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Abstract. Bacterial meningitis has posed a serious threat to lives and livelihood of people, especially those in the

meningitis belt. This study presents a deterministic compartmental model of the disease based on Susceptible-

Vaccinated-Carrier-Infected-Treated-Recovered (SVCITR). This transmission process is made up of seven mutu-

ally exclusive epidemiological compartments for the transmission dynamics of the disease. The invariant region,

positivity of the solutions and stability of the equilibrium points were examined using quantitative analysis. The

basic reproduction number, R0 was computed using the next generation matrix approach and this was used as

a threshold to establish the local and global stabilities of the model. The simulation results from the numerical

simulation of the model demonstrate the effects of the model parameters on each compartment. The results show

that getting people vaccinated is crucial to the control of the disease. Furthermore, the sensitivity analysis of R0

was performed in order to determine the effect of each of the model parameters in controlling the disease. Hence,

reducing the values of the parameters with negative sensitivity index will help to curtail the spread of the disease.
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1. INTRODUCTION

Meningitis, a disease of the Central Nervous System is an acute inflammation of the three

protective membranes covering the brain and spinal cord called the meninges. It is an

epidemic-prone disease affecting a substantial proportion of the world’s population. The

causative agents of meningitis are viruses, bacteria, parasites and fungi but the global burden of

disease is seen with bacterial meningitis, WHO [19]. Both viral and bacterial meningitis may

have similar symptoms at the onset of infection, but bacteria meningitis usually presents more

severe symptoms as time goes on. This is largely due to the infection of the fluid surrounding

the meninges. Injuries, cancer, drugs and other infections can also lead to meningitis. It is

therefore pertinent to know the particular cause of meningitis to aid in effective treatment.

About 4 out of every 5 cases of bacteria meningitis are caused by Streptococcus pneumoniae,

Haemophilus influenzae type B and Neisseria meningitidis (Nm), Amidu et al. [1].

Bacterial meningitis is one of the most dangerous infections due to repeated occurence of

the infection and the sequelae of delibitating effects among survivors even after treatment.

Regional outbreaks can occur at any time, though the Meningitis belt stands at a higher

risk. The Meningits belt spans from the Atlantic Ocean to the Red Sea - a semi-arid area of

sub-Saharan Africa, Woods et al. [21]. The proximity and inflammation of the protective

membranes to the brain and spinal cord can make bacterial meningitis very fatal. It can lead

to permanent disability, coma, swelling of the brain and even death if not treated immediately.

Therefore, the condition is considered as a medical emergency, Martinez et al. [14]. Case

fatality rates which is often between 1 to 2 days after the onset of symptoms may be as high as

50-80% when not treated and about 8-15% when treated. Also, about 10-20% of survivors have

serious permanent health problems like epilepsy, hearing impairment or mental retardation. In

totality, about 10% of all bacterial meningitis results in death, Letsa et al. [12]. The average

incubation period for bacterial meningitis is four (4) days, but symptoms may develop over

several hours after exposure to the bacteria usually between 2 to 10 days, Asamoah et al. [3].
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Most people have a good recovery from bacterial meningitis; however many recover from

the acute phase of the disease only to experience some difficulties while trying to get back

to their everyday routine, Kaburi et al. [10]. Bacterial meningitis can result in severe health

complications such as headaches, decreased appetite, paralysis, irritability, memory problems,

stroke, hearing loss, brain damage, kidney failure, seizures and septicemia (body-wide infection

and shock). These complications are often permanent. The longer one has the infection without

treatment, the greater the risk of these complications. With prompt treatment, even patients

with severe meningitis can have good recovery, Nuoh et al. [16].

Bacterial meningitis is preventable due to the availability of effective vaccines against most of

the disease causing agents - S. pneumonia, H. influenza type b and N. meningitidis serogroups:

A, B, C, W135 and Y. These vaccines are used for prevention, that is routine immunization and

in prompt reactive vaccination during outbreaks, McCarthy, Sharyan and Sheikhi Moghaddam

[15]. There is also treatment with antibiotics such as benzyl penicillin, ampicillin, ceftriaxone

and chloramphenicol, Trestioreanu et al. [17].

Wiah and Adetunde [20] investigated the dynamics of cerebrospinal meningitis (CSM) in

Jirapa district in the Upper West region of Ghana. Their paper presented the dynamics of

cerebrospinal meningitis and suggested ways on how to control the disease. The existence of

the solution of the model was established and the stability of equilibria was examined. The

numerical simulation showed that early treatment, implementation of cerebrospinal meningitis

protocols and cooperation with medical personnel and traditional healers could help control the

disease.

Martcheva and Crispino-O’Connell [13] used an age-structured mathematical model to study

the transmission dynamics of meningococcal infection. The conditions that give rise to the

stability of the disease-free steady state and the existence of an endemic state were examined.

The contribution of the carrier class to the transmission of the disease was established from the
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numerical simulation.

The pattern of the transmission dynamics of meningococcal meningitis was investigated using

deterministic compartmental models. The results from the numerical simulation of the model

showed that seasonal vibration and temporary immunity were due to the irregular epidemics

which often occur in the meningitis belt, Irving, Blyuss, Colijn and Trotter [9]. Martinez et al.

[14] presented a novel mathematical model for the transmission of meningococcal meningitis

using cellular automata. Their results established that both the individual and global behaviours

of the disease could be determined. This result agreed favourably with the empirical predictions.

The dynamics of bacterial meningitis in a given population was presented using time-dependent

controls, nonlinear deterministic model. The results indicate that effective contact rate and

infectious carriers have a great effect in transmitting the disease. The model was extended as an

optimal control problem in order to determine the best strategies for the control of the disease.

The solution of the optimal control problem showed that the best strategies for controlling

bacterial meningitis is the combination of vaccination of susceptible population with other

interventions, Asamoah et al. [3].

Other researchers such as Karachaliou, Conlan, Preziosi and Trotter [11], Blyuss [4], Yusuf

[22], Dukić et al. [6], Agusto and Leite [2] have also presented works on meningitis. Most

of the mathematical models developed represent the different types of Bacterial Meningitis.

As an extension of the available models with a broader focus on Bacterial meningitis, a new

mathematical model based on the Susceptible-Vaccinated-Carrier-Infected-Treated-Recovered

(SVCITR) is developed with new model parameters to have a more realistic model which is

closer to what is obtainable in the real life situation.

2. MODEL FORMULATION

2.1. Model Description. The total population at time t, denoted by N(t), is divided into seven

(7) mutually exclusive epidemiological classes, namely, the Susceptible Class, S(t) Vaccinated

Class, V (t) Carrier Class, C(t) Infected Class, I(t) Treated Class, T (t) and two Recovered
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Classes, R1(t) and R2(t). The Susceptible Class is made up of the individuals who are not

yet infected and have also not been vaccinated against the disease. This is generated by the

recruitment of individuals at a rate α and by loss of immunity from previous vaccination. The

Susceptible class is reduced by natural death, vaccination or by infection through effective

contact with infected individuals at the rate

(1) λ (t) =
β [η1C (t)+ I (t)]

N (t)

The parameter β is the effective transmission probability per contact and the parameter η1 ≤ 1

is a modification parameter, Agusto and Leite [2].

The Vaccinated Class are the individuals who have taken the vaccine as a form of protection

from the disease. This population is increased by vaccination of susceptible individuals. Often,

individuals develop immunity within two (2) weeks after taking the Meningitis vaccines and

should protect one for three (3) to five (5) years. Since the vaccines confer varying degrees

of immunity to its recipients, the vaccinated individuals may become infected, but at a lower

rate than the unvaccinated. The vaccinated class is therefore decreased by been exposed to the

disease or by vaccine waning and by natural death.

The Carrier Class is made up of the individuals who have the infection but do not show any

signs/symptoms even though they are infectious. The Infected Class are the individuals with

the fully blown infection and showing signs/symptoms. This population is said to have survived

the average incubation period of four (4) days.

The Treated Class are the individuals undergoing treatment as a result of an infection. Since the

after-effects of meningitis aren’t always pleasant, the recovered class is divided into two. The

first Recovered class R1(t) are the individuals who have either undergone treatment and have

fully recovered from the infection or have recovered by their own natural immunity. The second

Recovered class R2(t) is made up of the individuals who have undergone treatment and have

recovered with complications. The recovered classes are decreased due to natural death.

We note that all the model parameters are assumed to be non-negative.
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TABLE 1. Description of the Model State Variables

Variables Description

S(t) Susceptible Population

V (t) Vaccinated Population

C(t) Carrier Population

I(t) Infected Population

T (t) Treated Population

R1(t) Fully Recovered Population

R2(t) Recovered with Complications

TABLE 2. Description of Model Parameters

Parameters Description

α Recruitment rate into Susceptible population

β Transmission probability

δ Disease-induced death

µ Natural death rate

σ Progression rate from Carrier to Infected population

γ Recovery rate

r Natural recovery rate

θ Vaccine uptake rate

τ Vaccine efficacy

ω Vaccine waning

κ Treatment rate

∧ Treatment efficacy

η1 Modification parameter of infectiousness of the carrier population

η2 Modification parameter of disease death rate of treated population

ε Complication rate after a period of time
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2.2. Model Assumptions.

(1) Every individual in the studied population who has not been infected is susceptible to

the disease.

(2) A vaccinated individual who loses immunity becomes susceptible with no vaccine pro-

tection.

(3) The vaccine is only administered to the susceptible population.

(4) There is a natural death rate from each compartment.

(5) Recovered individuals cannot be re-infected.

FIGURE 1. Schematic Flow Diagram of the Transmission of Bacterial Menin-

gitis
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2.3. Model Equations.

(2)



dS
dt = α +ωV − (λ +θ +µ)S

dV
dt = θS− (1− τ)λV − (ω +µ)V

dC
dt = λS+(1− τ)λV − (σ +κ + r+δ +µ)C

dI
dt = σC− (r+κ +δ +µ)I

dT
dt = κC+κI− (1−η2)δT − (1−∧)T − (γ + γr+µ)T

dR1
dt = rC+ rI + γrT − (ε +µ)R1

dR2
dt = γT +(1−∧)T + εR1−µR2

3. THE MODEL ANALYSES

3.1. The Invariant Region.

Definition 3.1. A region within which the solutions to the model are uniformly bounded is

defined as Ω ∈ℜ7
+.

The total population is given as

(3) N(t) = S(t)+V (t)+C(t)+ I(t)+T (t)+R1(t)+R2(t)

Therefore

(4)
dN(t)

dt
=

dS(t)
dt

+
dV (t)

dt
+

dC(t)
dt

+
dI(t)

dt
+

dT (t)
dt

+
dR1(t)

dt
+

dR2(t)
dt

Substituting (2) into (4) yields

(5)
dN(t)

dt
= α−µN−δC−δ I− (1−η2)δT

dN(t)
dt
≤ α−µN(t)
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Integrating both sides, we have

− 1
µ

∫
µ

α−µN
≤
∫

dt

which gives

− 1
µ

In(α−µN)≤ t + c

where c is the constant of integration.

In(α−µN)≥−(µt + c)

(α−µN)≥ e−(µt+c)

(6) (α−µN)≥ ke−µt

where k is ec.

Let N(0) = N0. This implies

(7) (α−µN0)≥ k

From Equations (6) and (7), we get

(α−µN)≥ (α−µN0)e−µt

µN ≤ α− (α−µN0)e−µt

N(t)≤ α

µ
− (α−µN0)

µ
e−µt

(8) ⇒ N(t)→ α

µ
as t→ ∞

This implies N(t) ∈
[
0, α

µ

]
.

Therefore, the feasible set of solution of the model equations enter and remain in the region:

(9) Ω = {(S,V,C, I,T,R1,R2) ∈ℜ
7
+ : N(t)≤ α

µ
}

We note that α

µ
is the upper bound of N(t). However, if N > α

µ
then N(t) will decrease to α

µ

and the solutions (S,V,C, I,T,R1,R2) will enter Ω or approach it asymptotically, as such, the

region will attract all solutions in ℜ7
+. Hence, the model is well posed mathematically and

epidemiologically since the region Ω is positively invariant and attracting.
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3.2. Positivity of the Solution.

Theorem 3.2. (The Positivity Theorem) Let Ω = {(S,V,C, I,T,R1,R2) ∈ ℜ7
+ : S0 > 0, V0 >

0, C0 > 0, I0 > 0, T0 > 0, R10 > 0, R20 > 0}, then the solution of (S,V,C, I,T,R1,R2) are

positive for t ≥ 0.

Proof.

Considering the first equation of the model

dS
dt

= α +ωV − (λ +θ +µ)S

dS
dt
≥−(λ +θ +µ)S∫ dS

S
≥−

∫
(λ +θ +µ)dt

lnS(t)≥− f (t)+ c

where f (t) =
∫
(λ +θ +µ)dt and c is the constant of integration.

S(t)≥ e(− f (t)+c)

S(t)≥ e− f (t) · ec

(10) S(t)≥ A1e− f (t)

where A1 = ec. From the theorem, at t = 0, S0 > 0 which implies A1 = ec ≥ 0 since S(0)≥ A1.

Consequently, S(t)≥ S0e− f (t) ≥ 0 ∀t ≥ 0.

Similarly, considering the second equation of the model

dV
dt

= θS− (1− τ)λV − (ω +µ)V

dV
dt
≥−[(1− τ)λ +ω +µ]V∫ dV

V
≥−

∫
[(1− τ)λ +ω +µ]dt

lnV (t)≥−g(t)+ c
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where g(t) =
∫
[(1− τ)λ +ω +µ]dt and c is the constant of integration.

(11) V (t)≥ A2e−g(t)

where A2 = ec. At t = 0, V0 > 0 which implies A2 = ec ≥ 0.

Consequently, V (t)≥V0e−g(t) ≥ 0 ∀t ≥ 0.

Applying the same technique to the remaining equations of the system, the third equation yields

(12) C(t)≥C0e−bt ≥ 0 ∀t ≥ 0

where b = (σ +κ + r+δ +µ).

The fourth equation yields

(13) I(t)≥ I0e−dt ≥ 0 ∀t ≥ 0

where d = (r+κ +δ +µ).

The fifth equation yields

(14) T (t)≥ T0e−gt ≥ 0 ∀t ≥ 0

where g = [(1−η2)δ +(1−∧)+ γ + γr+µ].

The sixth equation yields

(15) R1(t)≥ R10e−ht ≥ 0 ∀t ≥ 0

where h = (ε +µ).

Lastly, the seventh equation yields

(16) R2(t)≥ R20e−µt ≥ 0 ∀t ≥ 0

This completes the proof of the theorem.
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4. EXISTENCE OF EQUILIBRIA AND BASIC REPRODUCTION NUMBER

For the developed model, the disease free and endemic equilibrium points are obtained. A

disease free equilibrium is a state solution to the model in which the studied population remains

in the absence of the disease. An endemic equilibrium point of a disease is defined as a positive

steady state solution when the disease persists in the studied population.

4.1. The Disease Free Equilibrium Point. The DFE of the model is defined as

(S∗ (t) ,V ∗ (t) ,0,0,0,0,0) satisfying dS(t)
dt = dV (t)

dt = dC(t)
dt = dI(t)

dt = dT (t)
dt = dR1(t)

dt = dR2(t)
dt = 0.

Equating the system of equations in (2) to 0 and substituting C = I = T = R1 = R2 = 0, we

obtain the system

(17)


ωV − (θ +µ)S =−α

θS− (ω +µ)V = 0

Solving the system simultaneously, the DFE is obtained as:

(18)
(

αb1

µ (b1 +θ)
,

αθ

µ (b1 +θ)
,0,0,0,0,0

)
where, b1 = ω +µ .

4.2. Endemic Equilibrium Point. The EEP of the model is defined as

(S∗ (t) ,V ∗ (t) ,C∗ (t) , I∗ (t) ,T ∗ (t) ,R∗1 (t) ,R
∗
2 (t)) satisfying dS(t)

dt = dV (t)
dt = dC(t)

dt = dI(t)
dt =

dT (t)
dt = dR1(t)

dt = dR2(t)
dt = 0.
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This yields the system of equations

(19)



α +ωV − (λ +θ +µ)S = 0

θS− (1− τ)λV − (ω +µ)V = 0

λS+(1− τ)λV − (σ +κ + r+δ +µ)C = 0

σC− (κ + r+δ +µ) I = 0

κC+κI− (1−η2)δT − (1−∧)T − (γ + γr+µ)T = 0

rC+ rI + γrT − (ε +µ)R1 = 0

γT +(1−∧)T + εR1−µR2 = 0

which results in,

S∗ =
α [(1− τ)λ +b1]

(1− τ)λ 2 +G1λ +G2
, V ∗ =

α θ

(1− τ)λ 2 +G1λ +G2
,

C∗ =
α λ [(1− τ)(λ +θ)+b1]

(σ +b2) [(1− τ)λ 2 +G1λ +G2]
, I∗ =

αλσ [(1− τ)(λ +θ)+b1]

b2 (σ +b2) [(1− τ)λ 2 +G1λ +G2]
,

T ∗ =
κ (C∗+ I∗)

b3
, R∗1 =

r (C∗+ I∗+ γT ∗)
ε +µ

R∗2 =
(ε +µ)(r+1−Λ)T ∗+ rε (C∗+ I∗+ γT ∗)

µ (ε +µ)

where,

b2 = κ + r+δ +µ, b3 = µ + γ (r+1)+δ (1−η2)+1−Λ

G1 = (1− τ)(µ +θ)+b1, G2 = µ (b1 +θ)

From the force of infection in Equation (1),

λ
∗ =

β (η1C∗+ I∗)
N∗
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which can be written as

(20) λ
∗N∗−β (η1C∗+ I∗) = 0

Substituting all the state solutions into Equation (20) and simplifying leads to the equation

(21) K1(λ
∗)2 +K2λ

∗+K3 = 0

where,

K1 = (σ +b2)(1− τ) [b3 (µ + r+ k)− kδ (1− η2)]

K2 =µ (1− τ)b3b2
2 +[(b2−δ )((1− τ)θ +b1)− µ (1− τ)(βη1−σ)]b2b3+

[(b2−δ )((1− τ)θ +b1)−µβ (1− τ)]σb3−δ (σ +b2)(1−η2)((1− τ)θ +b1)κ

K3 =µb3
[
(θ +b1)b2

2 +(θ +b1)σb2 +β (θτ−θ −b1)(η1b2 +σ)
]

=µb3 [b2 (θ +b1)(b2 +σ)− β ((1− τ)θ +b1)(η1b2 +σ)]

=µb3b2 (θ +b1)(b2 +σ)

[
1− β ((1− τ)θ +b1)(η1b2 +σ)

b2 (θ +b1)(b2 +σ)

]
=µb2b3 (θ +b1)(σ +b2)(1−R0)

4.3. The Basic Reproduction Number. The basic reproduction number is a fundamental

threshold in mathematical study of epidemiology. It helps to forecast the transmission potential

of a disease. The basic reproduction number associated with (2) is given as: dC
dt

dI
dt

= fi− vi

where,

fi =

 β (η1C+I)S
N + (1−τ)β (η1C+I)V

N

0





7398 VERONICA, OLUSEGUN, NEWTON, SUNDAY

and

vi =

 (σ +b2)C

−σC+b2I


fi is the rate at which new infections appear in compartment i and vi represents the movement

of individuals into compartment i, with i ∈ [1,2].

The matrices F and V are obtained as follows:

(22) F =

 ∂ f1
∂C

∂ f1
∂ I

∂ f2
∂C

∂ f2
∂ I

=

 βη1(θ(1−τ)+b1)
b1+θ

β (θ(1−τ)+b1)
b1+θ

0 0


and

(23) V =

 ∂v1
∂C

∂v1
∂ I

∂v2
∂C

∂v2
∂ I

=

 σ +b2 0

−σ b2



(24) V −1 =

 1
σ+b2

0
σ

b2(σ+b2)
1
b2


Thus, the next generation matrix:

(25) G = FV −1 =

 (η1b2+σ)((1−τ)θ+b1)β
b2(b1+θ)(σ+b2)

β (θ(1−τ)+b1)
b2(b1+θ)

0 0


The eigenvalues of the matrix, G are 0

β (η1b2+σ)(θ(1−τ)+b1)
b2(b1+θ)(σ+b2)


Consequently, the Basic Reproduction Number, which is the spectral radius of G is given as

(26) R0 =
β (η1b2 +σ) [(1− τ)θ +b1]

b2 (b1 +θ)(σ +b2)

R0 provides the expected number of newly infected individuals that would arise from introduc-

tion of a single case of bacterial meningitis into a completely susceptible population.
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5. STABILITY ANALYSIS

5.1. Local Stability of the Disease-free Equilibrium.

Theorem 5.1. The DFE is Locally Asymptotically Stable (LAS) if R0 < 1 and unstable if R0 >

1.

Using Theorem 5.1, the result in Lemma 5.2 follows immediately based on the expressions of

R0.

Lemma 5.2. The DFE of the bacterial meningitis model in (2) is Locally Asymptotically Stable

(LAS) if R0 < 1 and unstable if R0 > 1.

Proof.

The Jacobian matrix, J evaluated at E0 is given as

(27)

J =



−(θ +µ) ω −β η1 b1
b1+θ

− β b1
b1+θ

0 0 0

θ −b1 −β η1 (1−τ)θ
b1+θ

−β (1−τ)θ
b1+θ

0 0 0

0 0 β η1 b1(1−τ)θ
b1+θ

− (σ +b2)
β b1(1−τ)θ

b1+θ
0 0 0

0 0 σ −b2 0 0 0

0 0 κ κ −b3 0 0

0 0 r r γr −(ε +µ) 0

0 0 0 0 γ +(1−∧) ε −µ


The eigenvalues of the Jacobian matrix, J are−µ (of multiplicity 2), −(b1+θ), −(ε +µ), −b3

and −β τ θ η1+(−β η1+σ+2b2)(b1+θ)−
√

(β τ θ η1−(β η1−σ)(b1+θ))2+4(θ (1−τ)+b1)(b1+θ)σ β

2b1+2θ
(of multi-

plicity 2). Clearly, all the eigenvalues of the Jacobian matrix are strictly negative provided

−
β τ θ η1 +(−β η1 +σ +2b2)(b1 +θ)−

√
(β τ θ η1− (β η1−σ)(b1 +θ))2 +4 (θ (1− τ)+b1)(b1 +θ)σ β

2b1 +2θ
< 0

Thus for stability, the negativity condition imposed yields

β τ θ η1+(−β η1 +σ +2b2)(b1 +θ)−
√
(β τ θ η1− (β η1−σ)(b1 +θ))2 +4 (θ (1− τ)+b1)(b1 +θ)σ β > 0
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[β τ θ η1 +(−β η1 +σ +2b2)(b1 +θ)]2 >

[√
(β τ θ η1− (β η1−σ)(b1 +θ))2 +4 (θ (1− τ)+b1)(b1 +θ)σ β

]2

[β τ θ η1 +(−β η1 +σ +2b2)(b1 +θ)]2 > (β τ θ η1− (β η1−σ)(b1 +θ))2 +4 (θ (1− τ)+b1)(b1 +θ)σ β

(β τ θ η1 +(−β η1 +σ +2b2)(b1 +θ))2−(β τ θ η1− (β η1−σ)(b1 +θ))2−4 (θ (1− τ)+b1)(b1 +θ)σ β > 0

(
(b1 +θ)b2

2 +((β (−1+ τ)η1 +σ)θ − (β η1−σ)b1)b2 +σ (θ (−1+ τ)−b1)β
)
(b1 +θ)> 0

β θ (b2η1 +σ)(θ τ−θ −b1)+β b1 (b2η1 +σ)(θ τ−θ −b1)+b2 (b1 +θ)2 (σ +b2)> 0

(θ (−1+ τ)−b1)θ (b2η1 +σ)β +b1 (θ (−1+ τ)−b1)(b2η1 +σ)β +b2 (b1 +θ)2 (σ +b2)> 0

β (b2η1 +σ)(θ τ−θ −b1)(b1 +θ)+b2 (b1 +θ)2 (σ +b2)> 0

b2 (b1 +θ)(σ +b2)−β (b2η1 +σ)(θ (1− τ)+b1)> 0

(b1 +θ)b2(σ +b2)

(
1− β (b2η1 +σ)(θ (1− τ)+b1)

b2 (b1 +θ)(σ +b2)

)
> 0

(b1 +θ)b2(σ +b2)(1−R0)> 0(28)

Therefore, for Equation (28) to be valid, R0 must be less than 1. Hence the DFE is LAS.

5.2. Global Stability of the Disease-free Equilibrium. The global asymptotic stability of

the model in (2) is investigated by following Castillo-Chavez, Feng and Huang [5]. The model

is denoted by:

(29)


dX
dt = F(X ,Y )

dY
dt = G(X ,Y )

where X = (S,V,R1,R2) denotes the uninfected population and Y = (C, I,T ) denotes the in-

fected population.

Theorem 5.3. The Disease-Free Equilibrium is said to be globally asymptotically stable in Ω

if R0 < 1 and the following two conditions hold:
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C1: For dX
dt = F(X ,0), E0 is globally asymptotically stable.

C2: G(X ,Y ) = J [G(X∗,0)]Y − Ĝ(X ,Y ), Ĝ(X ,Y )≥ 0, ∀ (X ,Y ) ∈Ω

where (X∗,0) = E0 =
(

αb1
µ(b1+θ) ,

αθ

µ(b1+θ) ,0,0,0,0,0
)

, J [G(X∗,0)] is the Jacobian of G(X ,Y )

obtained with respect to (C, I, T ) and evaluated at (X∗,0).

Proof.

C1: From the model, it follows that:

(30) F(X ,0) =


α +ωV − (θ +µ)S

θS−b1V

−(ε +µ)R1

εR1−µR2


From Equation (30), it is clear that

E0 = (S,V,C, I,T,R1,R2) =

(
αb1

µ (b1 +θ)
,

αθ

µ (b1 +θ)
,0,0,0,0,0

)
This can be verified using the method of integrating factors. From Equation (30), we have:

dV
dt

= θS−b1V(31)

which can be written in standard from as

(32)
dV
dt

+b1V = θS

The integrating factor is given as I.F.= e
∫

b1dt = eb1t .

Multiplying Equation (32) through by the integrating factor yields

eb1t
(

dV
dt

+b1V
)
=θSeb1t(33) ∫ d

dt

(
Veb1t

)
dt =θ

∫
Seb1tdt(34)

Let I =
∫

Seb1tdt. Integrating by parts, we have

u = S =⇒ du = S′dt, and dv = eb1t =⇒ v =
eb1t

b1
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So,

I =
Seb1t

b1
− 1

b1

∫
S′eb1tdt(35)

=⇒ Veb1t =θ

[
Seb1t

b1
− 1

b1

∫
S′eb1tdt

]
(36)

=
θS
b1

eb1t− θ

b1

∫
S′eb1tdt(37)

Therefore,

V =
θS
b1
− θ

b1eb1t

∫
S′eb1tdt(38)

From Equation (38), V → θS
b1

as t→ ∞.

Furthermore, from Equation (30), we have,

dS
dt

= α +ωV − (θ +µ)S(39)

Since V → θS
b1

, Equation (39) is rewritten as

dS
dt

=α +
ωθS
b1
− (θ +µ)S(40)

=α− µ (b1 +θ)

b1
S(41)

Therefore, Equation (41) can be put in standard form as

dS
dt

+
µ (b1 +θ)

b1
S = α(42)

The integrating factor is given as I.F.= e
∫ µ(b1+θ)

b1
dt
= e

µ(b1+θ)
b1

t .

Multiplying Equation (42) through by the integrating factor gives

e
µ(b1+θ)

b1
t
(

dS
dt

+
µ (b1 +θ)

b1
S
)
= αe

µ(b1+θ)
b1

t(43)

∫ d
dt

(
Se

µ(b1+θ)
b1

t
)

dt =
∫

αe
µ(b1+θ)

b1
tdt(44)

Se
µ(b1+θ)

b1
t
=

αb1

µ(b1 +θ)
e

µ(b1+θ)
b1

t
+ c(45)
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where c is the constant of integration. Therefore,

S =
αb1

µ(b1 +θ)
+Ce−

µ(b1+θ)
b1

t(46)

From Equation (46), S→ αb1
µ(b1+θ) as t→∞; and this implies the global convergence of Equation

(30) in Ω.

C2: G(X ,Y ) is given as

(47) G(X ,Y ) =


λS+(1− τ)λV − (σ +b2)C

σC−b2I

κC+κI−b3T


where λ is the force of infection defined in Equation (1).

The Jacobian matrix of G(X ,Y ), J [G(X∗,0)] is given as

(48)


β η1 [S∗+(1−τ)V ∗]

N∗ −σ −b2
β [S∗+(1−τ)V ∗]

N∗ 0

σ −b2 0

κ κ −b3


By the condition in C2 with Equations (47) and (48), Ĝ(X ,Y ) is given by

(49)


β (η1C+I)[(1−τ)V ∗+S∗]

N∗

(
1− V (1−τ)+S

N
N∗

(1−τ)V ∗+S∗

)
0

0


Since

S∗ =
αb1

µ(b1 +θ)
, V ∗ =

αθ

µ(b1 +θ)
and N∗ =

α

µ

we have that S ≤ S∗, and V ≤ V ∗. Thus, it follows that S ≤ N, and V ≤ N in Ω. Therefore,

if the total population is at equilibrium level, we have
(

1− V (1−τ)+S
N

N∗
(1−τ)V ∗+S∗

)
> 0; thus,

Ĝ(X ,Y ) ≥ 0. Hence it follows from Theorem (5.3) that the DFE, E0 = (X∗,0) is globally

asymptotically stable.
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6. MODEL PARAMETER ESTIMATION

6.1. Initial Conditions. Ghana’s demographic data for the year 2017 is adopted for our sim-

ulation. Since the disease is endemic in the northern part of Ghana, the total population

of the northern part as at 2017 was 4953293, GSS [8], as such the initial total population,

N(0) = 4953293. It is known that 10−20% of every population is carrier of Meningitis, WHO

[18], so the average which is 15% is adopted as the case in Ghana. This gives a carrier popula-

tion of about 742993.95. 10% of the population is assumed to be vaccinated against the disease.

In addition, it is assumed that the population in each of the infected and treated class is about

one-third of those in carrier class, which is 247664.65. The two recovered classes is assumed to

be zero. Thus, the model variables’ initial conditions are: S(0) = 3219640, V (0) = 495329.3,

C(0) = 742993.95, I(0) = T (0) = 247664.65, R1(0) = 0 and R2(0) = 0.

6.2. Model Parameter Values.

(1) Natural death rate (µ): The average life span in Ghana is 64.17 years, therefore µ =

1
64.17×365 = 4.269×10−5 per day.

(2) Birth or recruitment rate (α): In the absence of the disease, the limiting total human

population is assumed to be α

µ
= 4953293, so α = 211 per day.

(3) Disease-induced death rate (δ ): The mortality rate due to bacterial meningitis disease

in Ghana is 36−50%. Taking the average to be 43% gives δ = 0.43.

(4) Progression rate (σ ): The average incubation period is 4 days. Thus, σ = 1
4 = 0.25

(5) Vaccine waning rate (ω): It takes an average of 4 years for the available vaccines to

wane. Therefore, ω = 1
4×365 = 6.8×10−4 per day

(6) Recovery rate (γ): The period of infection of the disease is 1-2 weeks with hospi-

talization and right treatment, so taking the average, we have 8 days. Therefore,

γI1 =
1
8 = 0.125.

(7) Complication rate (ε): Even with appropriate treatment, 10− 20% of survivors have

serious complications or long-term sequelae. Therefore, ε = 15
100 = 0.15.
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TABLE 3. Model Parameter Values

Parameter Value Source

α 211 Estimated

µ 0.000043 Estimated

ω 0.00068 Estimated

β 0.88 Asamoah et al. [3]

γ 0.125 Estimated

r 0.13 Asamoah et al. [3]

η1 0.75 Assumed

η2 0.75 Assumed

δ 0.43 Estimated

ε 0.15 Estimated

σ 0.25 Estimated

τ 0.85 Elmojtaba and Adam [7]

κ 0.6 [0,1] Assumed

θ 0.6 [0,1] Assumed

∧ 0.6 [0.1-0.9] Elmojtaba and Adam [7]

We note that the set of parameter values in Table (3) yields a basic reproduction number less

than unity (R0 = 0.091) which implies that with effective vaccination and treatment, this disease

which is considered to be endemic could be eradicated.

7. SENSITIVITY ANALYSIS

In modeling infectious diseases, it is pertinent to ascertain the major model parameters influ-

encing the disease’s transmission. Sensitivity analysis is therefore performed to determine the

model’s robustness predictions to parameter values.
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Definition 7.1. The normalized forward sensitivity index of R0, that depends differentiably on

a parameter ψ , is defined by

(50) SR0
ψ =

∂R0

∂ψ
× ψ

R0

In particular, the sensitivity index is a local estimate to establishing an efficient way of reducing

R0.

Therefore, all the partially differentiable model parameters with respect to R0, their values and

sensitivity indices are given in Table 4.

TABLE 4. Sensitivity Index of Each Model Parameter on R0

Parameter Parameter Value Sensitivity Index

ω 0.00068 +6.36×10−3

β 0.88 +1

η1 0.75 +0.7768

σ 0.25 +0.0459

δ 0.43 −0.3877

µ 0.000043 −3.64×10−4

κ 0.6 −0.5410

τ 0.85 −5.6215

r 0.13 −0.1172

θ 0.6 −6.77×10−3

A positive sensitivity index suggests that the parameter is directly proportional to the value of

R0. Thus, an increase in any of the values of ω , β , η1 and σ by some percentage will increase

the value of R0, thereby increasing the spread of the disease, and vice versa. However, the

parameters with a negative sensitivity index means that these parameters are inversely propor-

tional to the value of R0. Therefore, when the value of any of these parameters, δ , µ , κ , τ , r,

θ is increased while holding all other parameters constant, it will reduce the value of R0 and,

hence, contribute to the eradication of the disease and vice versa. For instance, increasing the
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modification parameter of the infectiousness of the carrier, η1 by 10% will lead to a 7.768% in-

crease on R0 while increasing the treatment rate, κ by 10% will result in a reduction of 5.410%

on R0.

8. NUMERICAL RESULTS AND DISCUSSIONS

The numerical solutions of the model (2) is obtained by using MATLAB ODE45 Algorithm

for solving non-stiff system of ordinary differential equations with the initial conditions and

parameter values estimated.

FIGURE 2. Evolution of each subpopulation with Time
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FIGURE 3. Disease Prevalence

Figure (2) gives the numerical simulation of the model compartments in a time span of 30 days.

The susceptible population decreases rapidly within the first few days due to getting people vac-

cinated and the force of infection. However, after these few days, stationarity is achieved due to

progression to the other compartments. The vaccinated population on the other hand increases

rapidly within the first few days, and this can be attributed to the awareness and sensitivity of

the government to get people vaccinated as soon as an infection strikes. The carrier population

reduces drastically in size due to the intervention of early treatment given to people who have

come into contact with an infected person and the progression of the carriers to the infected

class since the period of incubation is very short. The infected population also decreases with

time and this can be ascribed to the immediate treatment given to them since the disease is

termed as a ’medical emergency’. There is a short increase in the treated class as a result of

progression of the carrier and infected but later decreases with time. This decrease is due to

the treated population moving to the recovered populations. The two recovered populations

increase and remain stable after a period of time.
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(A) Effects of Varying θ on V (t) (B) Effects of Varying θ on C(t)

(C) Effects of Varying θ on I(t)

FIGURE 4. Effects of Varying θ on V (t), C(t) and I(t) Compartments

From figure (4), as the vaccine uptake rate increases, the vaccinated population in figure (4(a))

increases and remains stable. There is also a sharp decrease in both the carrier population in

figure (4(b)) and infected population in figure (4(c)) even with a small vaccine uptake rate. This

shows that infection will be controlled if people continue to receive vaccination.
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(A) Effects of Varying κ on C(t) (B) Effects of Varying κ on I(t)

(C) Effects of Varying κ on R1(t) (D) Effects of Varying κ on R2(t)

FIGURE 5. Effects of Varying κ on C(t), I(t), R1(t) and R2(t) Compartments

Figure (5) shows that as the treatment rate increases, there is a rapid decrease in both the carrier

population in figure (5(a)) and infected population in figure (5(b)). Also, the higher the treat-

ment rate, the more people get fully recovered in figure (5(c)) and the less people recover with

complications as seen in figure (5(d)).
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9. CONCLUSION

The transmission dynamics of bacterial meningitis with a focus on vaccination and effective

treatment in curtailing the spread of the disease is presented. The basic reproduction number

of the model is computed using the Next Generation matrix. The equilibrium solutions of the

model are obtained and used to establish criteria for the model’s stability. Using the basic

reproduction number, R0, as a threshold given R0 < 1, the disease-free equilibrium point is

established to be both locally and globally asymptotically stable. This study relates to the

fact that Bacterial meningitis is a vaccine preventable disease. This is because as the vaccine

uptake rate increases, the vaccinated population increases and remains stable. The numerical

simulations established that the disease can be eradicated with effective and efficient vaccination

and treatment since that led the basic reproduction number below unity. The contributions of

the model parameters on R0 using the normalized sensitivity index was examined. The results

indicate that the transmission probability, β is an effective contributor to R0, as such very

essential in the spread and control of the disease. Therefore, control mechanisms that can

reduce the transmission probability significantly will most definitely curtail the endemicity of

the disease.
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