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Abstract: In this paper, we formulate a deterministic mathematical model to describe the transmission dynamics of 

typhoid fever by incorporating some control strategies. In order to study the impact of these control strategies on the 

dynamics of typhoid fever, the model captures vaccination and educational campaign as control variables. We show 

that the model is mathematically and epidemiologically well positioned in a biologically feasible region in human 

populations. We carry out a detailed analysis to determine the basic reproduction number R0 necessary for the control 

of the disease. The optimal control strategies are used to minimize the infected carriers and infected individuals and 

the adverse side effects of one or more of the control strategies. We derive a control problem and the conditions for 

optimal control of the disease using Pontryagin’s Maximum Principle and it was shown that an optimal control exists 

for the proposed model. The optimality system is solved numerically, the numerical simulation of the model shows 
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that possible optimal control strategies become more effective in the control and containment of typhoid fever when 

vaccination and educational campaign are combined optimally would reduce the spread of the disease. 

Keywords: optimal control; typhoid fever; basic reproduction number. 

2010 AMS Subject Classification: 91A40. 

 

1. INTRODUCTION 

Typhoid fever is caused by the bacteria Salmonella typhi. Typhoid fever infects 21 million people 

and kills 200,000 worldwide every year. Asymptomatic carriers are believed to play an essential 

role in the evolution and global transmission of Typhoid fever, and their presence greatly hinders 

the eradication of typhoid fever using treatment and vaccination. Typhoid fever is becoming an 

increasingly common illness worldwide, increasing resistance to various antibiotics is making 

antibiotic treatment less effective. Anderson and May [1], Hyman [2]. 

Typhoid fever has continued to be a health problem in developing countries where there is poor 

sanitation, poor standard of personal hygiene and prevalence of contaminated food. It is endemic 

in many parts of the developing world, illness do occur around the world in the span of a day. 

Lifshitz [3]. 

Typhoid fever treatment is anchored on the blood culture condition of the patients. If the species 

is sensitive, the oral antibiotic is used. When dealing with large populations, as in the case of 

Typhoid fever, compartmental mathematical models are used. In the deterministic model, 

individuals in the population are assigned to different subgroups, each representing a specific stage 

of the epidemic. Several mathematical models have been developed on the transmission dynamics 

of typhoid fever these includes, (Adetunde [4]; Lauria et al., [5]; Kalajdzievska [6];  

Mushayabasa [7]; Cvjetanovic et al.,[8]; Moffact [9]; Pitzer et al., [10]; Date et al.,[11]; 

Muhammad, et al.,[12]; Watson and Edmunds [13]; Nthiiri [14]; Moatlhod and Gosaamang [15]; 

Mushayabasa [16]; Tilahun et al.,[17] Peter and Ibrahim [18]). All of the above studies reveal an 

important result for typhoid fever dynamics by considering different situation, but we have 

identified that till now there is no studies that has been done to investigate the typhoid fever 
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dynamics with the application of educational campaign and vaccination as control strategies.  In 

view of the above, we incorporate two control strategies to the proposed model which are 

educational campaign and vaccination to control the spread of the disease. Many studies have 

examined optimal control in a good number of models of epidemic diseases [20-25]. 

 

2. MATERIALS AND METHOD 

2.1   Model formulation  

The model compartments consist of the following classes, namely: Susceptible class;  )(tS ; is 

used to represent the number of people susceptible to the disease or susceptible to the disease at 

the time. Carrier-class; )(tIc   denote individuals who show no signs of infection and are 

infectious. Infected class; )(tI  the number of people who have been infected with the disease 

and are able to spread the disease to the susceptible class. Recovered class; )(tR   is the 

compartment used for those infected and have recovered from the disease. Those in this category 

can not infect or transmit the infection to others again..Recruitment to the susceptible population 

is either by immigration or birth at the rate  . It is assumed that the proportion of susceptible class 

migrate to carrier-class at the rate ρ, while compliment −1  migrates to infectious class. We 

assume that the transmission rate of   for carriers is higher than the transmission rate of γ for 

individuals who are symptomatically infected because they are more likely to be unaware of their 

condition and therefore continue their regular activities. Carriers individual can develop symptoms 

at a rate .  Infectious individuals can be treated and recovered from the infection at a rate  . 

Susceptible individuals can be vaccinated at a rate ψ to protect themselves from infection. 1 - ϕ 

is a parameter that represents awareness that limits the spread of typhoid by carriers and symptoms. 

This parameter lies between 10    . When the awareness parameter is set to zero, that is 

0= , this implies that, there is no awareness so that the entire population in the susceptible class 

are unaware of typhoid fever and when awareness parameter is equal to unity that is, 1= , the 
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entire population in the susceptible class are fully aware of typhoid fever, that is, they are aware 

of what causes the disease, the mode of transmission and how to avoid contracting the disease. 

The illustration above is governed by the following set of differential equations.   

                    SIISS
dt

dS
c  −+−−−= ))(1(1  

                    cccc

c IIIIIS
dt

dI
 +−−+−= 2)()(1  

(1) IIIIS
dt

dI
cc )()(1)())(1(1 3  +−−++−−=  

                        RIS
dt

dR
4 −+=  

2.2 Positivity of Solution  

Theorem 1. 

 Let the initial conditions under consideration be given as  }0)(),(),(),({ tRtItItS c   

then the solutions of the system of equations are positive for all  0t . 

Proof:  

From the first equation of the system (1)  

                      ,)(1= 1 SSS
dt

dS
 −−−−   

then,    

(2) .})(1){( 1 S
dt

dS
 −++−                                                

 By separating the variable in (2) and then integrate 

 dt
S

dS
})(1)({ 1  −++−    

  1ln {( ) (1 ) }S t c    − + + − +  

(3)   ,)(
})(1){( 1 t

KetS
 −++−

                   

 where    

ceK = . At the initial time, t=0 and on substituting into (3) 

)0(SK =  
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Thus, inequality (3) becomes  

0)0()(
})(1){( 1 

−++− t
eStS


 

By repeating the same process for other variables in (1) respectively, 

 0)0()(
))1(( 2 

−+− t

cc eItI


 

(4)                  0)0()(
)( 3 

+− t
eItI


        

                             0)0()( 4 
− t

eRtR


                                                           

Since 0t we conclude that the solutions for  

)}(),(),(),({ tRtItItS c  of the model are non-negative for all 0t . 

2.3. The Basic Reproduction Number, 𝐑∘   

The size of the basic reproduction number 𝑅∘ can be computed by using the popular technique 

known as the next generation matrix approach. This approach was formulated by Diekmann et al. 

[26] but modified by Driessche and Watmough [27] and Peter et al. [28] by constructing nn  

matrix from the system of equations of the model an considering only the infective classes. 
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The inverse of the matrix V is obtained as:  
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The product of matrices 𝐹 and 𝑉−1 is 
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the basic reproduction number which is the highest eigenvector for system (1) is given as  
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
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23
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1
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Where  )1( −=k . 

 

3.  EXTENSION OF THE BASIC MODEL INTO OPTIMAL CONTROL SYSTEM 

In this section, the basic model of typhoid fever is generalized by incorporating two control 

interventions. These are educational campaign and vaccination 1u and 2u  respectively. 

 

 )())(1( 11 tSuSIISS
dt

dS
c −−+−−−=   

 cccc

c IIIIIS
dt

dI
 +−−+−= 2)()(1  

(5)                )()()(1)())(1(1 23 tIuIIIIS
dt

dI
cc −+−−++−−=   

                        )()( 114 tSutSuRIS
dt

dR
++−+=    

with the initial conditions  

0,0,0,0  RIIS c  

The objective functional is defined as  

dt
u

C
u

CICICuuC

ft

c 










+++=

0

2

2
4

2

1
32121

22
),(  

The goal here is to minimize the total number of carriers and infected individuals and the cost 

associated with the use of educational campaign and vaccination on ],0[ tt   

dt
u

C
u

CICICuuC

ft

c
uu  










+++=

0

2

2
4

2

1
321

),(

*

2

*

1
22

min),(
21

 

In formulation the optimal problem we consider 

],0[)(01)(0 *

2

*

1 ttttuandtu  . 
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to minimize dt
u

C
u

CICICuuC

ft

c 









+++=

0

2

2
4

2

1
321

*

2

*

1
22

),(  

subject to the system in (5) where )(1 tu  and )(2 tu are measurable function such that the control 

constrains is given by  

]}.,0[,1)(0

,1)(0|)(),({(

*

2

*

1

*

2

*

1

ttttu

tututuU



=
 

The goal here is to minimize the total number of infected individuals and the cost associated with 

the use of educational campaign and vaccination of the entire population with the given initial 

population of all the classes )(),(),(),0( tRtItIS c and cIC1  from the objective function denote 

the total number of individuals who are infected but do not show any sign of infection and are 

infectious and is taken as a measure of death associated with epidemic. IC2   denote the total 

number of individuals who have been infected and is taken as a function of death associated with 

the outbreak.
2

2

1
3

u
C  represent the cost associated with an educational campaign and

2

2

2
4

u
C  

represent the cost associated with vaccination. 

3.1. Existence and Uniqueness of the Control System  

Theorem 2 

Suppose the objective functional dt
u

C
u

CICICuuC

ft

c 






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
+++=
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there exist an optimal control  

),( *
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* uuu =  

such that 

),(),(min *

2

*

121, 21
uuCuuCuuu =  
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subject to the control system in (1). 

Proof  

 To prove the existence of an optimal control pair we use the result in [29]. The control and the 

state variables are non-negative values and are non-empty. In the minimization problem, the 

necessary convexity of the objective functional in 1u  is satisfied. The control variable 1u , 2u  ∈ 

U is also convex and closed by definition. The optimal system is bounded which determines 

compactness needed for the existence of the optimal control. Furthermore, the integrand in the 

objective functional which is 
22

2

2
4

2

1
3

u
C

u
C +   is convex on the control set U. There exists 

constants 1b , 2b > 0 and   > 1 such that the integrand of the objective functional J is convex 

and satisfies 

2

22
2

2

2
2

1
121

22
),( b

uu
buuJ −














+



 

By standard control arguments involving the bounds on the control, we conclude        
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3.2 Necessary conditions of the control 

         By using Pontryagin’s Maximum Principle. Pontryagin’s  et.al, [30], we give the 

minimized pointwise Hamiltonian as follows which converts system (1) and (5) objective function 

into an optimal  problem, minimizing pointwise Hamiltonian H with respect to u 1 and u 2. 
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Theorem 3 

There exist an optimal control u1
∗and u2

∗  corresponding solution S(t), I c(t), I(t) and R(t) which 

minimizes ),( 21 uuC  over U. Furthermore, there exist adjoint variables ),( 21 uuJ  satisfying  

( )

( )

( ))()(
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 We now differentiate the Hamiltonian withrespect to each state variables 
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with the transversality conditions  
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4. NUMERICAL SIMULATIONS OF THE OPTIMAL CONTROL ANALYSIS 

Here, we provide the numerical simulations of the model in (5) which describes the theoretical 

results and predict the evolution of typhoid fever in the population and the dynamical behaviour 

of the model is studied. We use the forward-backwards sweep method and solved the optimality 

system numerically. The simulation was carried out by using the values in table 1 and the following 

initial vales for the simulation of the optimal control. S(0)=60, Ic(0)=40, I(0),20, R(0)=10, C1=1, 

C2=1.5, C3=1.5, C4=0.02.   

 

Table 1: Parameter values of the model 

Parameter Initial Value Source  

2  
0.2  Assumed 

  0.3  Assumed 

1  
0.142  [16] 

3  
0.2  Assumed 

4  
0.142   [16] 

  0.3  Assumed 

  0.5  Assumed 

  0.02  Assumed 

  0.01  [16] 

  0.75 Assumed 

  0.3  Estimated 

         106
 

[30] 
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FIGURE 1: Simulation Result Showing Effect of Using Optimal Vaccination as the Only 

Control Strategies on Carriers Population 

 

 

FIGURE 2: Simulation Result Showing Effect of Using Optimal Vaccination as the Only Control 

Strategies on Infectious Population 
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FIGURE 3: Simulation Result Showing Effect of Using Optimal Educational Campaign as the 

Only Control Strategies on Carriers Population 

 

 

FIGURE 4: Simulation Result Showing Effect of Using Optimal Educational Campaign as the 

Only Control Strategies on Infected Population 
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FIGURE 5: Simulation Result Showing Effect of Using Optimal Vaccination and Educational 

Campaign on Carriers Population 

 

 

FIGURE 6: Simulation Result Showing Effect of Using Optimal Vaccination and Educational 

Campaign on Infectious Population 
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FIGURE 7: Control Profiles for 1u  and 2u  

 

5.  DISCUSSION OF RESULTS  

In figure 1 and 2 when a single intervention strategy is implemented that is, vaccination, there is a 

decrease in the population of the infected carrier and the infected individuals. Also when [[[ 

vaccination is intensified to bring the disease under control there is a noticeable decrease in the 

population of the infected individuals and the infected carrier individuals. The implication of this 

is that vaccination timing, efficacy and coverage must be high enough before it can have a desirable 

impact on typhoid propagation and eradication. 

In figure 3 and 4 when an educational campaign is implemented as a single intervention the 

population of infected carrier individuals and infected individuals fall continuously. The 

implication of this is that education campaign as a control strategy has more influence in reducing 

the population of both the infected individuals and the infected carrier individuals 

In figure 5 and 6 when both interventions, vaccination and education campaign are implemented 

at an optimum level the population of the infected individuals and infected carrier individuals falls 
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rapidly. Figure 7 shows the control profile, that is, the effectiveness of the two controls when 

combined together. 

In all, each of the interventions is capable of influencing typhoid outbreak but the combination of 

the two strategies that is, vaccination and educational campaign are more efficient in limiting the 

spread and propagation of the disease and should be implemented in every typhoid prone 

community. 

  

6.   CONCLUSION 

We showed that the model is mathematically and epidemiologically well positioned in a 

biologically feasible region in human populations. We also carried out a detailed analysis to 

determine the basic reproduction number R0 necessary for the control of the disease. The optimal 

control strategies are used to minimize the infected carriers and infected individuals and the 

adverse side effects of one or more of the control strategies. In order to achieve control of the 

disease. The study concluded that possible optimal control strategies become more effective in the 

control and elimination of typhoid fever when vaccination and educational campaign are combined. 

It is therefore recommended that any measure directed towards achieving typhoid fever-free 

society should include vaccination and educational campaign. 
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