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Abstract. In this study, we propose a nonlinear autoregressive network with exogenous inputs (NARX) model

with two deterministic seasonal dummy approaches, that is binary dummy variables and sine-cosine pairs. For

significant lag is selected using a stepwise AIC method, including a deterministic seasonal dummy. While the

number of neurons in the hidden layer is conducted by trial and error method on one to five neurons. The NARX

model is trained using five types of algorithms and a tangent hyperbolic activation function. Each algorithm is

compared on all approaches to see the speed of convergence and forecasting accuracy. In addition, time series data

is performed using data without and with the first differencing process. The results of the case study show that the

best approach to the NARX model is to use binary dummy variables and data with the first differencing process.

On the other hand, the GRPROP algorithm shows the least computation time, the fastest training process steps,

and forecasting accuracy with the best MAPE value. Overall, the GRPROP algorithm is the best training algorithm

in this case. However, the GRPROP algorithm on the variation of its parameters shows it is not stable. While the

RPROP algorithm for parameter variations shows a better speed and stability of convergence than backpropagation

and GRPROP. The backpropagation algorithm occasionally outperforms GRPROP on its parameter variations.
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1. INTRODUCTION

Forecasting time series data is mostly done using statistical methods. However, these statis-

tical methods are only limited to linear models, whereas in many cases forecasting time series

data has a nonlinear tendency. As an alternative, neural networks (NN) models can be used on

data where the assumptions of the linear model are not met [1, 2]. The NN model is a flexible

method for modelling linear and nonlinear correlation. The popular NN model for modeling and

forecasting time series data is the nonlinear autoregressive neural network (NARNN) model or

better known as the feed-forward neural network (FFNN) [3].

In this study, we propose a NARNN model using external inputs or a nonlinear autoregressive

network with exogenous inputs (NARX) model. The external input of the NARX model is

carried out using two deterministic seasonal dummy approaches, that is binary dummy variables

and sine-cosine pairs. These two approaches are compared their effects on the accuracy of

forecasting time series data. In addition, time series data were given two treatments, namely

raw data (without the first differencing process) and data with the first differencing process. In

this case, the NARX model focuses on monthly time series data that has trend and seasonal

patterns. The time series data is then linearly scaled between -0.8 and 0.8 to facilitate learning

of the NARX model. The main data lag was selected using the same method as [4, 5]. Next, the

significant lag was selected using the stepwise AIC method. A similar approach was applied by

[6] on the NARNN model.

The architecture of the NARX model is carried out using 1 input layer, 1 hidden layer with

tangent hyperbolic activation function, and 1 output layer with linear activation function. The

initial weights and biases were assigned randomly. The constant parameter values used refer

to [7, 8, 9], see more detail in section 3. The maximum number of training processes (epoch,

which in [7] is called stepmax) used is 1000000 steps. The target value of the work function

used is a threshold of 0.01. The iteration will be stopped if the value of the work function

is less than the threshold value. While the number of neurons in the hidden layer is done

by trial and error method. In this study, we followed [10] who suggested the use of one to

five neurons for time series data. Furthermore, the NARX model is trained using five types

of algorithms, namely backpropagation, resilient backpropagation with weight backtracking
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(RPROP with WB), resilient backpropagation without weight backtracking (RPROP without

WB), the modified globally convergent algorithm with the smallest absolute gradient (GRPROP

with SAG), and the modified globally convergent algorithm with the smallest learning rate

(GRPROP with SLR). Each algorithm is compared on the computational aspect to see the speed

of convergence and forecasting accuracy. The measure of forecasting accuracy is done with the

mean absolute percent error (MAPE). A method has excellent performance if the MAPE value

is below 10% and has good performance if the MAPE value is between 10% and 20% [2].

This paper is structured as follows: In this section, we have explained the background as well

as the contribution of our paper. In section 2, we provide a brief description of some of the

theories required for a complete description of the paper. In section 3, we provide an empirical

study with two real data, namely monthly data on the number of international airline passengers

and monthly data on the number of deaths in the United States of America (USA). While the

conclusions are given in Section 4.

2. PRELIMINARIES

2.1. NARX Model. The nonlinear autoregressive network with exogenous input (NARX) has

been reported to be very essential for discrete time nonlinear systems and has also been defined

by the following mathematical relationship [11]:

y(t +1) = f (y(t),y(t−1), ...,y(t−ny +1);u(t),u(t−1), ...,u(t−nu +1);w)

= f (y(t);u(t);w)(1)

where u(t) and y(t) indicate the input and output of the model at the moment t, respectively,

nu ≥ 1 and ny ≥ 1 (ny ≥ nu) represent input and output memory orders, w is the weight matrix

while f is the non-linear function expected to be estimated using the multilayer perceptron

(MLP) [12].

Basically, the NARX network is trained under one out of two models [13, 14]. The first is the

series-parallel architecture (or parallel architecture without feedback), where there is formation
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of the output’s regressors only through the use of the output actual values:

ŷ(t +1) = f̂ (y(t),y(t−1), ...,y(t−ny +1);u(t),u(t−1), ...,u(t−nu +1);w)

= f̂ (ysp(t);u(t);w)(2)

The second model is the parallel architecture (or parallel architecture with feedback), where

the output is the feedback for the feed-forward neural networks input, being part of the standard

architecture:

ŷ(t +1) = f̂ (ŷ(t), ŷ(t−1), ..., ŷ(t−ny +1);u(t),u(t−1), ...,u(t−nu +1);w)

= f̂ (yp(t);u(t);w)(3)

The NARX networks trained in line with equations (2) and (3) are, therefore, represented as

NARX-SP and NARX-P networks, respectively. This research was focused on NARX models

with parallel architecture and without feedback (NARX-SP).

This research also applied the two conventional approaches as exogenous input variables in

the NARX model. The first approach to modeling deterministic seasonal patterns is to use

binary dummy variables S− 1 for each time period t, where S is the seasonal duration. The

second approach is to use a set of sine and cosine dummy variables, which have been shown to

capture deterministic seasonal elements of the time series well. Two inputs xs,1 and xs,2 encode

seasonality using an explanatory variable that is created using Sin(t) and Cos(t) for an explicit

representation of the point in time within an identified seasonality of length s, see discussion in

[15, 16] with

xs,1(t) = Sin
(

2πt
S

)
and xs,2(t) = Cos

(
2πt
S

)
(4)

2.2. Backpropagation Learning. This is the algorithm mostly applied to supervised learning

with multi-layered feed-forward networks. This is fundamentally built on the repeated imple-

mentation of the chain rule to calculate each weight’s influence in the network regarding an

arbitrary error function E [17]

(5)
∂E

∂wi, j
=

∂E
∂ si

∂ si

∂neti

∂neti
∂wi, j
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where wi, j represents the neuron weight from i to j, si indicates the output, and neti is the

weighted sum of neuron i inputs. Moreover, after the determination of each weight’s partial

derivative, a simple gradient descent is used to minimize the error function.

(6) wi, j(t +1) = wi, j(t)− ε
∂E

∂wi, j
(t)

The learning rate of ε selected to scale the derivative significantly affects the time required up

to the achievement of convergence. In a situation the value set is too small, there is going to be

a need for several steps to achieve a satisfactory solution but a big value would cause oscillation

and this has the ability to keep the error from falling beneath a defined value.

An early method proposed to ensure this problem is solved is through the introduction of a

momentum-term

(7) ∆wi, j(t) =−ε
∂E

∂wi, j
(t)+µ ∆wi, j(t−1)

The momentum parameter is observed to have scaled the initial step’s effect on the present step

and the momentum-term has been discovered to have the ability to ensure better stability of the

learning procedure and acceleration of convergence in the error function’s shallow regions.

This has, however, been discovered not to be truth every time based on practical experi-

ence since the momentum parameter’s optimal value was later found to be equally problem-

dependent as the learning rate without the possibility of achieving any general improvement

[9].

2.3. RPROP Learning. RPROP is an acronym for resilient propagation and it is defined as

an effective new learning scheme applied to directly adapt the weight step with respect to the

local gradient information. There was an introduction of an individual update-value ∆i, j by

[9] to ensure each weight strictly decides the weight-update size. The evolution of this adap-

tive update-value was observed in the learning process because of the local sight on the error

function, E, through the use of the learning-rule presented as follows:

(8) ∆
(t)
i j =


η+ ∗∆

(t−1)
i j , if ∂E

∂wi, j

(t−1) ∗ ∂E
∂wi, j

(t)
> 0

η− ∗∆
(t−1)
i j , if ∂E

∂wi, j

(t−1) ∗ ∂E
∂wi, j

(t)
< 0

∆
(t−1)
i j , else
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where 0 < η− < 1 < η+.

The working principle of the adaptation-rule is such that each time there is a change in the

sign of the corresponding weight wi, j partial derivative to show the last update was too enormous

and that there is a jump of the algorithm on a local minimum, there is usually a reduction in

the update-value ∆i j by the factor η−. Meanwhile, in a situation the sign is retained, there is

usually a slight increase in the update-value to ensure the acceleration of convergence in shallow

regions.

The weight-update is also usually a straight-forward rule after the adaption of the update-

value for each weight and, in a situation the derivative is positive (increasing error), there is

a reduction in the weight using the update-value but a negative condition usually leads to the

update-value addition

(9) ∆w(t)
i j =


−∆

(t)
i j , if ∂E

∂wi, j

(t)
> 0

+∆
(t)
i j , if ∂E

∂wi, j

(t)
< 0

0 , else

(10) w(t+1)
i, j = w(t)

i, j +∆w(t)
i j

There is, however, one exception and this is a situation there is a change in the sign on the

partial derivative such that the initial step was observed to be too large while the minimum was

missed, there is going to be the reversion of the previous weight-update

(11) ∆w(t)
i j =−∆w(t−1)

i j , if
∂E

∂wi, j

(t−1)

∗ ∂E
∂wi, j

(t)

< 0

The backtracking weight-step is expected to change the sign on the derivative once again

in the following step without allowing the update-value to be adapted in order to avert double

punishment. It is possible to practically achieved this through the setting of ∂E
∂wi, j

(t−1)
:= 0 in the

∆i j previous adaptation-rule. Meanwhile, there are changes in the update-values and weights

each time there is a presentation of the whole pattern set once to the network (learning by

epoch). It is, however, possible to use RPROP with and without weight backtracking.
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2.4. GRPROP Learning. The unconstrained minimization principles are applied to

RPROP’s convergence to a local minimizer by assuming that (i) f : D ⊂ Rn→ R is the func-

tion requiring minimization while f is bounded under Rn, (ii) there is continuous differen-

tiation of f in a neighborhood N of the level set L = {x : f (x) ≤ f (x0)}, (iii) f gradient

represented by g is Lipschitz continuous on Rn for any two points x and y ∈ Rn, condition

‖ g(x)−g(y) ‖≤ L ‖ x− y ‖, ∀x,y ∈N , where L > 0 denotes the g satisfies Lipschitz constant,

and x0 is the starting point of the following iterative scheme

(12) xk+1 = xk + τ
kdk, k = 0,1, ...

The general iterative scheme (12) convergence, in which dk is the search direction and τk > 0

is a step length requiring the adopted search direction dk to satisfy condition g(xk)>dk < 0 and

this ensures dk becomes a descent direction of f (x) at xk. The length of steps in (12) is defined

using some rules such as Wolfe’s

(13) f (xk + τ
kdk)− f (xk)≤ σ1 τ

kg(xk)>dk

(14) g(xk + τ
kdk)>dk ≥ σ2 g(xk)>dk

where g(x) is the f gradient at x, and 0 < σ1 < σ2 < 1, and Wolfe’s theorem was applied to

produce the convergence results [18, 19].

The fulfillment of the assumptions (i)-(iii), for any w0 ∈ Rn and any sequence {wk}∞
k=0 pro-

duced by the RPROP scheme

(15) wk+1 = wk− τ
k diag{ηk

1 , ...,η
k
i , ...,η

k
n}sign(g(wk)), k = 0,1, ...

where sign(g(wk)) denotes the column vector of the signs of the components of g(wk) =

(g1(wk),g2(wk), ...,gn(wk)), τk > 0 satisfying Wolfe’s conditions, ηk
m(m = 1,2, ..., i− 1, i +

1, ...,n) are small positive real numbers generated by RPROP’s learning rates schedule:

(16) if (gm(wk−1) ·gm(wk)> 0) then η
k
m = min(ηk−1

m ·η+,∆max)

(17) if (gm(wk−1) ·gm(wk)< 0) then η
k
m = max(ηk−1

m ·η−,∆min)

(18) if (gm(wk−1) ·gm(wk) = 0) then η
k
m = η

k−1
m
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where 0 < η− < 1 < η+,∆max is the learning rate upper bound, ∆min is the learning rate lower

bound and

(19) η
k
i =−

∑
n
j 6=i, j=1 ηk

j g j(wk)+δ

gi(wk)
, 0 < δ < ∞, gi(wk) 6= 0

it holds that limk→∞g(wk) = 0.

The modified RPROP, known as the GRPROP, is applied through the relations (15)-(19). It

is, however, important to note that it is possible to apply relation (19) randomly or in a cyclic

pattern on the local learning rates. In other situations, the selection of the ith coordinate with the

absolute smallest no zero gi(wk) value may be better to produce a larger value for ηk
i . Moreover,

the replacement of each time there is a production of smallest learning rate value by the schedule

of the RPROP with the ηk
i value derived from equation (19) is another method applicable and

it was observed to have been used in all the experiments in [8].

The GRPROP algorithm used was induced by the globally convergent with the smallest ab-

solute gradient and the smallest learning rate. This was associated with the resilient backprop-

agation without weight backtracking as well as modifying one learning rate, including those

related to the smallest absolute gradient or the smallest learning rate. Moreover, there is the

limitation of the learning rates in this algorithm to the vector-defined boundaries or the list with

the minimum and maximum limits.

3. MAIN RESULTS

This research was conducted in two real cases: the first is the number of international air-

line passengers and the second case is the number of accidental deaths in the United States of

America (USA).

3.1. International Airline Passengers. The data used is monthly data on the number of in-

ternational airline passengers. Monthly data from January 1949 to December 1959 were used

as training data and January to December 1960 were used as testing data. Monthly data on the

number of international airline passengers is popular data and is often used as an example of the

application of the classical time series method, among others, in [20, 21, 22, 23]. Graphically,
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FIGURE 1. Result of algorithms on monthly data of international airline passen-

gers from 1949 to 1960.

it can be seen in Figure 1 that the data has an uptrend and seasonal pattern with multiplicative

nature.

In this study, the determination of the autoregressive lag was chosen using the following

approach: if the length of the seasonal period is m, then the sequential m lag starting from lag

1 is used. For example, lag for quarterly data of 1:4 and for monthly data of 1:12 is used.

According to [4, 5], seasonal patterns can be captured more easily through this approach. Next,

the significant lag was selected using the stepwise AIC method. A similar approach was applied

by [6] on a previous study for the NARNN model. In this study, the NARNN model is given

external input or better known as the NARX model. The external input of the NARX model is

made using a deterministic seasonal dummy, namely a binary dummy variable and a sine-cosine

pair. These two approaches are compared their effects on the forecasting accuracy of the NARX

model on data with and without the first differencing process.

The architecture of the NARX model used is 1 input layer, 1 hidden layer with tangent hy-

perbolic activation function, and 1 output layer with linear activation function. For the selection

of the initial weights and biases the network is assigned randomly. The constant parameter val-

ues used refer to [7, 8, 9], namely the increase factor η+ = 1.2, the decrease factor η− = 0.5,
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TABLE 1. Comparison of the computational results of each algorithm with data

without the first differencing process and the external input of the NARX model

with binary dummy variables

Algorithm type Number of hidden Computational Reached Reached MAPE

neurons time stepmax threshold testing

Backpropagation

1 5.2918 secs 52568 0.0099 0.0365

2 3.3981 secs 35810 0.0099 0.0299

3 8.3117 secs 74534 0.0099 0.0289

4 6.0173 secs 47713 0.0099 0.0342

5 6.6728 secs 46313 0.0099 0.0339

RPROP with WB

1 0.6120 secs 5077 0.0099 0.0356

2 0.4850 secs 2855 0.0095 0.0257

3 0.3117 secs 1137 0.0099 0.0258

4 0.2356 secs 452 0.0096 0.0253

5 0.2318 secs 344 0.0081 0.0231

RPROP without WB

1 0.4576 secs 4436 0.0099 0.0356

2 0.3903 secs 2786 0.0098 0.0270

3 0.3452 secs 1665 0.0098 0.0252

4 0.2500 secs 416 0.0099 0.0286

5 0.3810 secs 1201 0.0096 0.0263

GRPROP with SAG

1 58.998 secs 395408 0.0489 0.0390

2 10.516 secs 97071 0.0093 0.0256

3 2.6372 secs 18971 0.0073 0.0253

4 0.3363 secs 1364 0.0096 0.0211

5 0.2742 secs 806 0.0091 0.0223

GRPROP with SLR

1 1.5257 secs 15263 0.0085 0.0360

2 0.3807 secs 2025 0.0095 0.0258

3 1.5020 secs 10817 0.0059 0.0234

4 3.2849 secs 22836 0.0082 0.0211

5 9.0624 secs 25271 0.0092 0.0210

the upper limit ∆max = 0.1, the lower limit ∆min = 10−10, the initial update value ∆0 = 0.1,

and the learning rate ε = 0.001 (only for backpropagation). The maximum number of training
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TABLE 2. Comparison of the computational results of each algorithm on the

data with the first differencing process and the external input of the NARX model

with binary dummy variables

Algorithm type Number of hidden Computational Reached Reached MAPE

neurons time stepmax threshold testing

Backpropagation

1 4.9675 secs 74772 0.0099 0.0298

2 6.4983 secs 87279 0.0099 0.0237

3 3.8116 secs 44779 0.0099 0.0249

4 8.2948 secs 86271 0.0099 0.0220

5 8.5292 secs 80817 0.0099 0.0212

RPROP with WB

1 0.2031 secs 1261 0.0098 0.0299

2 0.2655 secs 1772 0.0098 0.0197

3 0.3279 secs 910 0.0090 0.0189

4 0.3749 secs 2008 0.0095 0.0147

5 0.4061 secs 2126 0.0098 0.0116

RPROP without WB

1 0.1405 secs 777 0.0095 0.0301

2 0.3592 secs 3090 0.0098 0.0220

3 0.1718 secs 750 0.0099 0.0177

4 0.2657 secs 1484 0.0098 0.0126

5 0.1872 secs 636 0.0092 0.0138

GRPROP with SAG

1 0.1093 secs 303 0.0094 0.0329

2 0.4529 secs 3768 0.0095 0.0225

3 0.2499 secs 1303 0.0099 0.0179

4 0.1562 secs 606 0.0090 0.0148

5 0.2187 secs 931 0.0092 0.0136

GRPROP with SLR

1 0.9216 secs 10632 0.0098 0.0298

2 0.9372 secs 8900 0.0095 0.0212

3 2.5306 secs 22406 0.0089 0.0180

4 0.7029 secs 3902 0.0091 0.0149

5 7.1700 secs 52457 0.0093 0.0101

processes (stepmax) used is 1000000 steps. The target of the work function used is the goal

performance value (threshold) of 0.01. The iteration will be stopped if the value of the work
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function is less than the threshold value. The number of neurons in the hidden layer is carried

out using a trial and error method following [10] who suggests the use of one to five neurons in

time series data.

Furthermore, the NARX model training algorithm uses five types of algorithms, namely the

backpropagation, the resilient backpropagation with weight backtracking (RPROP with WB),

the resilient backpropagation without weight backtracking (RPROP without WB), the modi-

fied globally convergent algorithm with the smallest absolute gradient (GRPROP with SAG),

and the modified globally convergent algorithm with the smallest learning rate (GRPROP with

SLR). In this study, each algorithm is compared on the computational aspect to see the speed

of convergence and forecasting accuracy. The measure of forecasting accuracy is done with the

mean absolute percent error (MAPE). A method has very good performance if the MAPE value

is below 10% and has good performance if the MAPE value is between 10% and 20% [2].

In this study, the NARX model focuses on monthly data that has trend and seasonal patterns.

The data were then scaled linearly between -0.8 and 0.8 to facilitate the training of the NARX

model. In the case of the first data, four approaches are taken: first, the NARX model with

external input uses a binary dummy variable on the data without the first differencing process,

where the second approach uses the first differencing process. Third, the NARX model with

external input uses dummy variables of sine-cosine pairs on the data without the first differ-

encing process, where the fourth approach uses the first differencing process. In the first and

second approaches, the selected lags using the stepwise AIC method are 1, 4, 5, 8:12 and 1:8,

10, 12, respectively, including a binary dummy variable. Meanwhile, in the third and fourth

approaches, the lag is equal to 1:12 and the dummy variable is the sine-cosine pair.

The results of the comparison of the NARX model with binary dummy variables for each

algorithm can be seen in Tables 1 and 2, while the NARX model with dummy sine-cosine

variables can be seen in Tables 3 and 4. The comparison process was carried out using data

without the first differencing process (Tables 1 and 3) and with the first differencing process

(Tables 2 and 4). The parameter used for comparison of each algorithm is the model that

gives the best results. Overall, the results of the MAPE value on the testing data show that

the NARX model with a binary dummy variable is more accurate. On the other hand, the
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TABLE 3. Comparison of the computational results of each algorithm with data

without the first differencing process and the external input of the NARX model

with dummy variables of sine-cosine pairs

Algorithm type Number of hidden Computational Reached Reached MAPE

neurons time stepmax threshold testing

Backpropagation

1 2.8043 secs 39987 0.0099 0.0410

2 5.6381 secs 62482 0.0099 0.0400

3 7.7963 secs 81549 0.0099 0.0322

4 4.9519 secs 45807 0.0099 0.0371

5 4.7123 secs 41487 0.0099 0.0318

RPROP with WB

1 0.9101 secs 9890 0.0090 0.0403

2 0.4120 secs 1897 0.0091 0.0328

3 0.5389 secs 2639 0.0095 0.0271

4 0.3279 secs 1457 0.0090 0.0302

5 0.3254 secs 1449 0.0099 0.0310

RPROP without WB

1 0.4034 secs 3369 0.0097 0.0400

2 0.5233 secs 4572 0.0091 0.0368

3 0.7927 secs 2037 0.0097 0.0324

4 0.6415 secs 2455 0.0088 0.0290

5 0.3507 secs 1969 0.0097 0.0294

GRPROP with SAG

1 53.499 secs 592622 0.0634 0.0479

2 1.3656 secs 7657 0.0250 0.0359

3 50.719 secs 443708 0.0063 0.0270

4 9.0323 secs 63096 0.0095 0.0233

5 7.5300 secs 51807 0.0097 0.0242

GRPROP with SLR

1 1.0672 secs 8602 0.0099 0.0402

2 0.9008 secs 7644 0.0092 0.0355

3 7.0123 secs 60033 0.0097 0.0262

4 1.1670 secs 7602 0.0086 0.0282

5 15.572 secs 61565 0.0092 0.0232

NARX model got better on the data with the first differencing process. In the data without

the first differencing process, the convergence of the RPROP with WB algorithm provides the
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TABLE 4. Comparison of the computational results of each algorithm on the

data with the first differencing process and the external input of the NARX model

with dummy variables of sine-cosine pairs

Algorithm type Number of hidden Computational Reached Reached MAPE

neurons time stepmax threshold testing

Backpropagation

1 1.2190 secs 10878 0.0099 0.0308

2 6.1995 secs 84655 0.0099 0.0293

3 6.1074 secs 73626 0.0099 0.0216

4 7.9596 secs 86052 0.0099 0.0200

5 5.3138 secs 52447 0.0099 0.0251

RPROP with WB

1 0.1353 secs 490 0.0085 0.0309

2 0.1500 secs 667 0.0089 0.0267

3 0.1942 secs 951 0.0076 0.0236

4 0.3236 secs 1839 0.0099 0.0189

5 0.3797 secs 2224 0.0084 0.0177

RPROP without WB

1 0.1438 secs 678 0.0089 0.0311

2 0.1515 secs 736 0.0099 0.0266

3 0.3436 secs 2551 0.0098 0.0213

4 0.1562 secs 672 0.0099 0.0180

5 0.3849 secs 1409 0.0092 0.0179

GRPROP with SAG

1 6.6670 secs 86165 0.0455 0.0314

2 22.761 secs 96849 0.0093 0.0269

3 48.914 secs 356735 0.0092 0.0220

4 2.5986 secs 20892 0.0089 0.0157

5 6.5366 secs 19338 0.0089 0.0171

GRPROP with SLR

1 2.0126 secs 25188 0.0084 0.0307

2 3.6242 secs 39906 0.0096 0.0272

3 0.9276 secs 7836 0.0083 0.0231

4 1.7895 secs 13807 0.0096 0.0206

5 12.4531 secs 96478 0.0098 0.0123

least computation time (0.2318 secs) and the fastest training process steps (344 steps). The

convergence speed of the RPROP without WB algorithm ranks second with a slight difference.
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While the data with the first differencing process, the convergence of the GRPROP with SAG

algorithm provides the least computation time (0.1093 secs) and the fastest training process

steps (303 steps). The convergence speed of the RPROP with WB algorithm ranks second with

0.1353 secs and 490 steps. Overall, the best results were obtained using the GRPROP algorithm.

However, the RPROP algorithm shows that it is much better with respect to the resistance of

its parameter variations than backpropagation and GRPROP. The backpropagation algorithm

occasionally outperforms GRPROP with SAG with respect to the resistance of its parameter

variations (indicated by the reached threshold). In this case, the GRPROP with SAG algorithm

often does not reach convergence for the stepmax or threshold used.

Furthermore, the comparison of the forecasting accuracy of each algorithm is carried out

using the MAPE value on the testing data. In this case, the GRPROP with SLR algorithm con-

sistently gives the best MAPE value on the data without and with the first differencing process.

Sequentially, the best MAPE values were obtained at 0.0210 and 0.0101. While the GRPROP

algorithm with SAG ranks second with a slight difference. On the other hand, the number of

neurons in the hidden layer of each algorithm is obtained differently to achieve convergence.

The results generally show that the greater the number of neurons in the hidden layer, the smaller

the MAPE value in the testing data obtained. This indicates that the number of neurons in the

hidden layer affects forecasting accuracy. Overall, the GRPROP algorithm is more accurate

than the backpropagation and RPROP algorithms. However, the RPROP algorithm outperforms

backpropagation in terms of convergence speed and forecasting accuracy.

3.2. Accidental Deaths in the USA. Monthly data on the number of deaths in the United

States of America (USA) due to accidents, can be graphically seen in Figure 2. Monthly data

from January 1973 to December 1978 were used as training data and data from January 1979

to June 1979 were used as test data. This data is quite popular because of its complex pattern

and has been discussed in several studies. Brockwell and Davis [24] have used this data as an

example of applying the ARIMA model and exponential smoothing.

Based on the results in the first case, the NARX model approach in the second case is only

shown using data with the first differencing process and external input using a binary dummy

variable. In this case, the selected lag using the stepwise AIC method is 1, 2, 8, 11, 12, and a
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FIGURE 2. Result of algorithms on monthly data of accidental deaths in the

USA from 1973 to 1979.

binary dummy variable. The results of the comparison of each algorithm can be seen in Table 5.

In Table 5, the GRPROP with SAG algorithm provides the least computation time (0.1561 secs),

the fastest training process steps (311 steps), and the best MAPE value (0.26%). Overall, the

best results were obtained using the GRPROP with SAG algorithm with respect to convergence

speed and forecasting accuracy.

4. CONCLUSION

In this study, the best approach to the NARX model was obtained using data with the first

differencing process and external input using a binary dummy variable. The fastest compu-

tation time and training process steps are obtained using the GRPROP with SAG algorithm.

While the forecasting accuracy was obtained using a different GRPROP algorithm, GRPROP

with SLR on monthly data on the number of international airline passengers and GRPROP with

SAG on monthly data on the number of deaths in the USA. Overall, the GRPROP algorithm

(either with SAG or SLR) is the best training algorithm in this study. However, the GRPROP

with SAG algorithm for parameter variations often shows that it does not reach convergence,

while GRPROP with SLR requires more computational time and training process steps. On the
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TABLE 5. Comparison of the computational results of each algorithm on the

data of accidental deaths in the USA with the first differencing process and the

external input of the NARX model with binary dummy variables

Algorithm type Number of hidden Computational Reached Reached MAPE

neurons time stepmax threshold testing

Backpropagation

1 4.8647 secs 86681 0.0099 0.0212

2 5.7174 secs 96034 0.0099 0.0175

3 4.2801 secs 65740 0.0099 0.0161

4 6.7802 secs 97750 0.0099 0.0119

5 4.7801 secs 63905 0.0099 0.0111

RPROP with WB

1 0.2499 secs 1854 0.0096 0.0219

2 0.4530 secs 4073 0.0097 0.0148

3 0.3437 secs 2583 0.0099 0.0080

4 0.2030 secs 811 0.0098 0.0040

5 0.2186 secs 1128 0.0099 0.0039

RPROP without WB

1 0.1562 secs 600 0.0096 0.0214

2 0.1874 secs 953 0.0098 0.0131

3 0.1874 secs 724 0.0090 0.0109

4 0.2970 secs 1902 0.0098 0.0053

5 0.2343 secs 1379 0.0092 0.0031

GRPROP with SAG

1 0.1561 secs 311 0.0099 0.0227

2 0.1561 secs 572 0.0088 0.0154

3 0.2031 secs 1224 0.0098 0.0098

4 0.1874 secs 895 0.0091 0.0052

5 0.2186 secs 1153 0.0097 0.0026

GRPROP with SLR

1 0.6873 secs 8294 0.0083 0.0217

2 0.3905 secs 3691 0.0084 0.0152

3 0.4686 secs 4226 0.0098 0.0134

4 0.2186 secs 1163 0.0090 0.0084

5 0.3124 secs 2080 0.0096 0.0047

other hand, the RPROP algorithm for its parameter variations shows a better speed and stabil-

ity of convergence than GRPROP. The RPROP algorithm (both with and without WB) shows
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that it is easy to implement. In addition, the computational time of the training process is ob-

tained very small, while the number of steps of the training process is significantly reduced.

The RPROP algorithm on several data patterns was found to be very good with respect to con-

vergence and robustness. Meanwhile, the backpropagation algorithm occasionally outperforms

GRPROP with SAG for its parameter variations.
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