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Abstract. Zika virus (ZIKV) infection is a vector-born human disease which enhances the chance of various types

of neurological complications in affected individual. In this work we have studied a mathematical model of ZIKV

by incorporating vector, direct (sexual) and vertical transmission paths of the virus. In our model also we have

considered different kind of preventive measures like as: protection of susceptible individuals from mosquito bites,

isolation of infected individuals from mosquito, protection of susceptible individuals from sexual interaction with

infected individuals, and mosquitoes control effort. We have found the analytical expression of basic reproduction

number and studied the stability of the disease free equilibrium point. Existence of endemic equilibrium point and

its stability are also studied. The proposed model exhibits a backward bifurcation when the virus transmission

probability from infected human to mosquito crosses the crucial value. We have fitted the model to real data

and estimated the key model parameters and their 95% confidence interval which depict the ZIKV outbreak in

French Polynesia in 2013-14. We also have estimated the basic reproduction number using first nine epidemic

weeks (EW) data and the estimated value is 2.87 with lower and upper values are 2.47 and 3.32 respectively. The

effective reproduction number of the outbreak also has been studied and which decreases gradually from 5.404

to 0.2499 during the period 11th October, 2013 and 28th March, 2014. According to our sensitivity analysis, the

basic reproduction number is the most sensitive with controllable parameters, biting rate, mosquito recruitment
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rate, mosquito death rate and recovery rate from infection. Finally, numerically we have studied the impact of

different parameters on the basic reproduction number and on the number of infected human population.

Keywords: Zika virus; stability analysis; backward bifurcation; effective reproduction number; sensitivity analy-

sis.

2010 AMS Subject Classification: 37N25, 49J15, 92D30.

1. INTRODUCTION

The ZIKV is the pathogen of zika disease. It is a mosquito carried Flavivirus and very simi-

lar to DENV (dengue virus) and symptoms of both infections are also very similar. The ZIKV

infected Aedes aegypti female mosquitoes transmit the virus among the susceptible human pop-

ulation through biting and the virus also transmit from human to mosquito when the susceptible

mosquito bites an infected human. The virus may transmit among the susceptible sexual part-

ners from an infected partner through sexual interaction [1, 2, 3, 4, 5, 6, 7]. It was established

through the lab base experiments [5, 8, 9, 10] and they showed the existence of ZIKV in semen

for a long time period even after it disappears from blood.

Though the initial symptoms of the infection are mild like as headaches, fever, conjunctivitis

and joint pain, maculopapular rash etc., but it has long time affect on some permanent disability

in human life. It may be cause of microcephaly in newborn infants when the pregnant mother

becomes infected by this virus [11, 12]. It also causes of some permanent disabilities such as

Guillain-Barre Syndrome [13, 14] and some other neurological complications among infected

adult individuals.

The ZIKV infection outbreak was first documented in Yap Island of Micronesia in April 2007

[19, 20, 21] after the first isolation of the virus from a monkey in Uganda in 1947 [15, 16] and

some confirmed human infection cases were reported from Africa and South-east Asia until

2007 [15, 17, 18, 44]. First severe outbreak was occurred in French Polynesia and south Pa-

cific in 2013-2014 with an estimated 28000 people were infected. It was a mild infection and

was limited to Africa and Pacific Asia up to a date but the disease was spread rapidly in many

other parts of the world from 2013-2014 onward. In April 2015, zika outbreak were began from

Brazil and then it rapidly spread to many Southern, Central American and Caribbean Coun-

tries with more than 140000 suspected and confirmed cases arises and the similar outbreak in
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North America was occurred in 2016. For the major outbreak, the WHO declared the zika epi-

demic as a “ public health emergency of the international concern ” [45] on 1st February, 2016.

The Emergency Operations Centre of U.S. CDC’s has reached to the highest level of activation

on February 3, 2016 [46] to prevent the outbreak. Till date there is no vaccine to protect the

infection and no antiviral therapies, medicines are available to treat this infection.

Transmission dynamics of zika virus infection investigation through mathematical modelling

which may be useful to provide better understanding, insights into the behaviour of the disease

dynamics and its controlling. Several mathematical models have been studied to explore the

spreading dynamics and control strategies of zika virus infection after its outbreak among dif-

ferent countries [22, 23, 24, 25, 42, 43, 49].

Kucharski et al. [22] considered an ordinary differential equation model to investigate the trans-

mission dynamics of ZIKV in French Polynesia in 2013-2014 but they neglect sexual transmis-

sion path in their model. Gao et al. [23] formulated a Zika model incorporating sexual trans-

mission to study the effect of zika spreading through mathematical modelling but they did not

consider the vertical transmission path of the virus. The authors in[24] studied the zika virus

dynamics using a mathematical model, where they considered both vector and sexual transmis-

sion route without modelling vertical transmission.

Zika virus can transmit vertically like vertical transmission of dengue in mosquitoes [26, 27, 28,

29, 30]. To estimate the effect of vertical transmission, Agusto et al. [31] proposed a zika model

incorporating vertical transmission of zika virus in human. Imran et al. [32] included vertical

transmission both for human and mosquitoes, but they did not include the sexual transmission

of zika virus in their model. Due to lack of particular vaccine, medicine or antiviral therapy to

protect from the infection of the virus, different kind of prevention controls like: mosquito bites

prevention using mosquito-net, sexual protection, isolation of infected human from mosquitoes

and mosquitoes control through insecticide spray are effective ways for protection of zika in-

fection.

Here, we have developed and studied a novel ODE zika model by introducing vertical trans-

mission of the virus in mosquitoes and incorporating the above said prevention controls in the
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model [49]. To formulate the mathematical model for spreading of zika virus we are consid-

ering the following factors: (i) both vector (mosquito) and sexual (direct) transmission, (ii)

vertical transmission in mosquito only, (iii) three types of constant control such as: (a) protect

susceptible human from mosquito bites using skin covering dresses or mosquito-net and use

of mosquito-repellent at a constant rate, (b) isolate infected human from mosquito by keeping

an infected human under mosquito-net until recover from Zika infection to protect zika virus

transmission from the infected human to a susceptible mosquito at a constant rate, (c) protect

susceptible human from sexual interaction with infected human at a constant rate to protect

ZIKV transmission through sex and (iv) mosquito control effort at a constant rate using insecti-

cide spray.

The paper is organised as follows: the model formulation and two basic properties (positivity

and bounded property) have been studied in section-2. The steady state and the backward bifur-

cation analysis have been done in section-3. In section-4, we have studied the ZIKV outbreak

in French Polynesia in 2013-2014 including the model fitting to the data, estimated the model

parameters estimation and validate the model with real data. The basic reproduction number of

the outbreak and the effective reproduction number have been studied in section-5. In section-6,

sensitivity analysis of the basic reproduction number has been done and in section-7 we have

presented numerical simulation to show the impact of some important parameters on the basic

reproduction number and on the infected human population. Finally, in section-8 some conclu-

sive remarks are given.

2. MODEL FORMULATION

In order to formulate the model, the human population Nh(t) at any instant t is divided into

four classes including susceptible individuals Sh(t) , exposed individuals Eh(t) , infected indi-

viduals Ih(t) and recovered individuals Rh(t), implying Nh(t) = Sh(t)+Eh(t)+ Ih(t)+Rh(t).

Similarly vector population Nv(t) at the same time t is divided into three classes viz. sus-

ceptible vectors Sv(t) , exposed vectors Ev(t) and infected vectors Iv(t) implying, Nv(t) =

Sv(t)+Ev(t)+ Iv(t) .

The disease transmission rate from infected mosquito to the susceptible human is λhv =
b2α1Iv

Nh
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and from the infected human to the susceptible mosquito is λvh =
b2α3(1−q)Ih

Nh
. where q is the

fraction of infected individuals who are isolated from mosquito by using mosquito-net. A sus-

ceptible individual may be infected (at a rate λhs =
cα2(1−p2)Ih

Nh
) when he/she interact sexually

with infected partner. The vertical transmission in mosquito population plays important role for

zika transmission. Here a proportion of newborn mosquitoes enter into the exposed class with

the population density rb1Ev + sb1Iv with 0≤ r,s≤ 1.

To comprise the controlling strategies some prevention control at a constant rate are included

in the model. Those are, (a) a constant rate of protection (p1)from mosquito bites are taken by

susceptible individual, by using skin covering dresses, mosquito-net or mosquito repellent, (b)

a constant rate of protection (p2) from sexual interaction are taken by susceptible human with

infected human, by using sexual preventive measures or avoiding sexual interaction in outbreak

period to protect sexual transmission of the virus to his/her susceptible sexual partner, (c) a con-

stant rate of isolation (q) are given to infected human from mosquitoes by keeping an infected

human under mosquito-net to protect zika transmission from an infected human to a susceptible

human through mosquitoes (d) employed a constant rate of mosquito control (b) by using insec-

ticide spray. The recovered human individuals from Zika infection as assumed to gain lifelong

immunity but due to short life span of mosquitoes the Zika infected mosquitoes never recover

from it. The used symbols mentioned above are presented in table-1 and the schematic diagram

of the virus transmission is presented in Fig.-1.

FIGURE 1. Schematic diagram of ZIKV transmission in human-mosquito population
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Our assumption and the schematic diagram of ZIKV transmission lead to the following sys-

tem of non linear ordinary differential equations.

(1)



dSh

dt
= π−

(
(1− p1)b2α1Iv

Nh
+

cα2(1− p2)Ih

Nh

)
Sh−µSh

dEh

dt
=

(
(1− p1)b2α1Iv

Nh
+

cα2(1− p2)Ih

Nh

)
Sh− (σ +µ)Eh

dIh

dt
= σEh− (γ +µ) Ih

dRh

dt
= γIh−µRh

dSv

dt
= (π1− rb1Ev− sb1Iv)−

b2α3(1−q)Ih

Nh
Sv− (µ1 +b)Sv

dEv

dt
= rb1Ev + sb1Iv +

b2α3(1−q)Ih

Nh
Sv− (σ1 +µ1 +b)Ev

dIv

dt
= σ1Ev− (µ1 +b)Iv

The description of the state variables and parameters have used in the model are presented in

table-1.

TABLE 1. Description of model parameters

Parameters Description

π,π1 : Recruitment rate of host and vector respectively.

µ,µ1 : Normal death rate of host and vector respectively .

b2 : Vector biting rate.

α1 : Transmission probability from infected vector to host.

α3 : Transmission probability from infected host to vector.

c: Host to host sexual contact rate.

α2: Transmission probability per sexual contact.

σ ,σ1: Rate of progression from exposed to infected host and vector respectively .

γ: Recovery rate .

b: Effective vector control rate.

r,s: Fraction of offspring of vector get infection by birth in exposed and infected classes respectively.

b1 : Birth rate of vector.

p1: Rate of protection from vector bites taken by susceptible host.

p2: Rate of protection from sexual contact taken by infected host.

q: Rate of isolation of infected host from vector.
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2.1. Basic Properties. In this section we shall explore two basic properties, the positivity and

boundedness of the model solution. In lemma-1, we shall prove that all the state variables are

non-negative for t ≥ 0 .

Lemma.1: Let the initial condition F(0) ≥ 0 with F(t) = (Sh,Eh, Ih,Rh,Sv,Ev, Iv) , then the

solutions F(t) of the model (1) are non-negative for all t ≥ 0 .

Proof. Let t1 = sup{t > 0,F(t)> 0}, then using integrating factor method on the first compo-

nent equation of the model (1) gives

d
dt

[
Sh(t)exp

{∫ t

0
[p′1λhv(Iv(ξ ),Nh(ξ ))+λhs(Ih(ξ ),Nh(ξ ))]dξ +µt

}]
= πexp

{∫ t

0
[p′1λhv(Iv(ξ ),Nh(ξ ))+λhs(Ih(ξ ),Nh(ξ ))]dξ +µt

}

On integration over [0, t1] provides

Sh(t1)exp
{∫ t1

0
[p′1λhv(Iv(ξ ),Nh(ξ ))+λhs(Ih(ξ ),Nh(ξ ))]dη +µt1

}
−Sh(0)

=
∫ t1

0
πexp

{∫ y

0
[p′1λhv(Iv(ξ ),Nh(ξ ))+λhs(Ih(ξ ),Nh(ξ ))]dξ +µy

}
dy

orSh(t1) =
{

Sh(0)+
∫ t1

0
πexp

{∫ y

0
[p′1λhv(Iv(ξ ),Nh(ξ ))+λhs(Ih(ξ ),Nh(ξ ))]dξ +µy

}
dy
}

.exp
[
−
{∫ t1

0
[p′1λhv(Iv(ξ ),Nh(ξ ))+λhs(Ih(ξ ),Nh(ξ ))]dξ +µt1

}]
> 0

Using the same technique we can prove that all other components of F > 0 for all t . So the

lemma is established. �

Thus the closed region

Ω=

{
(Sh,Eh, Ih,Rh,Sv,Ev, Iv) ∈ R7

+ : 0≤ Sh +Eh + Ih +Rh ≤
π

µ
,0≤ Sv +Ev + Iv ≤

π1

µ1 +b

}
is biologically feasible for the model (1).

In the following lemma we shall establish that Ω is positively invariant set.

Lemma.2: The region Ω is positively invariant set for the system (1) for non-negative initial

conditions in R7 .
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Proof. From the first four component equation of (1) we have:

(2)
dNh

dt
=

dSh

dt
+

dEh

dt
+

dIh

dt
+

dRh

dt
= π−µNh

and from the last three component equation of (1) we have:

(3)
dNv

dt
=

dSv

dt
+

dEv

dt
+

dIv

dt
= π1− (µ1 +b)Nv

employing comparison theorem from [33] and using initial condition one can be prove that

Nh(t)≤ Nh(0)e−µt +
π

µ
(1− e−µt),Nv(t)≤ Nv(0)e−(µ1+b)t +

π1

(µ1 +b)
(1− e−(µ1+b)t)

In particular Nh (t)≤
π

µ
if Nh (0)≤

π

µ
and Nv (t)≤

π1

µ1 +b
if Nv (0)≤

π1

µ1 +b
So Ω is positively invariant set. So it is sufficient to regard as the zika transmission dynamics

generated by the model (1) in Ω . Hence in Ω the model is mathematically and biologically

well posed [34]. Thus each solution of the model (1) with initial condition in Ω remains in Ω

for all t > 0 . �

3. STEADY STATE ANALYSIS

Here we have studied existence and stability of equilibrium points of the model (1).

3.1. Basic Reproduction Number and Local Stability of Disease Free Equilibrium. In

this part we shall derive the expression of the basic reproduction number employing the next

generation matrix method [35] and investigate the local stability of the disease free equilibrium

(DFE). The model (1) always has a DFE point E0 which is

Eo
(
S0

h,E
0
h , I

0
h ,R

0
h,S

0
v ,E

0
v , I

0
v
)
=
(

π

µ
,0,0,0, π1

µ1+b ,0,0
)

.

The new Zika infection term F and the remaining transfer term V are as follows:

F =


0 λ 0

hsS
0
h 0 λ 0

hvS0
h

0 0 0 0

0 λ 0
vhS0

v rb1 sb1

0 0 0 0

 , V =


k1 0 0 0

−σ k2 0 0

0 0 k3 0

0 0 −σ1 k4

 and FV−1 =


a1 a2 a3 a4

0 0 0 0

a5 a6 a7 a8

0 0 0 0

 ,
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with k1 = σ + µ,k2 = γ + µ,k3 = σ1 + µ1 + b,k4 = µ1 + b,a1 =
σcα2 p′2

k1k2
,a2 =

cα2 p′2
k2

,a3 =

σ1b2α1 p′1
k3k4

,a4 =
b2α1 p′1

k4
,a5 =

σb2α3µπ1q′

πk1k2k4
,a6 =

b2α3µπ1q′

πk2k4
,a7 =

k4rb1 +σ1sb1

k3k4
,a8 =

sb1

k4
.

The characteristic equation of FV−1 is given byλ 2g(λ ) = 0 whereg(λ ) = λ 2 − lλ − m

with l = a1 + a7,m = a3a5− a1a7. The basic reproduction number R0 is the spectral radius

ρ
(
FV−1) [35] that is the greatest positive root of the equation g(λ ) = 0 which given by:

R0 = ρ
(
FV−1)= 1

2

a1 +a7 +
(
(a1−a7)

2 +4a3a5
)1

2

.

Now we define

(4) R′0 = l +m =
b2

2α1α3 p′1q′µπ1σσ1 + cα2 p′2σπk4 (k3k4− k4rb1− sb1σ1)

πk1k2k4 (k3k4− k4rb1− sb1σ1)

and henceg(1) = 1−R′0 . In the next part we shall establish relation between two threshold

numbers R0 and R′0 as we shall use it to study the behaviour of the model. To relate them we

have considered the following cases:

(i) If R0 = 1 that is 1 is a root of the equation g(λ ) = 0 satisfying g(1) = 0 thenR′0 = 1 this

means R0 = 1 implies R′0 = 1.

(ii) R0 > 1 implies

R0 =
1
2

a1 +a7 +
(
(a1−a7)

2 +4a3a5
)1

2

> 1

or (a1 +a7)
2 +4(a3a5−a1a7)> 4+(a1 +a7)

2−4(a1 +a7)

or a1 +a7 +a3a5−a1a7 > 1 i.e. R′0 > 1

(iii) Similarly when R0 < 1 we can show thatR′0 < 1 .

From above three cases we haveR′0 = 1(< 1,> 1) when R0 = 1(< 1,> 1) . The converse

of this relation can be established easily. So we can conclude that R′0 = 1(< 1,> 1) iff.

R0 = 1(< 1,> 1) . Hence applying Theorem 2 of [35] we can establish the following lemma.

Lemma. 3. The DFE E0 of the model (1), is locally asymptotically stable if R0 < 1 and unstable

if R0 > 1 .

The basic reproduction number R0 gives the average number of zika infected human individ-

ual generated by one infectious individual introduced into fully susceptible human population.



7674 S.K. BISWAS, U. GHOSH, S. SARKAR

From the Lemma 3 we can say that zika virus can be eliminated from the human population if

the basic reproduction number R0 can be brought to (and maintained at) a value less than unity.

3.2. Global stability of the DFE. In order to ensure that the eradication of ZIKV infection

from the community does not dependent on the initial numbers of the subpopulations, we have

to study the global stability of DFE which have done in the theorem-1.

Theorem. 1. The DFE E0 of (1) is globally asymptotically stable (GAS) in the feasible region

Ω whenever R0 < 1 i.e ZIKV is then eradicated. On the other hand it is uniformly persistent

whenever R0 > 1 in which case at least an endemic equilibrium exists. The virus persists then.

Proof. Let the infected compartment be −→x = (Eh, Ih,Ev, Iv) . Then from the second, third, sixth

and seventh component equation of (1) we have

d−→x
dt

= (F−V )−→x −−→f (Sh,Eh, Ih,Rh,Sv,Ev, Iv) ,

with

−→
f (Sh,Eh, Ih,Rh,Sv,Ev, Iv) =


λ 0

hs

(
S0

h−Sh
)

Ih +λ 0
hv p′1

(
S0

h−Sh
)

Iv

0

λ 0
vh

(
S0

v−Sv
)

Ih

0

 .

where λ 0
hv =

b2α1

N0
h

,λ 0
hs =

(1− p2)cα2

N0
h

and λ 0
vh =

(1−q)b2α3

N0
h

. Now from the first equation of

(1) we have dSh
dt = π− (p′1λhv +λhs)Sh−µSh ≤ π−µSh . Which gives limsup

t→∞

Sh (t)≤ π

µ
= S0

h

this consequently implies Sh (t) ≤ S0
h. Similarly from the fifth equation of (1) we have

limsup
t→∞

Sv (t)≤ π1
µ1+b = S0

v which implies Sv (t)≤ S0
v .

Now we note that λ 0
hs

(
S0

h−Sh
)

Ih + λ 0
hv p′1

(
S0

h−Sh
)

Iv =
(
λ 0

hsIh +λ 0
hv p′1Iv

)(
S0

h−Sh
)
≥ 0 as

Sh (t) ≤ S0
h and λ 0

vh

(
S0

v−Sv
)

Ih ≥ 0 as Sv (t) ≤ S0
v . Thus

−→
f (Sh,Eh, Ih,Rh,Sv,Ev, Iv) ≥ 0, after
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some simple calculation we have

V−1F =



0
cα2 p′2

k1
0

b2α1 p′1
k1

0
σcα2 p′2

k1k2
0

σb2α1 p′1
k1k2

0
b2α3q′µπ1

πk3k4

rb1

k3

sb1

k3

0
σ1b2α3q′µπ1

πk3k2
4

σ1rb1

k3k4

σ1sb1

k3k4


,

as V−1F is irreducible, so employing the theorems 2.1 and 2.2 of [37] it follows that

L = wTV−1x with w(> 0) is the left eigenvector of V−1F is a Lyapunov function for system

(1). Now wTV−1F = ρ
(
V−1F

)
wT = ρ

(
FV−1)wT = R0wT where ρ denotes the spectral

radius, thus when R0 < 1 then

dL
dt

=wTV−1 dx
dt

=wTV−1 ((F−V )x− f (Sh,Eh, Ih,Rh,Sv,Ev, Iv))≤wTV−1 (F−V )x=(R0−1)wT x≤ 0,

Thus using L as a Lyapunov function and applying LaSalle’s invariance principle [47] , im-

plies that E0 is the largest invariant subset of the feasible region when
dL
dt

= 0 . It shows that E0

is the globally asymptotically stable in the feasible region when R0 < 1.

On the other hand for R0 > 1 using L and an applying theorem 2.2 of [37] we can confirm the

uniformly persistence of ZIKV i.e existence at least one endemic equilibrium of the model (1).

Hence the theorem is proved. �

To justify this result numerically we presents the time series for the infected host and vector

in Fig.-2, values of the parameters taken from table-2. The figures present the global asymptotic

stability of the DFE E0 for R0 < 1 in accordance with theorem 1.
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FIGURE 2. Time series of (a) infected host Ih and (b) infected vector Iv pop-

ulation, the values of the parameters taken from table-2 with initial conditions

Sh(0) = 259500,Eh(0) = 70,Rh(0) = 00,Sv(0) = 2499910,Ev(0) = 700.

3.3. Existence and stability of endemic equilibrium point. Here we shall study the exis-

tence and stability of the endemic equilibrium of the system (1)

Let E1
(
S∗h,E

∗
h , I
∗
h ,R
∗
h,S
∗
v ,E
∗
v , I
∗
v
)

be an endemic equilibrium point of the model (1) where

S∗h = π

λ ∗h +µ
, E∗h =

πλ ∗h
k1(λ ∗h +µ)

, I∗h =
πσλ ∗h

k1k2(λ ∗h +µ)
, R∗h =

πσγλ ∗h
k1k2µ(λ ∗h +µ)

,λ ∗h = p′1λ ∗hv + λ ∗hs, , S∗v =

(k3k4−k4rb1−sb1σ1)π1
k4(k3k4−k4rb1−sb1σ1)+k3k4λ ∗vh

, E∗v =
k4π1λ ∗vh

k4(k3k4−k4rb1−sb1σ1)+k3k4λ ∗vh
and I∗v =

π1σ1λ ∗vh
k4(k3k4−k4rb1−sb1σ1)+k3k4λ ∗vh

with,

(5) λ
∗
vh =

b2α3q′µσλ ∗h
k1k2(λ

∗
h +µ)

(6) λ
∗
h =

π

µ

[
b2α1 p′1π1σ1λ ∗vh

k4 (k3k4− k4rb1− sb1σ1)+ k3k4λ ∗vh
+

cα2P′2πσλ ∗h
k1k2

(
λ ∗h +µ

)]
Here λ ∗vh and λ ∗h are respectively the forces of infection of vector and host at steady state. Using

(5) in (6), we have the following quadratic equation in λ ∗h :

(7) a0λ
∗2
h +a1λ

∗
h +a2 = 0

with a0 = πk1k2k4 {k3b2α3q′µσ + k1k2 (k3k4− k4rb1− sb1σ1)}> 0,

a1 = πk1k2k3k4µ {k3b2α3q′µσ +2k1k2 (k3k4− k4rb1− sb1σ1)}

−µσ
[
k1k2b2

2α1α3π1µσ1 +{b2α3µσ + k1k2(µ1 +b)}cα2πk3k4
]
,
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a2 = πk2
1k2

2k3k2
4µ2(µ1 + b)

(
1−R′0

)
. The real positive root of the equation (7) provide the

endemic equilibrium of the model (1). Here a0 is positive and a2 is positive for R′0 < 1 . So

the number of real positive roots of the equation (7) depends on the sign of a1 and on the

discriminant of the equation(7). Based on the above discussions we can summarize in the fol-

lowing theorem in connection of the existence and number of endemic equilibrium of the model:

Theorem. 2. The system (1) has

(a) one endemic equilibrium for a2 < 0⇔ R′0 > 1 .

(b) coincident endemic equilibrium for (i) a1 < 0,a2 = 0 that is R′0 = 1 or (ii) a1 < 0 and

a2
1−4a0a2 = 0 .

(c) two endemic equilibrium for a2 > 0 that is R′0 < 1,a1 < 0, and a2
1−4a0a2 > 0.

(d) no endemic equilibrium for a1 > 0 and a2 > 0 that is R′0 < 1 .

Theorem. 3. The endemic equilibrium of the model (1) is locally asymptotically stable

whenever R′0 > 1 .

Proof of the theorem-3 are given in Appendix-I.

3.4. Study of backward bifurcation. Here we shall investigate the backward bifurcation by

applying centre manifold theorem [40] in the model (1).

Theorem. 4 The model (1) exhibits a backward bifurcation at R′0 = 1 when the sign of the

bifurcation coefficient φ given in (9) is positive.

Proof. To prove this theorem we redefine the system (1) by using following change of variables:

Let Sh = x1, Eh = x2, Ih = x3, Rh = x4, Sv = x5, Ev = x6 , Iv = x7 . Hence Nh = x1 + x2 + x3 +

x4 and Nv = x5 + x6 + x7 Using vector notation −→x = (x1,x2,x3,x4,x5,x6,x7)
T the system (1)

changes to the following form:

d−→x
dt

=
−→
f (−→x ) where

−→
f = ( f1, f2, f3, f4, f5, f6, f7)

T
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explicitly:

(8)



f1 =
dx1
dt = π−

(
b2α1 p′1x7+cα2 p′2x3

x1+x2+x3+x4

)
x1−µx1

f2 =
dx2
dt =

(
b2α1 p′1x7+cα2 p′2x3

x1+x2+x3+x4

)
x1− (σ +µ)x2

f3 =
dx3
dt = σx2− (γ +µ)x3

f4 =
dx4
dt = γx3−µx4

f5 =
dx5
dt = π1− rb1x6− sb1x7− b2α3q′x3x5

x1+x2+x3+x4
− (µ1 +b)x6

f6 =
dx6
dt = rb1x6 + sb1x7 +

b2α3q′x3x5
x1+x2+x3+x4

− (σ1 +µ1 +b)x6

f7 =
dx7
dt = σ1x6− (µ1 +b+)x7

The DFE (E0) of the system (8) is given by E0
(
x0

1,0,0,0,x
0
5,0,0

)
with x0

1 =
π

µ
,x0

5 =
π1

µ1 +b
The

variational matrix of the system (8) at the DFE is given below

J∗ (E0) =



−µ 0 −cα2 p′2 0 0 0 −b2α1 p′1

0 −k1 cα2 p′2 0 0 0 b2α1 p′1

0 σ −k′2 0 0 0 0

0 0 γ −µ 0 0 0

0 0 −b2α3q′π1µ

πk4
0 −k4 −rb1 −sb1

0 0
b2α3q′π1µ

πk4
0 0 rb1− k3 sb1

0 0 0 0 0 σ1 −k4



,

To investigate the backward bifurcation we consider transmission probability from infected

human to mosquito α3 as a bifurcation parameter. Suppose atα3 = α∗3 the relationR′0
(
α∗3
)
= 1

holds and J(E0) has one zero eigenvalue and others are negative or have negative real parts for

this critical value. Hence the dynamics of the system (8) near α3 = α∗3 can be studied using the

centre manifold theorem [40].

The right eigenvector of the variational matrix corresponding to zero eigenvalue is obtained by:

W = (q1,q2,q3,q4,q5,q6,1)
T withq1 = − 1

µ
(cα2 p′2q3 +b2α1 p′1) ,q2 =

k′2q3

σ
,q3 =
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1
Aσ1

(k4(k3− rb1)− sb1σ1) ,

q4 =
γq3

µ
,q6 =

k4

σ1
,q5 =−

1
k4

(Aq3 + rb1q6 + sb1) ,A =
b2α3q′π1µ

πk4
and the left eigenvector of the variational matrix corresponding to zero eigenvalue is obtained

by: V = (v1,v2,v3,v4,v5,v6,1) with v1 = 0,v2 =
k4− sb1s6

b2α1 p′1
,v3 =

k1s2

σ
,v4 = 0,v5 = 0,v6 =

σ1

k3− rb1
. Now, we compute the bifurcation coefficients φ and ψ where

φ =
7

∑
k,i, j=1

vkwiw j
∂ 2 fk

∂xi∂x j
= v2

7

∑
i, j=1

wiw j
∂ 2 f2

∂xi∂x j
+ v3

7

∑
i, j=1

wiw j
∂ 2 f3

∂xi∂x j
+ v6

7

∑
i, j=1

wiw j
∂ 2 f6

∂xi∂x j
+ v7

7

∑
i, j=1

wiw j
∂ 2 f7

∂xi∂x j

(9) φ =
2b2α3q′π1µ2σ1q3v7w2

7
π2k4(k3− rb1)

{
Lq5−q1−2q2−2q3−2q4−q3q4−

cα2 p′2q3

b2α1 p′1
(q2 +q3)

}
and the other coefficient,

ψ =
7

∑
k,i,=1

vkwi
∂ 2 fk

∂xi∂α∗3
= v6

7

∑
i,=1

∂ 2 f6

∂xi∂α∗3
=

σ1rb2π1µ

k3π(µ1 +b)
v7w7 > 0,

So the system (1) exhibits backward bifurcation at R′0 = 1 for φ > 0 . The phenomenon of

backward bifurcation both for infected human and mosquito represents in figure-3.

In the case of backward bifurcation a stable DFE co-exists with a stable endemic equilibrium

when the reproduction number R′0 is less than unity. In the case of backward bifurcation the

condition R′0 < 1 for elimination of the virus from population is a necessary but not sufficient

condition, in that case elimination of the virus depend on initial numbers of the sub-population.

�
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FIGURE 3. Backward bifurcation plot for the model (1): (a) infected host (b)

infected vector population the used values of the parameters are π = 3.5,µ =

1.25,µ1 = 0.35,b2 = 0.4,σ = 0.7,γ = 1/9,b = 1/20, p1 = 0.05, p2 = 0.05,q =

0.01,r = 0.01,b1−0.2,α1 = 0.4,α2 = 0.06,α3 = 0.35,σ1 = 2/7,s = 0.05,c =

2/365,π1 = 1000

4. DATA FITTING AND PARAMETER ESTIMATION IN FRENCH POLYNESIA

Here we have fitted the model to the weekly reported data and estimated key model

parameters. we have used the data of French Polynesia reported from the whole territory during

the period 11th October of 2013 to 28th March 2014 [48].The model predicted weekly infected

cases is Ih(t) obtained from the solution of third component equation of (1). We have been used

the solutions to find the best-fit model parameters using a non-linear least squares regression

technique which minimizes the sum of the squared residuals given as:

R(Φ) =
n

∑
j=1

[
Iht j(Φ)− Iht j

]2
Where Φ = {b2,c,α1,α2,α3,σ ,γ,µ1,σ1} , set of nine key parameters, those are to be estimated

and Iht j , Iht j are numbers of weekly zika infected individuals according to model prediction and

reported data respectively. Here n denotes the total number of data survey weeks. All compu-

tations have been done by employing MATLAB minimization software package fmincon (see

Fig-4a). To fit this model to the reported Zika cases we assume that initially the total popula-

tion, approximately 259500 [50] are susceptible. As our fitting process starts from 41th week
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of 2013 and on which week the reported case was 49, so we consider initial number of infected

human is 49 and we consider initial exposed, and recovered human are 70 and 00 respectively

and the initial number of susceptible, exposed, infected number of vector populations arbitrarily

chosen as 2499910, 700, 300 respectively. In this fitting process some model parameters have

taken from some published literature [31, 49] and the most influential nine model parameters

b2,c,α1,α2,α3,σ ,γ,µ1,σ1 are estimated by using the MATLAB minimization software pack-

age along with their 95% confidence interval (C.I) and all the computations are summarised in

table-3.

The best fitted model solution along with reported cases are presented in figure-4(a) where the

blue solid line represents the model predicted weekly number of infected cases and red dots

denotes the reported cases [48]. The distribution of the corresponding residuals presents in

figure-4(b). Since the residuals are small and randomly distributed so the fitness of real data

with the model is good. In order to compare the model prediction with real data we present a

bar diagram (see figure-4(c)) comparing the week wise number of model predicted cases (blue

bar) and reported infected cases (red bar) from 41th week of 2013 to 14th week of 2014 in

French Polynesia.
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FIGURE 4. The best fitted solution (blue curve) of the model with the weekly

reported human cases (the red dots) from 41th week, 2013 to 11th week, 2014 in

French Polynesia. (b)The corresponding distribution of the residuals of the data

fit in figure-(a). (c) Bar diagram: blue bar denote model predicted weekly cases

and red bar denote the reported weekly cases.
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5. INITIAL BASIC REPRODUCTION NUMBERS AND THE EFFECTIVE REPRODUCTION

NUMBER OF THE OUTBREAK

In this section we shall study the initial basic reproduction number and the effective reproduc-

tion number R(t) for the Zika outbreak in French Polynesia in 2013-2014. First one is estimated

in section-5.1 and second one is estimated in section-5.2.

5.1. Estimation of the basic reproduction number from reported data. .

There are various ways to estimate the basic reproduction number R0 for vector-borne diseases

using reported disease outbreak data. In this part we have estimated the basic reproduction

number R0 from initial growth phase of the zika outbreak in French Polynesia in 2013-2014.

Let us assume that at the early stage of the outbreaks the cumulative number of cases q(t)

varies as exp(Λt) i.e. q(t) ∝ exp(Λt) , where Λ is the force of infection. In the same way the

number of exposed and infected host and vector population vary similarly. So we have,

(10)



Eh(t) = Eh0exp(Λt)

Ih(t) = Ih0exp(Λt)

Ev(t) = Ev0exp(Λt)

Iv = Iv0exp(Λt)

where Eh0, Ih0,Ev0 and Iv0 are constants. Further we assume that the number of non-susceptible

be negligible then

(11)


Sh(t) = Nh

Sv(t) = Nv

Now substituting (10) and (11) in second, third, sixth and seventh component equations of

the model equation (1) we have
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(12)



(Λ+ k1)Eho = (1− p1)b2α1Iv0 +(1− p2)cα2Ih0

(Λ+ k2Ih0 = σEh0

(Λ+ k3)Ev0 = rb1Ev0 + sb1Iv0 +
(1−q)b2α3π1µ

πk4
Ih0

(Λ+ k4)Iv0 = σ1Ev0

Using (12) in the expression of R0 we have determined the relation between the basic repro-

duction number R0 and the force of infection Λ as follows:

(13) R0 =
1

k1k2k3k4
[(Λ+ k1)(Λ+ k2){(Λ+ k3)(Λ+ k4)− rb1Λ− k4rb1− sb1σ1}−B]

with B = (1− p2)cα2σ
{

Λ2 +(k3 + k4)Λ− rb1Λ
}
+ k1k2(k4rb1 +σ1sb1). We have to estimate

the force of infection Λ to compute the basic reproduction number R0 from the relation (13).

Here we consider the first nine weeks cases as in this period the weekly new cases directly varies

as cumulative number of cases q(t) i.e. weekly number of new cases proportional to Λq(t) , so

we can compute Λ by plotting the weekly number of new cases verses the cumulative number

of cases q(t), the phase of exponential growth of the cumulative number of cases is evidenced

by a linear growth of the curve and the slope of that curve is the force of infection . This linear

growth of the curve is estimated by a least square linear fit [51] in figure-5(b) by using reported

data of zika outbreaks in French Polynesia in 2013-2014. The time series of reported new zika

infected human cases in French Polynesia in 2013-2014 presented in figure-5(a). The slope of

the line presented in figure-5(b) i.e the force of infection Λ = 0.21409791±0.03426873week−1

. Now using this estimated value of Λ and other estimated parameters from table-2 in (13), we

have estimated the basic reproduction number, which is R0 = 2.86985 with lower and upper

values of R0 are 2.46573 and 3.32158 respectively.
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FIGURE 5. (a) The time series of reported new zika infected cases during 41th

week, 2013 to 11th week, 2014 from French Polynesia. (b) The weekly number

of infected cases verses the cumulative number of cases reported during the pe-

riod 41th to 49th week of 2013 from French Polynesia as in this period new cases

grow exponentially with cumulative number of cases and the least-squares lin-

ear fit. The linear phase of the fit gives Λ = 0.21409791± 0.03426873week−1.

(c)The effective reproduction number R(t) versus time t in weeks of the Zika

outbreak in French Polynesia during 11th October, 2013 to 28th March, 2014.

Used parameters taken from table-2.

5.2. Effective reproduction number of the outbreak. Here we shall study the effective

reproduction number R(t) . It is defined as the average number of secondary infections
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producing from a primary infected case at the time t week. The number R(t) provides an

indication of the severity of the outbreak. It helps us by giving information about the necessary

measures to control the outbreak. The estimation of R(t) done from the weekly new infection

curve of the Zika infected cases by using the following equation derived from the renewal

equation from birth process.

(14) R(t) =
b(t)∫

∞

τ=0 b(t− τ)g(τ)dτ

where b(t) denote the number of new cases at tth week and g(t) is the generation interval

distribution for the Zika disease. In the model (1) considered exposed and infective stages both

for human and mosquito populations. The constant rates of leaving the exposed and infected

classes for human and mosquito are k1 = σ + µ,k2 = γ + µ,k3 = σ1 + µ1 +b and k4 = µ1 +b

.Therefore the generation interval distribution function g(t) will be the combination of the four

exponential functions k1e−k1t ,k2e−k2t ,k3e−k3t and k4e−k4t in the form given by:

(15) g(t) =
4

∑
i=1

k1k2k3k4e−kit

∏
4
j=1 j 6=i(k j− ki)

with t ≥ 0 and mean of the distribution T =
1
k1

+
1
k2

+
1
k3

+
1
k4

. The relation is valid for the

force of infection Λ > min{−k1,−k2,−k3,−k4} .

Using the weekly Zika incidence data, estimated model parameters and substituting g(t) from

(15) in equation (14) we estimate R(t) and presents in figure-5. The figure presents the time

evolution of the effective reproduction number R(t) of the Zika outbreak in French Polynesia

from 11th October, 2013 to 28th March, 2014. It is clear from the figure that the value of R(t)

decrease gradually from 5.404 to 0.2499. It implies that the disease decrease gradually during

that period.

6. SENSITIVITY ANALYSIS

In this section we have done sensitivity analysis to determine the parameters which have sig-

nificant impact on the basic reproduction number R′0 . The analysis provides us the importance
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of model parameters on zika virus transmission, which also provides guidance to control zika

outbreak. Here we have studied the normalised forward sensitivity index of the basic reproduc-

tion number R′0 w.r.t different parameter which is defined as the ratio of the relative variation in

the threshold number R′0 to the relative variation in the parameter.

Definition 6.1: [41] The normalized forward sensitivity index of R′0 which depends differen-

tiably on a parameterp is defined by γ
R′0
p =

∂R′0
∂ p

p
R′0

.

Using the definition 6.1 in the analytical expression of R′0 we have found an expression for the

sensitivity of R′0 w.r.t each model parameter. To estimate the numerical values of the sensitivity

indices we have used the estimated parameter values from the second column of table-2 and the

computed sensitivity indices are presented in fourth column of table-2.

TABLE 2. Parameter values and their sensitivity indices with respect to R′0

Parameters Values 95% C.I. Source Sensitivity Indices

b2 0.55104 0.5509-0.5668 Estimated 1.9493

π1 142 - Assumed 0.9746

α1 0.16197 0.1595-0.1642 Estimated 0.9746

α3 0.17725 0.1745-0.1797 Estimated 0.9746

µ 1/(70× 365) - [31] 0.9738

σ1 0.13283 0.1315-1343 Estimated 0.3312

α2 0.21201 0.2095-0.2148 Estimated 0.0238

c 0.04514 0.0445-0.0457 Estimated 0.0238

b1 0.54286 - Assumed 0.0014

s 0.001 - Assumed 0.00091025

r 0.001 - Assumed 0.00047057

σ 0.12616 0.1243-0.1275 Estimated 1.7402×10−16

µ1 0.06795 0.0667-0.0687 Estimated -2.2590

γ 0.07104 0.0697-0.0714 Estimated -0.9979

π 0.01747 - [49] -0.9746

p1 0.1 - Assumed -0.1083

p2 0.1035 - Assumed -0.0027

q 0.000104 - Assumed -0.00010137

b 0.00072 - Assumed −2.492×10−05
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According to our findings the most positive sensitive parameters are mosquito biting rate

(b2), mosquito recruitment rate (π1), transmission probability from infected mosquito to

human(α1), transmission probability from infected human to mosquito (α3), human death rate

(µ). The most negative sensitive parameters are mosquito death rate (µ1), infection recovery

rate (γ), human recruitment rate (π). We have to estimate the above said parameters carefully

and we have give importance to control the outbreak.

7. NUMERICAL SIMULATION

In order to justify numerically the results obtained from the sensitivity analysis we presents

the graphical presentation of the basic reproduction numberR′0 with respect to different model

parameters. Here we use the parameter values from the table-2 or stated along with the ini-

tial conditions Sh(0) = 259500,Eh(0) = 70, Ih(0) = 49,Rh(0) = 00,Sv(0) = 2499910,Ev(0) =

700, Iv(0) = 300.

In figure-6(a-d) we have presented graphically the basic reproduction number R′0 with respect

to the parameters: b2,α1,α3 and π1 respectively.

Figure-6(a) shows that basic reproduction number R′0 increases non-linearly with mosquito

biting rate b2 whereas in all other figures 6(b-d) the numberR′0 increases linearly. Moreover

figures 6(a-d) shows that increase from zero value when each of the parameters b2,α1,α3,π1

varies from zero respectively. So the transmission of the virus can be prevented by decreasing

the mosquito biting (b2) or the recruitment rate of mosquitoes (π1) which can be done by pre-

caution.

In figure-7(a-d) we are given graphical presentation of the basic reproduction number with re-

spect to the parameters µ1,γ,q and p1 respectively.

Figures 7 (a-d) show that the basic reproduction number reduces with the increase of each

of the parameters µ1,γ,q or p1 respectively. Moreover these figures also show thatR′0 reduces

non-linearly with µ1 and γ but linearly with q and p1 . This means the Zika epidemic can be

rapidly controllable if mosquito death rate and infection recovery rate can be increased. On

the other hand isolation of infected human and prevention of susceptible human from mosquito
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FIGURE 6. Plot of the basic reproduction number R′0 with respect to (a) b2

(mosquito biting rate) (b) α1 (transmission probability from infected mosquito

to human for per bite) (c) α3 (transmission probability from infected human to

mosquito for per bite) (d) π1 (recruitment rate of mosquitoes).

slow down epidemic progression but slowly compared to the first two cases. So the transmission

of zika virus can be prevented by increasing the death rate mosquitoes (µ1) or by increasing the

prevention control rate q or p1 which can be done by taking proper precaution.

Now, in order to find the impact of most sensitive parameters on the infected human population

Ih(t) we have studied the time series for different parameter values. Impact each of the param-

eter b2,α1,α3,c and α2 on Ih(t) are presented in figure-8(a-e) respectively.

Time series in figures 8(a-e) show that number of infected human Ih(t) grows first and then

decay after reaching a maximum value. The number of infected human Ih(t) is higher for
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FIGURE 7. Plot of the basic reproduction number R′0 with respect to (a) µ1 (nat-

ural death rate of mosquitoes) (b)γ (recovery rate) (c)q ( isolation rate of infected

human from mosquito) (d) p1 ( protection rate from mosquito bites taken by sus-

ceptible human)

higher values of mosquito biting rate (b2), transmission probability from infected mosquito

to susceptible human (α1), from infected human to susceptible mosquito (α3), sexual contact

rate (c), probability of Zika transmission from infected human to susceptible human (α2) by

sexual interaction. But the change in magnitude ofIh(t) is more prominent in first three cases

of human-vector interaction compared to sexual contact. This means the primary cause of Zika

epidemic is transmission trough mosquito. So to control the disease primary effort should be

vector control and secondly the sexual interaction with infected human should also be avoided.

That is the spread of zika virus can be reduced by reducing each of the parameters b2,α1,α3,c

or α2.
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FIGURE 8. The time series of infected human population Ih(t) for different val-

ues of the parameter (a)b2; (b)α1; (c)α3 ; (d)c ; (e)α2 ; (those parameters have

positive sensitivity index)

The time series figure-9(a-e) presents the effect of parameters µ1,γ,q, p1 and p2 on Ih(t)

respectively.
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FIGURE 9. The time series of infected human population Ih(t) for different val-

ues of the parameter (a)µ1; (b)γ; (c)q ; (d)p1 ; (e)p2 ; (those parameters have

negative sensitivity index).

It is clear from the Figures 9(a-e) that the most sensitive parameters are: the mosquito death

rate (µ1), recovery rate of infected human (γ), isolation rate of infected human from mosquito

(q), protection rate from mosquito bites taken by susceptible human (p1), and protection rate
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from sexual contact taken by infected human (p2) respectively. That is the spread of Zika virus

can be reduced by increasing the said parameters µ1,γ,q, p1 or p2.

8. CONCLUSIONS

In this paper we have studied the ZIKV disease dynamics and different kind of disease

prevention control by developing a new ODE compartmental zika model. The model is new as:

(a) it incorporates three virus transmission path including vector transmission, direct or sexual

transmission and vertical transmission path of the virus simultaneously (b) it also incorporates

four disease prevention control including protection from mosquito bites, protection from

sexual contact, isolation of infected human from mosquito and vector control.

We have studied the basic properties including positivity and boundedness of the model

and found the explicit expression of basic reproduction number by next generation matrix

method. The model has unique disease free equilibrium (DFE) and it is locally and globally

asymptotically stable if the basic reproduction number R′0 less than unity. The existence

and stability of endemic equilibrium also has been studied. The model exhibits backward

bifurcation where the stable DFE co-exist with a stable endemic equilibrium when the basic

reproduction number R′0 is less than unity and the virus transmission probability from human

to mosquito crosses the critical value.

The key model parameters (b2,c,α1,α2,α3,σ ,γ,µ1,σ1) have been estimated by fitting real

data reported from French Polynesia in 2013-14 Zika outbreak. By finding the analytical

expression of R0 in terms of the force of infection Λ and other parameters the basic repro-

duction number (for the first nine week) of the outbreak has been computed and its value is

2.87 with lower and upper values are 2.46 and 3.32 respectively. The effective reproduction

of the outbreak also have studied and which decrease gradually from 5.404 to 0.2499 (fig-5c).

The sensitivity analysis carried out with respect to the basic reproduction number to identify

influential parameters. The influential parameters those have positive sensitivity indices are

the mosquito biting rate, recruitment rate of mosquitoes, virus transmission probability from

infected mosquito to human and the transmission probability from infected human to mosquito.

On the other hand significant parameters those have negative sensitivity indices are the death
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rate of mosquitoes, recovery rate, rate of isolation of infected human from mosquito (q) and

rate of prevention of susceptible human from mosquito bites (p1).

We have verified the effect of most positive and negative sensitive parameters on basic

reproduction number numerically. Using time series of infected human we have shown that

with the increase each of: the mosquitoes biting rate, recruitment rate of mosquitoes, virus

transmission probability from infected mosquitoes to human and transmission probability from

infected human to mosquitoes, the number of infected population is increased. On the other

hand with the increase of: the death rate of mosquitoes, recovery rate of infected humans,

isolation rate of infected human from mosquito (q) and protection rate from mosquito bites

taken by susceptible human (p1) the number of infected population is decreased.

The control strategy to minimize the transmission of the virus we have to decrease the mosquito

biting rate and sexual contact with infected individuals. The prevention rate taken by infected

and susceptible human should also be increased which includes vector control.

Our findings predict that, reduction of mosquito biting rate, mosquito recruitment rate;

mosquito lifespan and sexual contact rate are four main prevention measures to protect

Zika prevalence. Thus to control the disease we have to control the above said most sensitive

parameters. This model study will be helpful for health planar to making zika control strategies.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] B. D. Foy. Probable Non-Vector-Borne Transmission of Zika Virus, Colorado, USA. Emerg. Infect. Dis. 17

(2011), 880-882.

[2] Dallas County Health Human Services (DCHHS), DCHHS Reports First Zika Virus Case in Dallas county

Acquired through Sexual Transmission. 2 February 2016.

[3] Centres for Disease Control and Prevention (CDC), update : Interim Guidelines for Prevention of Sexual

Transmission of Zika Virus-United States, 2016, 23 February 2016.

[4] The Toronto Star, Canada’s first case of sexually-transmitted Zika virus confirmed in Ontario, April 25, 2016.



TRANSMISSION DYNAMICS OF ZIKV IN PRESENCE OF VERTICAL TRANSMISSION 7695

[5] J. T. Brooks, A. Friedman, R. E. Kachur , M. LaFlam, P. J. Peters, D. J. Jamieson; Update: interim guidance

for prevention of sexual transmission of zika virus-United States, July 2016. MMWR Morb. Mortal Wkly.

Rep. 65(29) (2016), 745.

[6] E. E. Petersen , D. Meaney-Delman, R. Neblett-Fanfair, F. Havers, T. Oduyebo, S. L.Hills, I. B. Rabe, A.

Lambert, J. Abercrombie, S. W. Martin et al; Update: interim guidance for preconception counselling and

prevention of sexual transmission of zika virus for persons with possible zika virus exposure-United States,

September 2016. MMWR Morb. Mortal Wkly. Rep. 65(39) (2016), 1077.

[7] A. Davidson, S. Slavinski, K. Komoto, J. Rakeman , D. Weiss. Suspected female-to-male sexual transmission

of zika virus-New York City, 2016, MMWR Morb. Mortal Wkly. Rep. 65(28) (2016), 716.

[8] B. Atkinson, P. Hearn, B.Afrough, S. Lumley, D. Carter, E. Aarons, A. J. Simpson, T. J. Brooks, R. Hewson:

Detection of zika virus in semsn. Emerg Infect. Dis. 22 (2016), 940.

[9] N. Nicastri, C. Castilletti, G. Liuzzi, M. Iannetta, M. R, Capobianchi, G. Ippolito, Persistent detection of Zika

virus RNA in semen for six months after symptom onset in traveller returning from Haiti to Italy, February

2016. Eurosurveillance 21(32) (2016), 30314.

[10] D. Musso. Potential sexual transmission of Zika virus. Emerg. Infect. Dis. 21(2) (2015), 359-361.

[11] E. L. McGrath, S. L. Rossi, J. Gao, S. G. Widen, A. C. Grant, T. J. Dunn, S. R. Azar, C. M. Roundy, Y. Xiong,

D. J. Prusak, et al. Differntial responses of human fetal brain neural stem cells to Zika virus infection. Stem

Cell Rep. 8(3) (2017), 715-727.

[12] S. A. Rasmussen, D. J. Jamieson, M. A. Honein, L. R. Petersen: Zika virus and birth defects reviewing the

evidence for casuality. New Engl. Med. 374(20) (2016), 1981-1987.

[13] B. Parra, J. Lizaarazo, J. A. Jimenez-Arango, A. F. Zea-Vera, G. Gonzalez-Manrique, J. Vargas, J. A. An-

garita, G. Zuniga, R. Lopez-Gonzalez, C. L. Beltran et al: Guillain-Barre syndrome associated with Zika

virus infection in Colombia, New Engl. J. Med. 375(16) (2016), 1513-1523.

[14] N. Brouter, F. Krauer, M. Riesen, A. Khalakdina, M. Almiron, S. Aldighieri, M. Espinal, M. Low, C. Dye:

Zika virus as a cause of neurologic disorders. New Engl. J. Med. 374(16) (2016), 1506-1509.

[15] G. W. Dick, S. F.Kitchen, and A. J. Haddow: Zika Virus (I). Isolations and Serological Specificity. Trans. R.

Soc. Trop. Med. Hyg. 46 (1952), 509-520.

[16] V. Sikka, V. K. Chattu, R. K. Popli: The emergence of zika virus as global health security threat: A new and

a consensus statement of the INDUSEM Joint Working Group (JWG), J. Glob. Dis. 8(1) (2016), 3-15.

[17] F. N. Macnamara, Zika virus: a report on three cases of human infection during an epidemic of jaundice in

Nigeria. Trans. R. soc. Trop. Med. Hyg. 48(2) (1954), 139-145.

[18] P. Shapshak, J. T. Sinnott, C. Somboonwit, J. H. Kuhn, eds., Global virology I: identifying and investigating

viral diseases, Springer, New York, 2015.



7696 S.K. BISWAS, U. GHOSH, S. SARKAR

[19] European Centre for Disease Control and Prevention (CDC), Zika Virus Infection, Factsheet for Health Pro-

fessionals. (2015).

[20] M. R. Duffy, Zika virus outbreak on Yap Island, Federated States of Micronesia. New Engl. J. Med. 360

(2009), 2536-2543.

[21] C. Manore and M. Hyman, Mathematical models for fighting Zika virus, SIAM News, Retrieved May 2,

2016,(2016).

[22] A. J. Kucharski, S. Funk, R. M. Eggo, H. Mallet, W. J. Edmunds, E. J. Nilles, Transmission dynamics of

Zika virus in Island population: a modelling analysis of the 2013-2014 French Polynesia outbreak, bioRxiv

preprint.(2016).

[23] D. Gao, Y. Lou, D. He, T. C.Porco, Y. Kuang, G. Chowell, S. Ruan, Prevention and control of zika as

amosquito-borne and sexually transmitted disease: a mathematical modelling analysis. Sci. Rep. 6 (2016),

28070.

[24] F. B. Agusto, S. Bewick, and W. F. Fagan,: Mathematical model for Zika virus dynamics with Sexual trans-

mission route, Ecol. Complex. 29 (2017), 61-81. .

[25] O. Maxian, A. Neufeld, E. J.Talis, L. M. Childs, J. C. Blackwood: Zika virus dynamics: When does sexual

transmission matter? Epidemics, 21 (2017), 48-55.

[26] B. Hull, E. Tikasingh, M. De Souza, R. Martinez: Natural transovarial transmission of dengue 4 virus in

Aedes aegypti in Trinidad. Amer. J. Trop. Med. Hyg. 33 (1984), 1248-1250.

[27] C. Y. Kow, L. L. Koon, P. F. Yin, Ditection of dengue viruses in field caught male Aedes aegypti and Aedes

albopictus (Diptera: Culicidae) in Singapore by typespecific PCR. J. Med. Entomol. 38 (2001), 475-479.

[28] F. M. Pherez, Factors affecting the emergence and prevalence of vector borne infections(VBI) and the role of

vertical transmission (VT), J. Vector Borne Dis. 44 (2007), 157-163.

[29] L. Esteva, C. Vargas, Influence of vertical and mechanical transmission on the dynamics of dengue disease.

Math. Biosci. 167 (2000), 51-64.

[30] B. Adams, M. Boots, How important is vertical transmission in mosquitoes for the persistence of dengue?

Insight from a mathematical model. Epidemics, 2 (2010), 1-10.

[31] F. B. Agusto, S. Bewick, and W. F. Fagan, Mathematical model of Zika virus with vertical transmission.

Infect. Dis. Model. 2 (2017), 244-267.

[32] M. Imran, M. Usman, M. Dur-e-Ahmad, A. Khan, Transmission Dynamics of Zika Fever: A SEIR Based

Model, Differ. Equ. Dyn. Syst. 29 (2021), 463-486.

[33] V. Lakshmikantham, S. Leela, and A. A.Martynyuk, Stability Analysis of Nonlinear System. Marcel Dekker.

Inc., New York and Basel (1989).

[34] H. W. Hethcote, The mathematics of infectious diseases. SIAM Rev. 42(4) (2000). 599-653.



TRANSMISSION DYNAMICS OF ZIKV IN PRESENCE OF VERTICAL TRANSMISSION 7697

[35] 35. P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for

compartmental models of disease transmission. Math. Biosci. 180 (2002), 29-48.

[36] J. Tumwiine, J. Y. T. Mugisha, and L. S. Luboobi: On oscillatory pattern of malaria dynamics in a population

with temporary immunity, Comput. Math. Meth. Med. 8(3) (2007), 191-203.

[37] Z. Shuai, P. Vanden Driessche, Global stability of infectious disease models using Lyapunov functions. SIAM

J. Appl. Math. 73(4) (2013), 1513-1532.

[38] H. W. Hethcote, H. R. Thieme: Stability of the endemic equilibrium in epidemic models with subpopulations,

Math. Biosci. 75 (1985), 205-227.

[39] L. Esteva, A. B. Gumel, and C. V. de Leon: Qualitative study of transmission dynamics of drug-resistant

malaria. Math. Computer Model. 50 (2009), 611-630.

[40] C. Castillo-Chavez, B. Song: Dynamical model of tuberculosis and their applications. Math. Biosci. Eng.

1(2) (2004), 361-404.

[41] N. Chitnis, J. M. Hyman, and J. M. Cushing, : Determining important parameters in the spread of malaria

through the sensitivity analysis of a mathematical model, Bull. Math. Biol. 70(5) (2008), 1272-1296.

[42] E. Bonyah, M. A. Khan, K. O. Okosun, and S. Islam. A theoretical Model for Zika virus transmission. PLOS

ONE 12(10), e0185540 (2017).

[43] T. A.Perkins, A. S. Siraj, C. W. Ruktanonchai, M. U. G. Kraemer, A. J. Tatem, Model-based projection of

Zika virus infections in childbearing women in the Americas, biorxiv preprint (2016).

[44] W. G. C. Bearcroft, Zika virus infection experimentally induced in human volunteer, Trans. R. Soc. Trop.

Med. Hyg. 50(5) (1956), 442-448.

[45] World Health Organisation (WHO), WHO statement on the first meeting of International Health Regula-

tions(2005) Emergency Committee on Zika virus and observed increase in neurological disorders and neona-

tal malformations, February 1, 2016. http://www.who.int/. (Accessed on February 26, 2016).

[46] Centre for Disease Control and prevention (CDC), CDC Emergency Operations Centre moves to highest of

activation for Zika response, February 3, 2016. http://www.cdc.gov/.

[47] J. P. LaSalle, The stability of dynamical systems. Regional Conference Series in Applied Math. no 25, SIAM,

Philadelphia, 1976.

[48] Centre d’hygiene et de salubrite publique. Surveillance de la dengue et du Zika en Polynesie francaise. March

28, 2014. htt p : //www.hygiene− publique.gov.p f/IMG/pd f/bulletindengue28−03−2014.pd f .

[49] S. K. Biswas, U. Ghosh, S. Sarkar, Mathematical model of zika virus dynamics with vector control and

sensitivity analysis. Infect. Dis. Model. 5 (2020), 23-41.

[50] M. Aubry, Seroprevalence of arboviruses among blood donors in French Polynesia, 2011-2013. Int. J. Infect.

Dis. 41 (2015), 11-12.



7698 S.K. BISWAS, U. GHOSH, S. SARKAR

[51] C. Favier. Early determination of the reproductive number of vector-borne diseases: the case of dengue in

Brazil. Trop. Med. Int. Health 11 (2006), 332-340.


