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Abstract. In this paper, the spectrum of operators commuting with operator algebras of countable range multiplic-

ity is studied. It is shown that if the commutant of a set which does not contain any scalar operator has countable

range multiplicity then it has a non trivial invariant subspace. If the range multiplicity of an operator algebra is one

then it is shown that the strong and uniform topologies coincide on the commutant of the algebra and also each

collection of mutually orthogonal projections in the commutant is finite. In addition, if the operator algebra is self

adjoint also then it is shown that the underline Hilbert space has a finite orthogonal decomposition such that each

of its components reduces the algebra.
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1. INTRODUCTION

By an operator range in a Hilbert space, we mean the range of a bounded linear operator on

the space. Every closed linear space is always an operator range but not conversely. Also every

operator range is a linear manifold but not conversely. Fillmore and Williams [3] have done a

detailed study of operator ranges.

∗Corresponding author

E-mail address: pawan84v@gmail.com

Received June 25, 2021
6522



OPERATOR ALGEBRAS OF COUNTABLE RANGE MULTIPLICITY 6523

In 1972, Foias [4] initiated the study of invariant operator ranges. The study was further

continued by Jafarian and Radjavi [8] and others. In 1982, Harrison, Rosenthal and Longstaff

[5] introduced the notion of countable range multiplicity, finite range multiplicity and range

cyclicity. These notions are generalizations of strict cyclicity introduced by Lambert [9] and

finite strict multiplicity introduced by Herrero [6]. The purpose of this paper is to continue

the study of countable range multiplicity and in particular range cyclicity of operator algebras.

The motivation of the present work comes from the investigations made by Herrero [6, 7] and

Embry [1, 2] for strictly cyclic and cyclic algebras.

2. PRELIMINARIES

Let H be a separable Hilbert space and B(H), the set of all bounded linear operators on H.

By an algebra, we mean a strongly closed subalgebra of B(H) containing identity I.

Definition 2.1. Algebra A is said to be of countable (finite) range multiplicity [5] if there

exists a countable (finite) subset Γ of H such that the only operator range invariant under A

containing Γ is H itself. A is said to be range cyclic if there exists such a subset Γ consisting

of a single element e, say. In that case e is said to be range cyclic vector for A .

Definition 2.2. Algebra A is said to be cyclic (strictly cyclic) [9] if there exists a vector x0 in

H such that the only invariant subspace (linear manifold) containing x0 is H itself. In this case

vector x0 is called cyclic (strictly cyclic) vector for A .

In the same way algebras of finite multiplicity (finite strict multiplicity) [6] are defined. Every

strictly cyclic vector for A is range cyclic for A and every range cyclic vector for A is cyclic

for A [11]. However the converse is not true.

For a uniformly closed abelian unital (containing identity I) algebra, range cyclic vectors are

strictly cyclic also.Thus the study of range cyclic operators coincides with the study of strictly

cyclic operators.

Definition 2.3. For any B ⊆ B(H), the commutant of B is

B
′
= {T ∈ B(H) : T B = BT f or B in B} .

The double commutant B
′′

of B is the commutant of B
′
.
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Definition 2.4. A closed linear subspace M of H reduces B if the projection of H onto M is in

B
′
. Reducing subspace M of B is said to be minimal reducing subspace of B if M 6= {0} and

{0} is the only reducing subspace of B properly contained in M.

Definition 2.5. A collection
{

M j
}

of closed linear subspaces of H is an orthogonal decompo-

sition of H if and only if M′js are pairwise orthogonal and span H.

Definition 2.6. A collection
{

Pj
}n

j=1 of projections is a resolution of identity if the collection{
Pj(H)

}n
j=1 of ranges of Pj is an orthogonal decomposition of H.

3. MAIN RESULTS

Theorem 3.1. If A is a range cyclic algebra, then the strong and the uniform topologies

coincide on A
′
, the commutant of A .

Proof. Let e be a range cyclic vector for A . The point evaluation Ee mapping B(H) to H

defined by Ee(B) = Be is bounded below on A
′

[10]. Thus there exists a constant K > 0 such

that

‖EeB‖ ≥ K‖B‖

for all B in A
′
. Let {Aλ} be a set in A

′
converging strongly to A in A

′
. Then

‖Aλ −A‖ ≤ 1
K
‖(Aλ −A)e‖→ 0

showing that {Aλ} converges to A uniformly.

Applying Theorem 3.1 to A
′
, we obtain the following.

Corollary 3.2. If A is a subalgebra of B(H) such that A
′

is range cyclic, then the strong and

the uniform topologies coincide on A .

Theorem 3.3. Let A be an algebra of countable range multiplicity on H. Let E ∈ A
′

and

z ∈ σ(E), the spectrum of E. Then either Ker(zI−E) 6= 0 or R(zI−E) 6= H.

Proof. Let Γ be countable subset of H such that the only operator range invariant under A

containing Γ is H itself. Let Ker(zI−E) = {0} . Then zI−E is one -one and so it is not onto.

As R(zI−E) is an operator range invariant under A , the set Γ cannot be contained in R(zI−E).

Thus R(zI−E) 6= H. By [[10], Corollary 1], R(zI−E) 6= H.
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Corollary 3.4. If A is not a scalar multiple of I and {A}
′
has countable range multiplicity, then

A has a non- trivial hyper - invariant subspace.

Proof. Let z ∈ σ(A). Applying Theorem 3.3 to {A}
′
, we get that either Ker(zI−A) 6= 0 or

R(zI−A) 6= H and each is invariant under {A}
′
.

Corollary 3.5. If B is a subset of B(H) not consisting of scalar operators and B
′
has countable

range multiplicity then B
′
has a non - trivial invariant subspace.

Proof. There exists A in B such that A is not a scalar multiple of identity. As B
′ ⊆{A}

′
, we get

that {A}
′

has countable range multiplicity. By Corollary 3.4, {A}
′

has a non - trivial invariant

subspace and that is invariant under B
′
also.

Corollary 3.6. If A is an algebra of countable range multiplicity on H and E ∈A
′
, then

(i) σ(E) = σp(E)∪σp(E∗)

(ii) ∂σ(E)⊂ σp(E∗),

where σp(E∗) =
{

λ̄ : λ ∈ σp(E∗)
}
.

Proof.

(i) Let λ ∈ σ(E). By Theorem 3.3, either

Ker(λ I−E) 6= 0

or

Ker(λ̄ I−E∗) = R(λ I−E)
⊥ 6= {0}

This implies that either λ ∈ σp(E) or λ ∈ σp(E∗). Thus

σ(E) = σp(E)∪σp(E∗)

(ii) Let λ ∈ σ(E)/ σp(E∗). Then λ is in spectrum of E and Ker(λ̄ I−E∗) = {0} . This implies

that R(λ I−E) = H. As R(λ I−E) is invariant under A , by [[10], Corollary 1], R(λ I−

E) = H. This cannot happen if λ is a boundary point of σ(E). Thus ∂σ(E)⊂ σp(E∗).

Theorem 3.7. Let A be a range cyclic algebra on H. Each collection of mutually orthogonal

projections in A
′
is finite.
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Proof. Let
{

Pj
}

be a collection of mutually orthogonal projections in A
′
. Without any loss of

generality, we may assume
{

Pj
}

to be countable. Let

Qn =
n

∑
j=1

Pj and Q =
∞

∑
j=1

Pj

We see that Qn → Q strongly. By Theorem 3.1, Qn → Q uniformly. However Q−Qn is a

projection and hence has norm zero or one. Thus for sufficiently large n, Qn = Q. This means

that
{

Pj
}
=
{

Pj
}n

j=1 is finite.

Corollary 3.8. Let A be range cyclic operator algebra on H. Then each normal element of A
′

has finite spectrum.

Proof. Let E ∈ A
′

be normal operator. Then E has no residual spectrum. Also by Theorem

3.3, E has no continuous spectrum. Thus spectrum of E consists entirely of point spectrum. By

Theorem 3.7, E has only a finite number of distinct eigenspaces. Thus spectrum of E is finite.

Theorem 3.9. If A is a self - adjoint range cyclic operator algebra on H, then there exists a

finite orthogonal decomposition {Mk} of H such that each Mk reduces A and A /Mk is strongly

dense in B(Mk).

Proof. If A has only trivial reducing subspaces then by [[5], Corollary 1] A is strongly dense

in B(H). Thus the trivial decomposition {H} of H satisfies the requirements of the theorem.

Let {Mk}p
k=1 be a colletion of mutually orthogonal subspaces of H such that each Mk reduces

A and A /Mk is strongly dense in B(Mk). If M′ks span H, the conclusion of the theorem is

satisfied. Otherwise consider

A1 = A |{M1,M2,...,Mp}⊥.

By [[10], Theorem 7], A1 is range cyclic on
{

M1,M2, . . . ,Mp
}⊥

. If A1 has only trivial reducing

subspaces then again by [5], A1 is strongly dense in B(
{

M1,M2, . . . ,Mp
}⊥

) and the construction

is complete. Otherwise A1 has a non - trivial reducing subspace Mp+1 and by [5], A1|Mp+1 is

strongly dense in B(Mp+1).

Thus M1,M2, . . . ,Mp+1 are pairwise orthogonal reducing subspaces forA and A |Mk is

strongly dense in B(Mk) for k = 1,2, . . . , p+ 1. By Theorem 3.7, the construction must ter-

minate with a finite number of pairwise othogonal reducing subspaces.
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Theorem 3.7, Theorem 3.9 above and the following results are due to Embry [2] in the case

of strictly cyclic operator algebras. Embry’s techniques, together with Theorem 3.9 give us the

following.

Theorem 3.10. Let A be a self - adjoint range cyclic operator algebra. Let {Mk}n
k=1 be a

decomposition of H as described in the statement of Theorem 3.9. Let Pk be the orthogonal

projection of H onto Mk. Then A
′
= ∑

n
j,k=1 PjA

′
Pk and for each value of j and k, PjA

′
Pk is of

dimension one or zero. In particular A
′
is finite dimensional.

Corollary 3.11. If A is a self - adjoint range cyclic operator algebra with an abelian commu-

tant, then

A
′
=

{
n

∑
j=1

λ jPj : λ j is complex

}
where

{
Pj
}

is a resolution of identity as described in the statement of Theorem 3.10. In partic-

ular, A
′
consists of normal operators with finite spectra.

Corollary 3.12. Let N be a normal operator with a range cyclic commutant {N}
′
. Then there

exist orthogonal projections P1,P2, . . .Pn such that

{N}
′′
=
{
∑λ jPj : λ j complex

}
.

Corollary 3.13. The decomposition {Mk}n
k=1 as described in the statement of Theorem 3.9 is

unique if and only if A
′
is abelian.
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