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Abstract. In this paper, a new non-monotone trust region method based on new conic model is proposed

for unconstrained optimization, we adjust the trust region radius by the method proposed by Hei (2003).
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1. Introduction

In this paper, we consider the following unconstrained optimization problem,

(1) min
x∈Rn

f(x),
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where f(x) : Rn → R is continuously differentiable. We adopt the following notations

throughout the paper.

(1): The notation ‖ · ‖ denotes the Euclidean norm on Rn;

(2): g(x) ∈ Rn is the gradient of the objective function f(x) evaluated at x, and

B(x) ∈ Rn×n is the Hessian or it’s approximation;

(3): Suppose {xk} is a sequence of points generated by an algorithm, we denote fk
def
=

f(xk), gk = g(xk)
def
= ∇f(xk) and Bk

def
= B(xk).

Trust region method is a powerful method for solving problem (1), its main idea is

solving the following trust region subproblem,

min
d

φk(d) = fk + gTk d+
1

2
dTBkd(2)

s.t. ‖d‖ ≤ ∆k,(3)

where ∆k > 0 is a trust region radius. We often use a merit function to test whether a trial

step is accepted or not. Because trust region method has good theory and convergence

properties, many authors have studied it since 1970’s (see [1, 2, 6, 10, 11, 14, 15, 20, 21,

22, 23, 25, 27, 30] and the references therein). It’s worth mentioning that the book of

Conn, Gould and Toint (see [1]) is an excellent and comprehensive one on trust region

method. Non-monotone technique combining trust region has been studied by many

authors (see [2, 6, 11, 22, 24, 26, 29]). Non-monotone technique was first proposed by

Grippo, Lampariello and Lucidi (see [8]) can enhance the possibility of finding a global

minimizer. Furthermore, it can improve the rate of convergence in case where a monotone

technique is used to creep along the bottom of a narrow curved valley. But it still has the

following drawbacks. First, a good function value generated in any iteration is essentially

discarded due to the max-value choice in traditional non-monotone. Second, in some cases,

the numerical performance is dependent on the choice of M (see [8, 17, 16]). We spend

much time on computation, which affects the computational efficiency. Furthermore, it

has been pointed out by Dai (see [3]) that although an iterative method generates R-

linearly convergent iterations for a strongly convex function, the iterative may not satisfy

the Wolfe condition for sufficiently large k, for any fixed bound M on the memory.
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In order to increase the freedom of non-monotone line search technique, Zhang and

Hager (see [28]) proposed a new non-monotone line search technique, i.e., f(xk + αkdk) ≤ Ck + β1αkg
T
k dk,

g(xk + αkdk)
Tdk ≥ σgTk dk,

where

Ck =

 f(xk), if k = 0;

(ηk−1Qk−1Ck−1 + f(xk))/Qk, if k ≥ 1.
(4)

Qk =

 1, if k = 0;

ηk−1Qk−1 + 1, if k ≥ 1.
(5)

here, 0 < β1 < σ < 1 are two constants, and ηk−1 ∈ [ηmin, ηmax], ηmin ∈ [0, 1) and

ηmax ∈ [ηmin, 1] are two given constants.

Conic model function was first studied by Davidon and Sorensen (see [5, 18]) in the

following form,

min
s

ϕk(s) =
gTk s

1− hTk s
+

1

2

sTBks

(1− hTk s)2
.

Due to trust region method has good convergence properties, Di and Sun (see [4]) proposed

the following conic trust region subproblem,

min
s

ϕk(s) =
gTk s

1− hTk s
+

1

2

sTBks

(1− hTk s)2
(6)

s.t. ‖s‖ ≤ ∆k,(7)

where ϕk(s) is an approximation to f(xk + s)− f(xk), gk = ∇f(xk) is the gradient of the

objective function f(x) at current iterate xk, Bk ∈ Rn×n is the Hessian matrix of f(x) or

it’s approximation, and hk ∈ Rn is a horizontal vector.

If hk = 0, the conic model is reduced to the quadratic model, so the conic model is

a generalization of the quadratic model. They have following advantages. First, if the

objective function has strong non-quadratic behavior or it’s curvature changes severely,

the quadratic model method often produces a poor prediction of the minimizer of the

function. In this case, the conic model approximates the objective function value better
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than the quadratic model, because it has more freedom in the model. Second, the qua-

dratic model does not take into account the information concerning the function value

in the previous iteration which is useful for algorithms. However, the conic model pos-

sesses richer interpolation information and satisfies four interpolation conditions of the

function values and gradient values at current and previous points. Using the conic model

may improve the performance of the algorithms. Third, the initial and limited numeri-

cal results show that the conic model method gives an improvement over the quadratic

model method. Finally, the conic model method has similar global and local convergence

properties as the quadratic model method.

Sheng (see [19]) pointed out that if Bk is positive definite and 1 − hTkB−1
k gk 6= 0, then

the strict minimizer point of the conic model (6) is

sk = − B−1
k gk

1− hTkB
−1
k gk

.

Ni (see [15]) proposed a new conic trust region subproblem for the case where the conic

model function may be unbounded, and gave sufficient and necessary conditions, which

is useful for the continuous research of conic model. Ni (see [15]) proposed the following

new conic trust region subproblem,

min
s

ϕk(s) =
gTk s

1− hTk s
+

1

2

sTBks

(1− hTk s)2
(8)

s.t. ‖s‖ ≤ ∆k(9)

|1− hTk s| ≥ ε0,(10)

and in [15] they divided the problem (8)-(10) into three subproblems to consider and

analyzed the optimality condition for each subproblem.

Hei (see [9]) proposed an adaptive method for adjusting the trust region radius, where

he introduced an R-function, which adjusts the trust region radius by ∆k+1 = Rc2(rk)‖sk‖,

where Rc2(rk) is a R-function.

Filter technique was first introduced by Fletcher and Leyffer (see [7]) as a way to glob-

alize SQP and SLP without using any merit function that would require a troublesome

parameter to be provided by user for weighting the relative merits of improving feasibility
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and optimality. Filter technique introduces a function which aggregates constraint vio-

lation, and then deals with the resulting bi-objective problem. A step is accepted if it

either reduces the objective function or the constraint violation. Han, Sun and Han (see

[10]) proposed an adaptive conic trust region method, if the ratio between the predicted

reduction and the actual reduction approximates 1, the method turns to the quasi-Newton

method, otherwise it still is a conic model method.

This paper is organized as follows. In Section 2, we describe a new non-monotone

adaptive filter trust region method based on new conic model, and in Section 3, the

global convergence and the Q-superlinear convergence are established under some mild

conditions. The numerical results of a computational experiment performed on a set

of standard test problems are reported in Section 4. Finally, we give some concluding

remarks in Section 5.

2. Motivation and New Algorithm

In this paper, we propose a non-monotone adaptive filter trust region method based on

new conic model. In order to increase the possibility of accepting the trial point, we add

filter technique into the algorithm. When the trial point isn’t accepted by trust region,

we judge whether it is accepted by filter or not. If it is accepted by filter, we add its

gradient to filter, and remove the pair whose gradient dominates the other. So we reduce

the computational time and increase the chance of accepting the trial point.

2.1. Ideal Trust Region and R-Function

Now, let us reconsider the idea of trust region method. At current iterate xk, if the

trial step sk is successful (include it is accepted by filter) and the ratio is satisfactory, we

accept the trial step and enlarge the trust region radius. On the contrary, sk is rejected

and ∆k is shrunk. ρk reflects the extent to which we are satisfied with the solution of the

subproblem (8)-(10), or to say, the extent to which the model function approximates the

objective function f(x).
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Considering two extreme cases. The first case is when ρk is +∞, which means the

computed step sk is very successful, then we enlarge the trust region radius ∆k greatly,

even to +∞. The second case is when ρk is −∞, which implies the trial step sk is so bad

that the objective function increases rapidly, then we reduce the trust region radius ∆k to

a small value, even to 0. The above two ideal cases, which was called ideal trust region,

inspires us to study the following type of function, named as R-function (see [9]).

Definition 2.1. Any one-dimensional function Rc2(t), which is defined in R = (−∞,+∞)

with parameter c2 ∈ (0, 1) is an R-function if and only if it satisfies,

(1). Rc2(t) is non-decreasing in (−∞,+∞).

(2).

lim
t→−∞

Rc2(t) = β,

where β ∈ [0, 1) is a small constant.

(3).

Rc2(t) ≤ 1− γ1,

for all t < c2, where γ1 ∈ (0, 1− β) is a constant.

(4).

Rc2(c2) = 1 + γ2,

where γ2 ∈ (0,+∞) is a constant.

(5).

lim
t→+∞

Rc2(t) = M,

where M ∈ (1 + γ2,+∞) is a constant.

2.2. The Multi-dimensional Filter Technique

Traditional trust region algorithm evaluates the objective function at the trial point,

if the ratio between the actual reduction and the predicted reduction is satisfactory, we

accept the trial point x+
k = xk + sk as the next iterate point. Otherwise, we reject the

trial point and shrink the trust region radius. Here, if the trial point isn’t accepted by
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trust region, we test whether it is accepted by filter or not. If it is accepted by filter, we

accept it too.

Definition 2.2. A pair (f (k), h(k)) is said to dominate another pair (f (l), h(l)) if and only

if both f (k) ≤ f (l) and h(k) ≤ h(l). A filter F is a list of pairs (f (l), h(l)) such that no pair

dominates any other.

Definition 2.3. A trial point x+
k is acceptable for the filter F if and only if

∀ gl ∈ F , ∃ j ∈ {1, 2, · · · , n}, s.t. |gj(x+
k )| ≤ |gj(xl)| − γg‖gl‖,

where γg ∈ (0, 1√
n
) is a positive constant and gl,j = gj(xl).

If the trial point isn’t accepted by trust region, we see whether it is accepted by filter

F or not. So by using filter technique, we increase the chance of accepting the trial point.

2.3. A new Non-monotone Adaptive Filter Trust Region algorithm for new

Conic model {NAFCTR}

Algorithm 2.3 {NAFCTR}

Step 0: Initialization.

Given 0 ≤ ηmin ≤ ηmax ≤ 1, x0 ∈ Rn, h0 ∈ Rn, ∆max > ∆0 > 0, Q0 = 1, B0 ∈

Rn×n is a positive definite matrix. Set ε0 ∈ (0, 1), η ∈ (0, 1), c1 = 1, ε > 0, β ∈

(0, 1), γg ∈ (0, 1√
n
), γ1 ∈ (0, 1 − β), γ2 > 0, M > 1 + γ2, 0 < c2 < 1, k = 0.

Compute g0 = g(x0), f(x0), C0 = f(x0). Initialize the filter F to be an empty set.

Step 1: Test for termination.

If ‖gk‖ ≤ ε, then stop, and xk is an approximate optimal solution; otherwise go to

Step 2.

Step 2: Solve the subproblem.

Solve the conic trust region subproblem (8)-(10) for sk.

Step 3: Computation.

Set x+
k = xk + sk. Compute f(x+

k ), set

Aredk(sk) = Ck − f(x+
k )
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Predk(sk) = ϕk(0)− ϕk(sk)

rk = Aredk(sk)/Predk(sk).

Step 4: Determine the acceptance of the trial point.

If rk ≥ η, set xk+1 = x+
k , go to Step 5;

else compute g+
k = g(x+

k ). If x+
k is accepted by filter F , we accept sk, set xk+1 = x+

k ,

add g+
k into filter F , go to Step 5;

else set c1 := 1
4
c1, ∆k+1 = c1∆k, go to Step 2.

Step 5: Update the trust region radius.

Update the trust region radius by ∆k+1 = Rc2(rk)∆k.

Step 6: Update the parameters.

Generate Bk+1, hk+1, choose ηk ∈ [ηmin, ηmax], set Qk+1 = ηkQk + 1, Ck+1 =

(ηkQkCk + f(xk+1))/Qk+1, set k := k + 1, go to Step 1.

Remark 2.3.

(1): In Algorithm 2.3, the subproblem (8)-(10) is solved by Ni and Lu’s dogleg method

(see [12]);

(2): The Step 2 - Step 4 - Step 2 is called an inner cycle;

(3): From Algorithm 2.3, we can see our iterations are divided into two parts: filter

iterations and trust region iterations. The first one contains the iterations which

are added into filter F and the iterations which are acceptable for filter F but

not be added into filter F . Both of them are successful iterations. It plays an

important role in the proof of convergence.

(4): For the convenience of convergence, we assume that there exists a constant δ ∈

(0, 1) such that

(11) ‖hk‖∆k < δ, ∀k.

(5): In Algorithm 2.3, the horizontal vector hk is updated by

(12) hk = min(
βk − 1

gTk−1sk−1

gk−1, α),
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where

ρk = (fk−1 − fk)2 − (gTk−1sk−1)(gTk sk−1),

βk =


(fk−1−fk)+

√
ρk

−gTk−1sk−1
, if ρk > 0;

1, otherwise.

3. Convergence Analysis

In this section, we give the global convergence of Algorithm 2.3, considering the follow-

ing conic trust region subproblem,

min
s

ϕk(s) =
gTk s

1− hTk s
+

1

2

sTBks

(1− hTk s)2
(13)

s.t. ‖s‖ ≤ ∆k(14)

|1− hTk s| ≥ ε0.(15)

First, we give some assumptions as follows.

A1. The objective function f(x) is twice continuously differentiable and bounded be-

low.

A2. The level set L(x0) = {x ∈ Rn|f(x) ≤ f(x0)} is compact.

A3. The gradient g(x) is Lipschitz continuous with Lipschitz constant L.

Note that Assumptions A1 and A2 imply that there exist two positive constants G and

M1 such that

(16) ‖g(x)‖ ≤ G, ‖∇2f(x)‖ ≤M1, ∀x ∈ L(x0).

Suppose K = 1 + max
i
‖Bi‖.

For the purpose of convergence analysis, we define

A = {k|gk is added to filterF},

the set of filter iterations;

S = {k|xk+1 = xk + sk},



NON-MONOTONE ADAPTIVE FILTER CONIC TRUST REGION METHOD 1883

the set of successful iterations;

F = {k|gk is accepted by filterF},

the set of filter accepted iterations;

T = {k|rk ≥ η},

the set of sufficient descent iterations.

Lemma 3.1. An R-function Rc2(t) (where c2 ∈ (0, 1)) satisfies:

0 < β ≤ Rc2(t) ≤ 1− γ1 < 1, ∀t ∈ (−∞, c2),

1 < 1 + γ2 ≤ Rc2(t) ≤M < +∞, ∀t ∈ [c2,+∞).

Lemma 3.2. Suppose the sequence {xk} is generated by Algorithm 2.3, then for all k,

the following inequality holds,

(17) fk+1 ≤ Ck+1 ≤ Ck.

Proof. The proof is similar to Lemma 3.1 (see [28]), so we omit the proof here.

Lemma 3.3. Suppose that sk is the solution of subproblem (13)-(15), then we have

Predk(sk) ≥
1

2
‖gk‖min{ ∆k

1 + ∆k‖hk‖
,
‖gk‖
‖Bk‖

,
1− ε0
‖hk‖ε0

}.

Proof. The proof is similar to Theorem 4.1 (see [12]), so we omit the proof here.

Lemma 3.4. If Assumptions A1 and A2 hold, then we have

|[f(xk)− f(xk + sk)]− [ϕk(0)− ϕk(sk)]| ≤M2‖sk‖2.

where M2
def
= Gα

ε0
+ M1

2
+ K

2ε20
.
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Proof. From (12), (14), (15), (16) and Taylor’s expansion, we have

|[f(xk)− f(xk + sk)]− [ϕk(0)− ϕk(sk)]|

= |gTk sk +
1

2
sTk∇2f(xk + θsk)sk −

gTk sk
1− hTk sk

− 1

2

sTkBksk
(1− hTk sk)2

|

= |g
T
k skh

T
k sk

1− hTk sk
− 1

2
sTk∇2f(xk + θsk)sk +

1

2

sTkBksk
(1− hTk sk)2

|

≤ (
Gα

ε0
+
M1

2
+
K

2ε20
)∆2

k

def
= M2∆2

k,

where θ ∈ (0, 1) is a constant.

Lemma 3.5. Suppose Assumptions A1 and A2 hold, ‖gk‖ 6= 0 and ∆k = min{∆max,
(1−c2)ε

2M2(1+δ)
},

then

(1): the Algorithm 2.3 is well-defined. That is to say, the Algorithm 2.3 doesn’t cycle

infinitely in the inner cycle.

(2): rk ≥ c2, ∆k+1 ≥ ∆k.

Proof. Suppose Algorithm 2.3 cycles infinitely between Step 2 - Step 4 - Step 2, then

lim
k→∞

∆k = 0. Let k(i) be the cycle index of the current iterate xk, then rk(i) ≤ c2, and

(18) ‖gk(i)‖ > ε and rk(i) =
Ck(i) − f(xk(i) + sk(i))

Predk(i)(sk(i))
≤ c2.

From (11), Lemma 3.3 and Lemma 3.4 we know that

|
f(xk(i))− f(xk(i) + sk(i))

Predk(i)(sk(i))
− 1|

= |
[f(xk(i))− f(xk(i) + sk(i))]− [ϕk(i)(0)− ϕk(i)(sk(i))]

Predk(i)(sk(i))
|

≤
M2∆2

k(i)

1
2
‖gk(i)‖min{ ∆k(i)

1+∆k(i)‖hk(i)‖
,
‖gk(i)‖
‖Bk(i)‖

, 1−ε0
‖hk(i)‖ε0

}

≤
M2∆2

k(i)

1
2
‖gk(i)‖min{∆k(i)

1+δ
, ε
K
, 1−ε0
αε0
}

<
2M2(1 + δ)∆k(i)

ε

< 1− c2.
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So we have

f(xk(i))− f(xk(i) + sk(i))

Predk(i)(sk(i))
> c2.

From (17) we have

rk(i) =
Ck(i) − f(xk(i) + sk(i))

Predk(i)(sk(i))

≥
f(xk(i))− f(xk(i) + sk(i))

Predk(i)(sk(i))

> c2,(19)

which contradicts with (18). So we have

(1): the Algorithm 2.3 doesn’t cycle infinitely in the inner cycle.

(2): rk ≥ c2, ∆k+1 ≥ ∆k. �

Lemma 3.6. If Assumptions A1 and A2 hold, and there exists a positive constant ε such

that for all k, the inequality ‖gk‖ ≥ ε holds, then there must exist a constant ∆bld such

that ∆k ≥ ∆bld, where ∆bld
def
= βmin{∆max,

(1−c2)ε
2M2(1+δ)

}.

Proof. Suppose that k is the first index satisfying

(20) ∆k+1 ≤ βmin{∆max,
(1− c2)ε

2M2(1 + δ)
} def= βδ0.

From Lemma 3.1 we have β∆k ≤ ∆k+1, so

(21) ∆k ≤ δ0 = min{∆max,
(1− c2)ε

2M2(1 + δ)
}.

Due to (21), ‖gk‖ ≥ ε and Lemma 3.5, we have ∆k+1 ≥ ∆k, so

∆k ≤ βmin{∆max,
(1− c2)ε

2M2(1 + δ)
} def= βδ0,

which contradicts the fact that k is the first index such that (20) holds. Set ∆lbd
def
=

βmin{∆max,
(1−c2)ε

2M2(1+δ)
}. This completes the proof.

Lemma 3.7. Suppose Assumptions A1-A3 hold, and that |A| = |S| = +∞, there exists a

positive constant ε such that the inequality ‖gk‖ ≥ ε holds for all k. Then there only have

finite sufficient descent iteration, i.e., |T | <∞.
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Proof. Suppose that there exists infinite sufficient descent iteration, i.e., |T | = ∞, set

T = {ki}, then for all ki ∈ T , we have rki ≥ η. From (11), (12), Lemma 3.3 and Lemma

3.6 we have

Cki − f(xki+1) ≥ η[ϕki(0)− ϕki(ski)]

≥ η

2
‖gki‖min{ ∆ki

1 + ∆ki‖hki‖
,
‖gki‖
‖Bki‖

,
1− ε0
‖hki‖ε0

}

≥ ηε

2
min{ ∆lbd

1 + δ
,
ε

K
,
1− ε0
αε0

},

then

(22) f(xki+1) ≤ Cki −
ηε

2
min{ ∆lbd

1 + δ
,
ε

K
,
1− ε0
αε0

}.

From (5) we have Qk ≤ k + 1, combining (4) we get

Cki+1 =
ηkiQkiCki + f(xki+1)

Qki+1

≤
ηkiQkiCki + Cki −

ηε
2

min{∆lbd

1+δ
, ε
K
, 1−ε0
αε0
}

Qki+1

= Cki −
ηεmin{∆lbd

1+δ
, ε
K
, 1−ε0
αε0
}

2(ki + 2)
,

so

Cki − Cki+1 ≥
ηεmin{∆lbd

1+δ
, ε
K
, 1−ε0
αε0
}

2(ki + 2)
.

Thus,

C0 − Cki+1 ≥
ki∑
j=0

(Cj − Cj+1)

≥
ki∑
j=0

ηεmin{∆lbd

1+δ
, ε
K
, 1−ε0
αε0
}

2(j + 2)
.

From Assumption A1 we know that fk is bounded below, without loss of generality, we

assume the lower bound is flbd, from Lemma 3.2 we have Ck ≥ fk ≥ flbd. So

f(x0)− flbd = C0 − flbd ≥ C0 − Cki+1 ≥
ki∑
j=0

ηεmin{∆lbd

1+δ
, ε
K
, 1−ε0
αε0
}

2(j + 2)
,



NON-MONOTONE ADAPTIVE FILTER CONIC TRUST REGION METHOD 1887

thus
ki∑
j=0

1

j + 2
≤ 2(f(x0)− flbd)
ηεmin{∆lbd

1+δ
, ε
K
, 1−ε0
αε9
}
,

which contradicts with the fact that the series
∞∑
j=0

1
j+2

diverges when ki → ∞. This

completes the proof.

Theorem 3.8. Suppose Assumptions A1 and A2 hold, and |T | = +∞, then for suffi-

ciently large k, we have xk = x∗, where x∗ is a first order critical point.

Proof. Suppose that k0 is the last index of successful iteration, then x∗ = xk0+1 = xk0+j,

and

rk0+j < η, ∀j > 0.

Due to the strategy of updating the trust region radius and Lemma 3.1 we have

∆k0+j+1 = Rc2(rk0+j)∆k0+j

≤ (1− γ1)∆k0+j,

so

(23) lim
k→∞

∆k = 0.

If ‖gk0+j‖ > 0, from Lemma 3.6, we know ∆k is bounded below, which contradicts with

(23). So ‖gk0+j‖ = 0 for sufficiently large j, that is to say, x∗ is a first order critical point.

This completes the proof.

Theorem 3.9. Suppose Assumptions A1-A3 hold, and |A| = +∞, |T | < +∞, then

(24) lim inf
k→∞

‖gk‖ = 0.

Proof. |A| = ∞ indicates that for sufficiently large ki ∈ A, there exists an index j ∈

{1, 2, · · · , n} satisfying

(25) |gj(xki)| − |gj(xki−1
)| ≤ −γg‖gki−1

‖.
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From Assumptions A2 and A3, we know that g(x) is continuous in the bounded compact

set, so there must exist a convergent subsequence of {gj(xk)}, without loss of generality,

we assume the convergent subsequence is {gj(xk)}, set limit to (25), we have

lim inf
k→∞

‖gk‖ = 0.

This completes the proof.

Next, we prove the local convergence of Algorithm 2.3. The following assumptions are

needed.

A4. The sequence {xk} generated by Algorithm 2.3 converges to a critical point x∗,

i.e.,

lim
k→∞

xk = x∗ and lim
k→∞
‖gk‖ = ‖g∗‖ = 0.

A5. If

‖B−1
k gk‖

1− hTkB
−1
k gk

≤ ∆k,

then

sk =
−B−1

k gk

1− hTkB
−1
k gk

.

The local convergence is similar to Theorem 4.2 (see [11]), so we omit the proof here.

Theorem 3.10. Suppose Assumptions A1-A5 hold, ∇2f(x∗) is positive definite and

∇2f(x) is Lipschitz continuous in the neighborhood of x∗. If

lim
k→∞

‖(Bk −∇2f(xk))sk‖
‖sk‖

= 0,

then the sequence {xk} converges to x∗ Q-superlinearly.

4. Numerical Results

In this section, we test the performance of Algorithm 2.3, denoted by NAFCTR, on a

set of standard test problems which appeared in [13]. A MATLAB program is coded to

perform the experiments.

In order to compute the optimal solution by Algorithm 2.3, we set

sk−1 = xk − xk−1,
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ρk = (fk−1 − fk)2 − (gTk−1sk−1)(gTk sk−1),

βk =


(fk−1−fk)+

√
ρ
k

−gTk−1sk−1
, if ρk > 0;

1, otherwise.

hk = min(
βk − 1

gTk−1sk−1

gk−1, α),

yk−1 = βkgk − β3
kgk−1,

Bk+1 =

 Bk +
yky

T
k

sTk yk
− Bksks

T
kBk

sTkBkyk
, if sTk yk > 0;

Bk, otherwise.

For each test problem, we set

Rc2(rk) =

 2
π
(M − 1− γ2) arctan(rk − c2) + (1 + γ2), if rk ≥ c2;

(1− γ1 − β)(exprk−c2 + β
1−γ1−β ), otherwise.

The initial trust region radius ∆0 = 1.5, the filter constant γg = min{0.001, 1
2
√
n
}, where

n is the dimension of the problem. The initial horizontal vector h0 = 0, c1 = 1, ε0 =

0.1, η = 0.25, ∆max = 10000∆0, B0 = ‖f0‖I, the non-monotone constant ηk = 0.85 for all

k, the adaptive trust region parameter γ1 = 0.01, γ2 = 0.01, β = 0.1, M = 5, c2 = 0.25.

For each test problem, the convergence criterion

‖gk‖ ≤ ε,

is used for termination, where ε = 10−4. Another stopping criterion is k ≤ kmax, where k

is the number of iteration, kmax is the max number of iteration, kmax = 5000.

Table 1 lists the function names in the tests. The numerical results are listed in Table

2. We denote the number of iteration by ni, the number of function evaluations by nf ,

the number of gradient evaluations by ng, and the final objective function value by fmin.

The sign m(n) stands for m × 10n. The sign ′−′ means that when the iteration reaches

5000, the algorithm fails to reach a minimum.



1890 LIJUAN ZHAO∗

Table 1. Test Functions

No. Function Name No. Function Name

1 Helical Valley 2 Biggs Exp6

3 Gaussian 4 Powell Badly Scaled

5 Box 3-Dimensional I 6 Variably Dimensioned

7 Watson 8 Penalty I

9 Penalty II 10 Brown and Dennis

11 Gulf 12 Trigonometric

13 Extended Rosenbeock 14 Extended Powell

15 Beal 16 Wood

17 Scaled Cube (c = 100) 18 Conic

From Table 2 we can see that the new non-monotone adaptive filter trust region method

based on new conic model (abbreviated as NAFCTR) is efficient and robust than tradi-

tional conic trust region method (abbreviated as CTR) in 9 test problems, especially for

some ill-conditioned or hard-solved problems, the same as CTR in 1 problem, almost the

same or a little worse than the trust region method in 8 problems. We find that for

most of the problems, our new method performs better than traditional conic trust region

method. It should be pointed out that, because we use filter technique, the cost may be a

little higher. However, the new method can deal with some ill-conditioned or hard-solved

problems, and it is suitable to deal with a lot of practical problems by this method.

5. Conclusions

In this paper, we propose a new non-monotone adaptive filter trust region method based

on new conic model for unconstrain optimization problem, the new method is simple to

implement. The new method can deal with some ill-conditioned or hard-solved problems,

and it has preferable convergence properties. The new algorithm in this paper can be

extended to nonlinear constrained optimization problem, which is our next work.
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Table 2. Numerical Results

No. CTR NAFCTR

ni nf ng fmin ni nf ng fmin

1 54 119 56 2.825934(-12) 31 64 33 4.585821(-14)

2 37 79 39 5.655650(-3) 34 70 36 5.655650(-3)

3 14 30 16 1.130391(-8) 18 38 20 1.128871(-8)

4 57 135 59 2.889883(-6) - - - -

5 25 57 27 6.458912(-14) 38 78 40 5.095572(-9)

6 6 18 8 4.337054(-15) 5 12 7 6.212270(-12)

7 49 109 51 1.570059(-7) 63 128 65 1.561882(-7)

8 5 12 7 9.083185(-6) 5 12 7 9.083498(-6)

9 9 22 11 8.066390(-7) 20 42 22 8.068379(-7)

10 74 167 76 8.582220(+4) 43 88 45 8.582220(+4)

11 49 107 51 2.404750(-11) 1 4 3 3.283500(+1)

12 6 14 8 5.737001(-11) 69 140 71 1.072368(-9)

13 39 89 41 1.613514(-11) 22 46 24 2.766003(-10)

14 52 115 54 5.553763(-8) 27 56 29 3.650872(-10)

15 14 35 16 1.100584(-14) 16 34 18 2.595504(-11)

16 108 232 110 4.285270(-15) 96 194 98 9.883138(-12)

17 33 76 35 4.586391(-13) 67 136 69 9.014771(-14)

18 27 59 29 2.512936(-10) 23 48 25 4.834008(-13)
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