑥̇ = 𝑓(𝑥, 𝑡), 𝑥(𝑡0) = 𝑥0;  𝑥 ∈ 𝑅𝑛              (1) 

where 𝑓(𝑥, 𝑡): 𝑅𝑛 × 𝑅+ → 𝑅𝑛. A point 𝑥𝑒 ∈ 𝑅𝑛 is a fixed point of the system if 𝑓(𝑥𝑒 , 𝑡) = 0. 

Definition 2.1 The fixed point 𝑥𝑒 is stable if for 𝑥𝑒 > 0 there exists 𝛿 > 0 such that, 

‖𝑥(0) − 𝑥𝑒‖ < 𝛿 ⇒ ‖𝑥(𝑡) − 𝑥𝑒‖ < 𝜀 
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where 𝑥(0) is unique solution. The fixed point 𝑥𝑒 is unstable if it is not stable. The fixed point 

𝑥𝑒 is asymptotically stable if it is stable and there exists 𝛿 > 0 such that, 

        ‖𝑥(0) − 𝑥𝑒‖ < 𝛿 ⇒  𝑥(𝑡) → 𝑥𝑒  as  𝑡 → ∞ 

The fixed point 𝑥𝑒 is globally asymptotically stable if it is stable and 

  𝑥(𝑡) → 𝑥𝑒  as 𝑡 → ∞ 

The following result is the fundamental importance of a Lyapunov stability theorem [13]. 

Theorem 2.2 (Lyapunov global asymptotically stability theorem or G.A.S) 

Suppose there is a function 𝑉: 𝑅𝑛 → 𝑅 such that, 

(1) 𝑉 is positive definite, 

(2) 𝑉̇(𝑥) < 0 for all 𝑥 ≠ 0, 𝑉̇(0) = 0   

then, every trajectory of 𝑥̇ = 𝑓(𝑥) converges to zero as 𝑡 → ∞, that is the system is globally 

asymptotically stable. 

Theorem 2.3 (Lasalle’s theorem [20]) 

Lasalle’s theorem allows us to conclude G.A.S. of a system with only  𝑉̇(𝑥) ≤ 0, along with an 

observability type condition. We consider 𝑥̇ = 𝑓(𝑥). Suppose there is a function 𝑉: 𝑅𝑛 → 𝑅 such 

that, 

(1) 𝑉 is positive definite, 

(2) 𝑉̇(𝑥) ≤ 0, 

(3) the only solution 𝜔̇ = 𝑓(𝜔),  𝑉̇(𝜔) = 0 is 𝜔(𝑡) = 0 for all 𝑡 

then, the system 𝑥̇ = 𝑓(𝑥) is globally asymptotically stable or G.A.S. 

Next, we consider a nonlinear nonautonomous differential equation of the general form, 

       𝑥̇(𝑡) = 𝑓(𝑡, 𝑥(𝑡));  𝑡 ≥ 𝑡0 ∈ 𝑅             (2)                    

                        𝑥(𝑡0) = 𝑥0         

where the state 𝑥(𝑡)  take values in 𝑋 , 𝑓(𝑡, 𝑥): 𝑅 × 𝑋 → 𝑋  is a given nonlinear function and 

𝑓(𝑡, 0) = 0, for all 𝑡 ∈ 𝑅. 

An adaptive control is an active field in the design of control systems to deal with 

uncertainties. To design control laws that stabilize of the chaotic system. The control system can 
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be written as 

  𝑥̇(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡));  𝑡 ≥ 0                        (3)                                            

where 𝑢(𝑡) is the external control. 

Definition 2.4 The control system (3) is stabilizable if there exist the control 𝑢(𝑡) = 𝑘(𝑥(𝑡)) 

such that the system, 

  𝑥̇(𝑡) = 𝑓 (𝑡, 𝑥(𝑡), 𝑘(𝑥(𝑡))) ;  𝑡 ≥ 0                    (4)                                                          

is asymptotically stable.  

 

3. MODEL DESCRIPTION  

In this section, we formulate a general SEIR model for the spreading of coronavirus disease 2019 

(COVID-19). We separate the total population N(t) into four distinct subgroups which are 

Susceptible 𝑆(𝑡) , Exposed 𝐸(𝑡) , Infectious 𝐼(𝑡) , and recovered 𝑅(𝑡) . Group of susceptible 

individuals 𝑆(𝑡) which will be increased based on the birth 𝜋 and decrease because the death 

𝜇  and direct contact with an infected individual group 𝛽, group of the exposed 𝐸(𝑡), which will 

increase with transmission rate 𝛽 , decreased due to natural mortality 𝜇  and have been the 

incubation period 𝜎, group of individuals who are infected with coronavirus disease 𝐼(𝑡), which 

will increase with the incubation period 𝜎, decreased due to natural mortality 𝜇 and have been 

recovery with the rate 𝛾, and group of individuals who recover 𝑅(𝑡) who increased because of 

there was the recovery with rate 𝛾 and decreased because of natural mortality 𝜇.  

                                                                                     

                𝛽 > 0            𝜎 > 0             𝛾 > 0 

     𝜋           S                   E                   I                  R                                  

     

                                              

 

         𝜇𝑆                𝜇𝐸             𝜇𝐼               𝜇𝑅 

 

Based on the assumptions, the mathematical model for spread of coronavirus disease 2019 can be 

represented by the following system of differentials equations 
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 𝑆̇(𝑡) = 𝜋 − 𝛽𝑆𝐼 − 𝜇𝑆 

       𝐸̇(𝑡) = 𝛽𝑆𝐼 − 𝜆1𝐸                               (5)                                

 𝐼(̇𝑡)  = 𝜎𝐸 − 𝜆2𝐼 

 𝑅̇(𝑡) = 𝛾𝐼 − 𝜇𝑅 

where 𝜆1 = 𝜎 + 𝜇, 𝜆2 = 𝛾 + 𝜇  with 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡)  and the initial 

condition                                                                         

                                               𝑆(0) ≥ 0, 𝐸(0) ≥ 0, 𝐼(0) ≥ 0, 𝑅(0) ≥ 0 

Considering the total population density is a constant value,  

 
𝑑𝑁(𝑡)

𝑑𝑡
= 0 

𝑑𝑆(𝑡)

𝑑𝑡
+

𝑑𝐸(𝑡)

𝑑𝑡
+

𝑑𝐼(𝑡)

𝑑𝑡
+

𝑑𝑅(𝑡)

𝑑𝑡
= 0 

We have 𝜋 = 𝜇.  By the total population density, we have 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1. 

Therefore, it is enough to considers, 

𝑆̇(𝑡) = 𝜋 − 𝛽𝑆𝐼 − 𝜇𝑆 

      𝐸̇(𝑡) = 𝛽𝑆𝐼 − 𝜆1𝐸                      (6)                                              

          𝐼(̇𝑡) = 𝜎𝐸 − 𝜆2𝐼 

which the region for the above system as 

       Ω = {𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡) ∈ 𝑅+
3 , 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) ≤ 1 } 

 

4. MATHEMATICAL ANALYSIS 

4.1 FIXED POINT AND BASIC REPRODUCTION RATIO 

In this section, we will discuss about the fixed point and basic reproduction ratio R0 of SEIR model. 

The two fixed points are obtained as follows: 

1. The disease-free fixed point of the proposed SEIR model is acquired by setting,  
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 𝐸 = 𝐼 = 0  in the system (6). Hence, we obtain the disease-free fixed point in the form 

𝐸0 = (
𝜋

𝜇
, 0,0). 

2. The epidemic fixed point of the proposed SEIR model is acquired by set all the 

derivatives equal to zero and solved the system (6) as follows, 

𝑆̇(𝑡) = 𝐸̇(𝑡) = 𝐼(̇𝑡) = 0 

Then, the system (6) gives, 

                              𝜋 − 𝛽𝑆𝐼 − 𝜇𝑆 = 0                                      (7)                                                                             

           𝛽𝑆𝐼 − 𝜆1𝐸 = 0                                    (8)    

     𝜎𝐸 − 𝜆2𝐼 = 0                         (9)               

From equation (9), we have   

                           𝐸 =
𝜆2

𝜎
𝐼                        (10) 

From equation (8), we have 

                         𝑆 =
𝜆1𝜆2

𝜎𝛽
                        (11) 

Substituting equation (10) and (11) into equation (7), we get 

    𝐼 =
𝜋𝜎

𝜆1𝜆2
−

𝜇

𝛽
                    (12) 

or  

    𝐼 =
𝜇

𝛽
(

𝛽𝜋𝜎

𝜇𝜆1𝜆2
− 1)                   (13) 

where 𝑅0 =
𝛽𝜋𝜎

𝜇𝜆1𝜆2
=

𝛽𝜋𝜎

𝜇(𝜎+𝜇  )(𝛾+𝜇)
  is the basic reproduction ratio. Hence, we obtain the epidemic 

fixed point in the form 𝐸1 = (
𝜆1𝜆2

𝜎𝛽
,

𝜆2

𝜎
𝐼,

𝜇

𝛽
(

𝛽𝜋𝜎

𝜇𝜆1𝜆2
− 1)). The basic reproduction ratio R0 can be 

used to measure the rate of spreading of a disease, 

1. For 𝑅0 ≤ 1, the patient could transmit the disease to a person and eventually the disease 

will disappear, this mean that the epidemic will not happened. 

2. For 𝑅0 > 1, the patient could infect in more a new patient and eventually the disease 

will epidemic, this mean that epidemic is happened. 
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4.2 STABILITY ANALYSIS OF FIXED POINT 

In this section, we have discussed stability analysis of both fixed points. We used Lasalle’s 

Theorem for both the disease-free fixed point and the endemic fixed point of the proposed model. 

First, we present the globally asymptotically stable of the disease-free fixed point. 

Theorem 4.1 If 𝑅0 ≤ 1, then the disease-free fixed point 𝐸0 = (
𝜋

𝜇
, 0,0) of the system is globally 

asymptotically stable on Ω. 

Proof To establish the globally asymptotically stable of the disease-free fixed point 𝐸0 , we 

construct the Lyapunov function 𝑉. Let  𝑉: Ω → 𝑅  define by 

𝑉(𝑆, 𝐸, 𝐼) = [𝑆 − 𝑆∗ln (
𝑆

𝑆∗)] +
𝐸

𝜆1
+

𝐼

𝜎
                (14) 

The time derivative of V along the solution of the system, we obtain 

      𝑉̇ = (1 −
𝑆∗

𝑆
) 𝑆̇ +

𝐸̇

𝜆1
+

𝐼̇

𝜎
                   (15) 

Substituting  𝑆̇(𝑡),  𝐸̇(𝑡), 𝐼(̇𝑡) in the equation (15) and let 𝑆∗ =
𝜋

𝜇
 , we get 

      𝑉̇ = (1 −
𝑆∗

𝑆
) (𝜋 − 𝛽𝑆𝐼 − 𝜇𝑆) +

1

𝜆1
(𝛽𝑆𝐼 − 𝜆1𝐸) +

1

𝜎
(𝜎𝐸 − 𝜆2𝐼)  

 

              = (1 −
𝜋

𝜇𝑆
) (𝜋 − 𝛽𝑆𝐼 − 𝜇𝑆) +

𝛽𝑆𝐼

𝜆1
−

𝜆2𝐼

𝜎
 

 

                   = 2𝜋 − 𝛽𝑆𝐼 − 𝜇𝑆 −
𝜋2

𝜇𝑆
+

𝜋

𝜇
𝛽𝐼 +

𝛽

𝜆1
𝑆𝐼 −

𝜆2𝐼

𝜎
 

 

                   = −𝜋 (
𝜇𝑆

𝜋
+

𝜋

𝜇𝑆
− 2) + 𝐼 (

𝜋

𝜇
𝛽 − 𝛽𝑆 +

𝛽

𝜆1
𝑆 −

𝜆2

𝜎
) 

 

            = −𝜋 (
𝜇𝑆

𝜋
+

𝜋

𝜇𝑆
− 2) + 𝐼

𝜆2

𝜎
(

𝛽𝜋𝜎

𝜇𝜆1𝜆
2

− 1) 

 

                = −𝜋 (
𝜇𝑆

𝜋
+

𝜋

𝜇𝑆
− 2) + 𝐼

𝜆2

𝜎
(𝑅0 − 1) 

 

We can see that 𝑉̇ ≤ 0 for 𝑅0 ≤ 1. Therefore, by the Lasalle’s Theorem [20], the disease-free 

fixed point 𝐸0 of the system is globally asymptotically stable on Ω. 
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Theorem 4.2 The endemic fixed point   𝐸1 = (
𝜆1𝜆2

𝜎𝛽
,

𝜆2

𝜎
𝐼,

𝜇

𝛽
(

𝛽𝜋𝜎

𝜇𝜆1𝜆2
− 1) ) of the system is globally 

asymptotically stable on Ω.          

Proof To establish the globally asymptotically stable of the endemic fixed point 𝐸1 = (𝑆∗, 𝐸∗, 𝐼∗)  

where 

𝑆∗ =
𝜆1𝜆2

𝜎𝛽
,  𝐸∗ =

𝜆2

𝜎
𝐼,  𝐼∗ =

𝜇

𝛽
(

𝛽𝜋𝜎

𝜇𝜆1𝜆2
− 1) 

We can construct the Lyapunov function 𝑉: Ω+ → 𝑅, where 

                     Ω+ = {(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡)) ∈ Ω / 𝑆(𝑡) > 0, 𝐸(𝑡) > 0, 𝐼(𝑡) > 0 } 

is given by 

          𝑉(𝑆, 𝐸, 𝐼) = 𝑉1 [𝑆 − 𝑆∗ln (
𝑆

𝑆∗)] − 𝑉2 [𝐸 − 𝐸∗ ln (
𝐸

𝐸∗)] − 𝑉3 [𝐼 − 𝐼∗ln (
𝐼

𝐼∗)]      (16)  

where 𝑉1, 𝑉2 and 𝑉3 are positive constants to be chosen. By taking the derivative of the above 

function, we obtain 

                   𝑉̇ = [
𝜕

𝜕𝑆
𝑉1𝑆 −

𝑉1𝑆∗

𝑆
] (𝜋 − 𝛽𝑆𝐼 − 𝜇𝑆) − [

𝜕

𝜕𝐸
𝑉2𝐸 −

𝑉2𝐸∗

𝐸
] (𝛽𝑆𝐼 − 𝜆1𝐸)     

                     − [
𝜕

𝜕𝐼
𝑉3𝐼 −

𝑉3𝐼∗

𝐼
] (𝜎𝐸 − 𝜆2𝐼)               

                  = [𝑉1 −
𝑉1𝑆∗

𝑆
] (𝜋 − 𝛽𝑆𝐼 − 𝜇𝑆) − [𝑉2 −

𝑉2𝐸∗

𝐸
] (𝛽𝑆𝐼 − 𝜆1𝐸)                                    

                   − [𝑉3 −
𝑉3𝐼∗

𝐼
] (𝜎𝐸 − 𝜆2𝐼)  

                  = [𝑉1𝑆 − 𝑉1𝑆∗] [
𝜋

𝑆
− 𝛽𝐼 − 𝜇] − [𝑉2𝐸 − 𝑉2𝐸∗] [

𝛽𝑆𝐼

𝐸
− 𝜆1]                                  

                            −[𝑉3𝐼 − 𝑉3𝐼∗] [
𝜎𝐸

𝐼
− 𝜆2]                              (17) 

From the fixed point 𝐸1 = (𝑆∗, 𝐸∗, 𝐼∗) = (
𝜆1𝜆2

𝜎𝛽
,

𝜆2

𝜎
𝐼,

𝜇

𝛽
(

𝛽𝜋𝜎

𝜇𝜆1𝜆2
− 1)), we have   

         −𝜇 = 𝛽𝐼∗ −
𝛽𝜋𝜎

𝜆1𝜆2
 

−𝜆1 = −
𝛽𝐼𝑆∗

𝐸∗
                                        (18)                                                                                           

−𝜆2 = −
𝜎𝐸∗

𝐼
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Substituting (18) into the equation (17) become 

                   𝑉̇ = −𝑉1𝛽[𝑆 − 𝑆∗][𝐼 − 𝐼∗] − 𝑉2𝛽𝐼[𝐸 − 𝐸∗] [
𝑆

𝐸
−

𝑆∗

𝐸∗] − 𝑉3
𝜎

𝐼
[𝐸 − 𝐸∗] 

We can see that 𝑉̇ ≤ 0. Therefore, by the Lasalle’s Theorem [20], the endemic fixed point 𝐸1 of 

the system is globally asymptotically stable on Ω. 

4.3 ADAPTIVE CONTROL OF CORONAVIRUS DISEASE 2019 (COVID-19) 

In this section, we design the adaptive control for global stabilized the coronavirus disease 2019 

(COVID-19). The sufficient control conditions are derived using by Lyapunov stability theorem.  

Theorem 4.3 The coronavirus disease 2019 is global stabilized for the initial conditions    

𝑆(𝑡) > 0, 𝐸(𝑡) > 0, 𝐼(𝑡) > 0, 𝑅(𝑡) > 0  by the adaptive control 𝑢1,  𝑢2  and 𝑢3  where the 

estimate parameters are given by 𝜋̇̂ = 𝑆 + 𝐾4𝑒𝜋 , 𝛽̇̂ = 𝑆𝐸𝐼 + 𝐾5𝑒𝛽 ,   𝜇̇̂ = −𝑆2 + 𝐾6𝑒𝜇,  𝜎̇̂ = 𝐸𝐼 +

𝐾7𝑒𝜎, 𝜆1̇ = −𝐸2 + 𝐾8𝑒𝜆1
, and 𝜆2̇ = −𝐼2 + 𝐾9𝑒𝜆2

. 

Proof  We design adaptive control for the coronavirus disease as follows, 

𝑆̇(𝑡) = 𝜋 − 𝛽𝑆𝐼 − 𝜇𝑆 + 𝑢1 

    𝐸̇(𝑡) = 𝛽𝑆𝐼 − 𝜆1𝐸 + 𝑢2                                         (19)                                                                                          

    𝐼(̇𝑡)  = 𝜎𝐸 − 𝜆2𝐼 + 𝑢3 

where 𝑢1, 𝑢2  and 𝑢3  are controllers to be designed using the states and estimates of the 

parameters of the system. We consider the adaptive control functions, 

𝑢1 = −𝜋̂ + 𝛽̂𝑆𝐼 + 𝜇̂𝑆 − 𝐾1𝑆 

    𝑢2 = −𝛽̂𝑆𝐼 + 𝜆̂1𝐸 − 𝐾2𝐸                           (20)                                                                                    

    𝑢3 = −𝜎̂𝐸 + 𝜆̂2𝐼 − 𝐾3𝐼 

where 𝜋̂,  𝛽̂, 𝜇,̂ 𝜎̂, 𝜆̂1, and 𝜆̂2 are estimates of the parameters and 𝐾1, 𝐾2, and 𝐾3 are positive 

constants. Substituting the controllers into the coronavirus disease, we have 

 

𝑆̇(𝑡) = (𝜋 − 𝜋̂) − (𝛽 − 𝛽̂)𝑆𝐼 − (𝜇 − 𝜇̂)𝑆 − 𝐾1𝑆 
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    𝐸̇(𝑡) = (𝛽 − 𝛽̂)𝑆𝐼 − (𝜆1 − 𝜆̂1)𝐸 − 𝐾2𝐸                (21)                                                                   

     𝐼(̇𝑡) = (𝜎 − 𝜎̂)𝐸 − (𝜆2 − 𝜆̂2)𝐼 − 𝐾3𝐼 

Define the parameter errors as 

         𝑒𝜋 = 𝜋 − 𝜋̂, 𝑒𝛽 = 𝛽 − 𝛽̂, 𝑒𝜇 = 𝜇 − 𝜇̂, 𝑒𝜎 = 𝜎 − 𝜎̂, 𝑒𝜆1
= 𝜆1 − 𝜆̂1, 𝑒𝜆2

= 𝜆2 − 𝜆̂2   (22) 

Thus, the equation (21) can be rewritten as 

𝑆̇(𝑡) = 𝑒𝜋 − 𝑒𝛽𝑆𝐼 − 𝑒𝜇𝑆 − 𝐾1𝑆 

   𝐸̇(𝑡) = 𝑒𝛽𝑆𝐼 − 𝑒𝜆1
𝐸 − 𝐾2𝐸                       (23)                                                                                                      

     𝐼(̇𝑡)  = 𝑒𝜎𝐸 − 𝑒𝜆2
𝐼 − 𝐾3𝐼 

Consider the quadratic Lyapunov function, 

      𝑉 =
1

2
(𝑆2 + 𝐸2 + 𝐼2 + 𝑒𝜋

2 + 𝑒𝛽
2 + 𝑒𝜇

2 + 𝑒𝜎
2 + 𝑒𝜆1

2 + 𝑒𝜆2

2 ) ∈ 𝑅9   (24) 

which is a positive definite function on 𝑅9. So that 

           𝑒𝜋̇ = −𝜋̇̂, 𝑒𝛽̇ = −𝛽̇̂, 𝑒𝜇̇ = −𝜇̇̂, 𝑒𝜎̇ = −𝜎̇̂, 𝑒̇𝜆1
= −𝜆̂1

̇ , 𝑒̇𝜆2
= −𝜆̂2

̇          (25) 

 

Differentiating V along the equation (23) and using equation (25), we get 

               𝑉̇ = 𝑆𝑒𝜋 − 𝑒𝛽𝑆2𝐼 − 𝑒𝜇𝑆2 − 𝐾1𝑆2 + 𝑒𝛽𝑆𝐸𝐼 − 𝑒𝜆1
𝐸2 − 𝐾2𝐸2 

              +𝑒𝜎𝐸𝐼 − 𝑒𝜆2
𝐼2 − 𝐾3𝐼2 − 𝑒𝜋 𝜋̇̂ − 𝑒𝛽 𝛽̇̂ − 𝑒𝜇 𝜇̇̂ − 𝑒𝜎 𝜎̇̂ − 𝑒𝜆1

𝜆̂1
̇ − 𝑒𝜆2

𝜆̂2
̇  (26) 

The estimated parameters of equation (26) are update by the following, 

      𝜋̇̂ = 𝑆 + 𝐾4𝑒𝜋, 

                   𝛽̇̂ = 𝑆𝐸𝐼 + 𝐾5𝑒𝛽 ,  

           𝜇̇̂ = −𝑆2 + 𝐾6𝑒𝜇,                     (27)                 

  𝜎̇̂ = 𝐸𝐼 + 𝐾7𝑒𝜎, 

 𝜆1
̇ = −𝐸2 + 𝐾8𝑒𝜆1

, 
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𝜆2̇ = −𝐼2 + 𝐾9𝑒𝜆2
   

where 𝐾4, 𝐾5, 𝐾6, 𝐾7, 𝐾8 and 𝐾9 are positive constants. Substituting equation (27) into equation 

(26), we obtain 

                  𝑉̇ = 𝑆𝑒𝜋 − 𝑒𝛽𝑆2𝐼 − 𝑒𝜇𝑆2 − 𝐾1𝑆2 + 𝑒𝛽𝑆𝐸𝐼 − 𝑒𝜆1
𝐸2 − 𝐾2𝐸2 

             +𝑒𝜎𝐸𝐼 − 𝑒𝜆2
𝐼2 − 𝐾3𝐼2 − 𝑒𝜋𝑆 − 𝐾4𝑒𝜋

2 − 𝑒𝛽𝑆𝐸𝐼 − 𝐾5𝑒𝛽
2 

             +𝑒𝜇𝑆2 − 𝐾6𝑒𝜇
2 − 𝑒𝜎𝐸𝐼 − 𝐾7𝑒𝜎

2 + 𝑒𝜆1
𝐸2 − 𝐾8𝑒𝜆1

2 + 𝑒𝜆2
𝐼2 − 𝐾9𝑒𝜆2

2  

                    = −𝑒𝛽𝑆2𝐼 − 𝐾1𝑆2 − 𝐾2𝐸2 − 𝐾3𝐼2 − 𝐾4𝑒𝜋
2 − 𝐾5𝑒𝛽

2 − 𝐾6𝑒𝜇
2 − 𝐾7𝑒𝜎

2 

             −𝐾8𝑒𝜆1

2 − 𝐾9𝑒𝜆2

2  

which is a negative definite function on 𝑅9 . Therefore, by Lyapunov stability theorem [13],     

we obtain the coronavirus disease 2019 is global stabilized for initial conditions 𝑆(𝑡) > 0,

𝐸(𝑡) > 0, 𝐼(𝑡) > 0, 𝑅(𝑡) > 0  by the adaptive control 𝑢1, 𝑢2 and 𝑢3 where the estimate 

parameters are given by 𝜋̇̂ = 𝑆 + 𝐾4𝑒𝜋, 𝛽̇̂ = 𝑆𝐸𝐼 + 𝐾5𝑒𝛽 , 𝜇̇̂ = −𝑆2 + 𝐾6𝑒𝜇, 𝜎̇̂ = 𝐸𝐼 + 𝐾7𝑒𝜎, 

𝜆1̇ = −𝐸2 + 𝐾8𝑒𝜆1
, and 𝜆2̇ = −𝐼2 + 𝐾9𝑒𝜆2

. 

 

5. CONCLUSIONS 

In this paper, we present the modeling, mathematical analysis, and adaptive control of 

spreading coronavirus disease 2019. The mathematical analysis of the model showed that the 

proposed model has two fixed points: the disease-free fixed point 𝐸0  and the endemic fixed point 

𝐸1. The proposed model is determined by the basic reproduction ratio 𝑅0, which depends on the 

parameter values, if 𝑅0 ≤ 1, then the patient could transmit the disease to a person and eventually 

the disease will disappear or disease free, while 𝑅0 > 1 the patient could infect in more a new 

patient and eventually the disease will epidemic. We also presented that the stability analysis of 

the disease-free fixed point 𝐸0 is globally asymptotically stable if 𝑅0 ≤ 1. On the other hand, the 
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global asymptotic stability of the endemic fixed point 𝐸1  occurs if 𝑅0 > 1 . Moreover, an 

adaptive control is designed to control and treat Coronavirus disease 2019 outbreak. The sufficient 

control conditions are derived for the existence of stable coronavirus disease 2019 free is 

presented. 
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