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Abstract: The COVID-19 pandemic continues to spread and already shows a recurrence in many countries, despite 

several social distancing and vaccination measures implemented all around the world. Epidemiological data are avail-

able, and we use the Auto-Regressive Integrated Moving Average (ARIMA) model to analyze incidence pattern and 

to generate short-term forecasts of cumulative reported cases in Morocco, France, Italy, Spain and USA, using daily 

reported cumulative cases data from Worldometers, and we report 5-day and 10-day ahead forecasts of cumulative 

cases and check a posteriori the precision of this forecasting, by confronting it to the real data observed. In the discus-

sion, we propose a link between the ARIMA, elevation and average temperature in several countries’ modelling ap-

proaches, for allowing the comparison between their explicative abilities. 
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1. INTRODUCTION 

The novel coronavirus outbreak (COVID-19), as named by the World Health Organization (WHO) 

on 11th February 2020, began in Hubei Province, China, in December 2019 and continues to cause 

infections in multiple countries. The COVID-19 represents the newest zoonotic Coronavirus dis-

ease that crossed species to affect humans and spread in an unprecedented manner.  

    The outbreak was declared a pandemic and a Public Health Emergency on 30 January 2020, 

by WHO. To control this pandemic, the governments have enacted a range of social distancing 

strategies, such as city-wide lockdowns and isolation of suspected cases plus a vaccination policy. 

The numbers of cumulated cases and deaths continue to accumulate every day and despite a slow-

ing due to strict lockdowns combined with isolation, quarantine measures and vaccination, many 

countries entered in second, third until fourth waves of the outbreak Seligmann et al. [38]. While 

the transmission potential of this novel coronavirus can reach high values, the epidemiological 

features as dependencies on geo-climatic or demographic variables, and the mechanisms of trans-

mission and host susceptibility of the viral agent SARS-CoV-2 of COVID-19 outbreak are still 

unclear (Demongeot et al., [10]; Demongeot and Seligmann [11]; Seligmann et al., [38]). In this 

paper, we use the Auto-Regressive Integrated Moving Average (ARIMA) model to generate 5-day 

and 10-day ahead forecasts of the cumulative reported cases in the countries as Morocco, France, 

Italy, Spain, UK and USA.  

    Currently, several mathematical methods are applied in disease incidence prediction such as 

linear regression, artificial neural networks and grey box models. The ARIMA model is commonly 

used in infectious disease time series prediction, especially for series that have a cyclic or repeated 

pattern. The model was conceived for economics applications, but is well convenient in the medi-

cal field nowadays. The principle of the model contains filtering out the high-frequency noise in 

the data, detecting local trends based on linear dependence and forecasting by extrapolating trends 

as it has been already done for some countries in the COVID-19 case, in order to explain for ex-

ample correlations observed with geo-climatic parameters as mean temperature and elevation (Deb 

and Majumdar [1]; Demongeot et al., [10-13]; Perez et al., [14]; Faye et al., [15]; Ilie et al., [24]; 

Behambar et al., [30]; Seligmann et al., [38]). Despite its high predictive performance, the model 

has some limitations which decrease its scope of application. The model assumes a linear relation-

ship between the dependent and independent variables while the actual data often present non-

linear relationships. Besides, the model assumes that the mean and variance of time series are 

independent of time, which means stationary of order 2. Thus, more than one approach should be 

tested to choose the better one as in former studies for some epidemics (Kane et al., [25]; Luo et 

al., [28]; Rubaihayo et al., [35]; Soebiyanto et al., [40]; Wei et al., [42]; Abioye et al., [45]). 
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    We present in Section 2 Methods the sources of data used in the present paper and the model 

proposed. Then, in Section 3 Results, we provide the main observations coming from the ARIMA 

approach and in Section 4 Discussion, we discuss the role of age in the classical Ordinary Differ-

ential Equation (ODE) modelling of infectious diseases (Demongeot et al., [4-9]; Gaudart et al., 

[16-19]; Liu et al., [27], Scarpino and Petri [36]), for making explicit a common theoretical basis. 

Eventually, in Section 5 Conclusions, we give some perspectives to this work, in terms of long-

term monitoring of the COVID-19 pandemic, in particular with regard to its temporo-spatial dif-

fusion ( Griette et al., [20]; Guttmann et al., [21-23]). 

 

2. MATERIALS AND METHODS 

2.1 Empirical analysis 

2.1.1 Data sources 

The daily incidence data of COVID-19 from January to May 2020 were collected from the Euro-

pean Centre for Disease Prevention and Control [43] and Worldometers [44] sites. 

 

                 

FIGURE 1: Top left: COVID-19 world global cumulated cases (confirmed, recovered, 

active and deaths) with linear scale. Top right: same data as on the left with logarithmic 

scale. Bottom: before July 2020, in France, rates/100,000 for A: in-hospital incidence, B: 

intensive care incidence, C: in-hospital mortality. 

A C B 
latitude 

longitude 



4 

DEMONGEOT, OSHINUBI, RACHDI, HOBBAD, ALAHIANE, IGGUI, GAUDART, OUASSOU 

 

Data from January 1 to May 10 2020 were used to build the ARIMA model, data from 

May 11 to May 16 2020 to evaluate the forecasting precision by the model, and before 

July for showing the geoclimatic dependencies of the SARS-CoV-2 incidence (Figure 1). 

Simulations are using Gnu-R ARIMA software. 

2.1.2 Study and visual representation of data 

When predicting the evolution of a time series process, it is useful to find a model generating past 

values in order to extrapolate the simulation results of this model to the future. For performing that 

task, the model must sufficiently describe the past, and be robust in its predictions. The time series 

we aim to predict is the number of cumulated confirmed cases Yi,k of the COVID-19 outbreak at 

day i in country or region k. The time unit is the day. A first approach to time series data confirms 

that the logarithmic transformation allows us to describe the phenomenon in a functionally simple 

manner and with the added advantage of expressing the evolution of the number of cases in loga-

rithmic form. 

    The series log(Yi,k) appears on Figure 1 Top right at first glance to suggest a non-linear evo-

lution close to the quadratic one. It should be pointed out that this quadratic evolution would only 

describe the phenomenon at the start of epidemy, and would no longer be the generating model, 

given that Yi,k is following a saturation dynamics. The adequate model is a lifecycle model where 

the maximum is generated in a finite time and not in an infinite time like in the classic logistic 

model. 

    The ARMA models contain auto-regressive moving average model (ARMA), auto-regressive 

integrated moving average model (ARIMA) and seasonal autoregressive integrated moving aver-

age model (SARIMA). The most sophisticated model is the SARIMA S(p,d,q; P,D,Q,s) model, 

where p means the order of auto-regression, d the degree of trend difference, q the order of moving 

average, P the seasonal auto-regression lag, D the degree of seasonal difference, Q the seasonal 

moving average, and s the length of the cyclical pattern Wei et al., [42]. In this paper, we use only 

the auto-regressive integrated moving average ARIMA(p,d,q) method with time-dependent pa-

rameters. Time series stationarity, parameter estimation, model checking and prediction will be 

done to establish this ARIMA model as in (Demongeot et al., [10]; Luo et al., [28]; Rubaihayo et 

al., [35]), by using like in [10] the statistical software facility given in: www.statsmodels.org/sta-

ble/generated/statsmodels.tsa.arima_model.ARIMA.html. 

    The goal of the study is to identify if the coefficient estimates for the time trend change after 

a certain point, and if so, to examine it further to find out the nature of change and potential causes, 

with the following model:  

                     log(i,k) = f(i,,k) + j=1,3 j Lj,i,k + Ui,k                               (1) 

http://www.statsmodels.org/stable/generated/statsmodels.tsa.arima_model.ARIMA.html
http://www.statsmodels.org/stable/generated/statsmodels.tsa.arima_model.ARIMA.html
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where i,k = (Yi,k-Yi-1,k)/Pi,k denotes the incidence rate of Covid-19 of region k at time i in {1,…,T} 

(every time point i denotes a single day), Pi,k denotes the overall population of region k at time i, 

f(i,,k) is the trend function and k is the day when the first confirmed case is observed in the region 

k, i.e., we have: Yi,k = 0 for i < k and Yi,k ≥ 0 for i ≥ k. Lj,i,k is the dummy variable signifying the 

lockdown, j captures the effect of lockdown, for j = 1,2,3 and Ui,k is the error process. In the real 

data, it is observed that the number of cumulated cases grows with time and then stabilizes after a 

certain time. Since we consider the following structure for log(i,k) in the model (1), by assuming 

an ARIMA(p,d,q) structure for the error process, while f is supposed to be a polynomial quadratic 

trend in time (i-). In particular, the coefficients for the linear and quadratic terms in f are consid-

ered to be different for i-k<k and i-k≥k. 

    The parameter k is estimated from the data and it tells us when the trend of the growth changes 

its pattern in region k. Combining everything, we will use the following equation for the model:  

           log(i,k) = ß + ß1,i,k(i-k) + ß2,i,k(i-k)2 + j=1,3 j Lj,i,k + m=1,p amlog(i-m,k) + m=1,q mUi-m,k + Ui,k    (2) 

Here, p and q denote respectively the auto-regressive and moving-average orders of the ARIMA 

error process and Ui,k = i,k denotes a standard normal white noise process, and we have: 

- for n=1,2, ßn,i,k = ßn,1,k, and for i<k, ßn,i,k = ßn,2,k for i≥k                                  (3) 

- for j=1,2,3, Lj,i,k=0 for i<j,k, and Lj,i,k=1, for i≥j,k,                                   (4) 

where   is a binary indicator of pre (j,k=0) and post (j,k=1) infection waves j=1,2,3. We estimate k, 

j,k and j,k (1<j<3), p and q from data using Akaike information criterion (AIC). 

The best ARIMA model for each country was studied in the paper as parameters p=6, d=1 and q=0 

as in Demongeot et al., [10].   

 

3. RESULTS 

3.1 Descriptive statistics 

3.1.1 The basic reproduction number R0  

There are several methods for estimating the basic reproduction number R0, equal to the mean 

number of new infections caused by an infected person at day j among the susceptible population. 

The time-dependent method Obadia et al., [31] has been used for estimating R0 at time t, denoted 

R(t), which allows to the detection of the end of the first wave, e.g., the 18th of May 2020 in 

Morocco (Figure 2). 
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FIGURE 2: Time-dependent estimation method of the parameter R0 at time t, denoted 

R(t), along the first wave of the Covid-19 outbreak in Morocco. The zone in grey corre-

sponds to the 95%-confidence set of the R(t)’s. 

 

 

3.1.2 The data for 6 countries 

The dynamics of the COVID-19 outbreak can be daily followed in all world countries from Euro-

pean Centre for Disease Prevention and Control [43] and Worldometers [44] web sites. On Figure 

3, we can see comparable evolution of the first wave in 4 European countries and in Morocco, 

showing comparable trends along February/March 2020, period of the first wave for all these coun-

tries. 
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FIGURE 3: Dynamic evolution of the COVID-19 outbreak in 5 European countries, 

France, Spain, Germany, Italy, United Kingdom compared to a North-African country, 

Morocco. Left graphs correspond for each country to cumulated cases numbers and right 

graphs to their logarithm. 

February  February  February  February  

February  February  February  February  

April 

February  February  February  February  

April 
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3.2 ARIMA model for the first wave 

By using the data concerning the new daily cases of the COVID-19 outbreak coming from the 

Worldometers web site [44], it is possible to study their correlation with geoclimatic variables like 

the mean temperature or the mean elevation, and demographic variables like the median age in 

many countries (Demongeot et al., [10]; Seligmann et al., [38]). For that purpose, the ARIMA 

technique allows for i) extracting the trend using the moving average method with a long window 

(Figure 4 top), then study the stationarity of the series obtained by differentiation with this trend 

(Figure 4 bottom) and eventually iii) show if the residue can be considered as a Gaussian noise 

with zero mean or if there is still a seasonal component to be extracted by a moving average of 

window length adapted to the value of its period. 

 

 

FIGURE 4: Top: New daily cases of the COVID-19 (in blue) with indication of the trend 

(in red) calculated by using the moving average method. Bottom: same series obtained by 

subtracting the trend (in blue) and indication of the moving average (in red). 
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The first wave of the COVID-19 outbreak occurred at the same time on the beginning of February 

2020 in France and on the beginning of April 2020 for many other countries like Qatar and India 

(Figure 6). The ARIMA software gives the auto-correlation function of the original new cases 

(Figure 6), and the estimation of its initial slope used for studying correlations (Table 1 and Figure 

7), showing for elevation less than 1000 m a decrease of the auto-decorrelation length for new 

cases (estimated by the initial slope of the auto-correlation function), corresponding to a diminu-

tion of the contagiousness period (Demongeot et al., [11]; Seligmann et al., [39]). 

 

 

 

FIGURE 5: Top: New daily cases of the COVID-19 first wave in Qatar (left) and India 

(right). Bottom: same in France. 

 

 

New daily cases of first wave in France 

Days 
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FIGURE 6: Auto-correlation function of the COVID-19 first wave in France. 

 

Table 1: Initial slope of the autocorrelation function of the ARIMA model, and mean tempera-

ture in May 2020 (in °F), for 13 countries in first wave. 

 

Country 
Auto-correlation 

initial slope 
Mean Temperature (°F) 

Singapore - 0.030 83.95 

Saudi Arabia - 0.060 81.89 

Qatar - 0.070 80.64 

United Arab Emirates - 0.080 80.12 

Peru - 0.010 78.68 

India - 0.050 77.75 

Mexico - 0.100 69.07 

Pakistan - 0.060 66.25 

Columbia - 0.040 59.27 

Portugal - 0.140 57.40 

South Africa - 0.110 56.92 

France - 0.110 52.11 

Croatia - 0.069 46.94 

Ukraine - 0.130 44.25 

 

 

Auto-correlation function of first wave  

Lag (in Days) 
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FIGURE 7: Top: Linear regression of the opposite of the initial slope of the first wave 

correlation function vs mean temperature, with correlation coefficient equal to R = - 0.7. 

Bottom: polynomial regression with mean elevation. 

 

The opposite of the initial slope of the autocorrelation function A(j) (which measures the 

correlation between observations in a time series separated by j days) is greater the shorter the 

period of contagiousness, and therefore the lower the regressivity of the ARIMA model, this may 

be due to a decrease in the virulence of the virus, by alteration during its passage from the 

Croatia 

Columbia 

Saudi Arabia 

Opposite of the initial auto-correlation slope 

Mean Temperature (in °F) 

France 

Mean elevation (in m) 

Opposite of the initial auto-correlation slope 
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transmitter (the patient in a period of contagiousness) to the recipient (the susceptible individual), 

in an atmosphere at high mean temperature and altitude, which destroys by heat and radiation the 

essential components of the virus (capsid and RNA). Regarding the altitude, the cubic adjustment 

shows a paradoxical effect at low altitude due to countries with high mean temperature and low 

altitude. 

3.3. Forecasts for Morocco and France 

It is possible to use the ARIMA model to do one-week forecasts of new COVID-19 cases. We 

have done it at the end of the first wave in Morocco and France (Figure 8), showing roughly the 

start of the decrease, but over-estimating the intensity of this trend. 

 

FIGURE 8: Top: one week forecast of Log(incidence) in Morocco at the end of first wave. 

Pink regions correspond to the 90%- (dark pink) and 95%- (clear pink) confidence set for 

the predicted new cases. Bottom: same results for France. 
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In both cases, the forecast for Morocco and France shows an overestimation of the decrease at 

the end of the first wave possibly due to the influence of the periodic drop in counts of new daily 

cases at the end of the week, visible in many countries Demongeot et al., [12].   

3.4 Second wave in Armenia 

We can do the same study for the second wave of the COVID-19 outbreak as for the first one. On 

Figure 9, the example of Armenia shows a linear moving average (in red) canceling the periodic 

effect of partial settlements of weekends already observed for Morocco, to be subtracted from the 

original new cases (in blue) to obtain a stationary residue (in black). On Figure 10, the auto-corre-

lation function of new cases is used for estimating the length of the contagiousness period, here 

about 8 days (at intersection with the value of 0.25, limit of the significance with p-value = 0.05 

for a time series of 45 days).  

 

 

 

FIGURE 9: New cases of the COVID-19 second wave in Armenia. 
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Moving average 
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FIGURE 10: Auto-correlation function of the COVID-19 second wave in Armenia. 

The study for different countries of the value of its initial slope (Table 2) shows an increase until 

70°F, then a decrease with mean temperature more than 70°F, which corresponds to an adaptation 

of the viral pathogenicity caused by numerous mutations observed at high altitude due for example 

to the mutagenic power of UVs (Figure 11). Many mutations with high contagiousness have in 

fact been observed in countries with a high mean temperature (Brazil, Colombia, South Africa). 

Table 2: Initial slope of the autocorrelation function of the ARIMA model, and mean temperature 

(in °F), for 21 countries in second wave. 

 

Country Autocorrelation curve slope (averaged on 4 first days) Mean Temperature (°F) 

Armenia - 0.090      44.850 

Lithuania   - 0.230 46.860 

Czech Rep.   - 0.197 51.000 

South Korea  - 0.090 54.000 

Chile  - 0.090 56.428 

Portugal  - 0.190 56.570 

Argentina  - 0.240 57.210 

Algeria - 0.100 57.710 

Kenya - 0.310 63.800 

Azerbaijan - 0.130 65.860 

Kazakhstan - 0.210 66.000 

Macedonia - 0.230 66.280 

Auto-correlation function second wave Armenia 

Lag (in Days) 
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Malaysia - 0.260 68.570 

Iraq - 0.150 70.570 

Uzbekistan - 0.170 74.500 

Malta - 0.330 74.920 

Lebanon - 0.180 75.420 

Kyrgyzstan - 0.200 76.290 

Iran - 0.140 82.850 

Sri Lanka - 0.160 84.860 

Oman - 0.130 92.210 

   

 

FIGURE 11: Parabolic regression of the opposite of the initial slope vs temperature. The 

blue zone corresponds to the 95%-confidence set in the neighborhood of the regression 

parabola. 

 

4. DISCUSSION 

4.1 Modelling the influence of age 

The role of the age on virulence is clearly proved with inverted effects observed in the second 

wave (Demongeot et al., [10], Liu et al., [26]; Scapino and Petri [36]; Statista [37]) and this influ-

ence can be modelled. If we consider only two age classes (young and old), the SIR equations 

Demongeot et al., [4-6] will become: 

    dS1/dt = -ß11S1I1 -ß12S1I2+k1R1-kS1+fS1-µS1 

                            dI1/dt = ß11S1I1 + ß12S1I2 -(1-µ1)I1-µ1I1 

                            dR1/dt=(1-µ1)I1-k1R1                                       (5)                                     

 dS2/dt = -ß21S2I1 -ß22S2I2+k2R2+kS1-µS2 

dI2/dt = ß21S2I1 + ß22S2I2 -(1-µ2)I2 -µ2I2 

Opposite of the initial auto-correlation slope 

Temperature (in °F) 
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                             dR2/dt = (1-µ2)I2-k2R2.                    

where S1 represents the age class of young and adults strictly less than 60 years, whose size is 48 

million in France [37] and S2 represents the age class of more than 60 years, whose size is about 

three times less, that is 17.3 million [37]. The SIR equations link the sizes of susceptible (S), in-

fected (I) and recovered (R) populations. If we will assume that the entry (by birth f) or exit (by 

natural death µ) rates are offset over the duration where the epidemic wave studied (f=µ), then the 

SIR equations satisfy the conservation equation:  

d(S1 + I1 + S2 + I2 + R1 + R2)/dt = fS2 -µS2 -µ1I1 -µ2I2 = 0,  

only if the mortality due to the infection is neglectable: µ1 = µ2 = 0. If not, we can have a diminution 

of the initial total population size at the asymptotic stationary state, depending on the rate of trans-

missions (ßik), loss of immunity rates (ki) and aging parameter (k). An example is shown on Figure 

13, where the initial sizes of the susceptible classes respect the ratio between young and adults (S1) 

and elderly (S2), the values of the SIR model parameters being chosen by assuming the absence of 

mitigation measures: we suppose that every day a person of S1 establishes 24 contacts (c1,1 = 18 

contacts with persons from S1 and c1,2 = 6 contacts with persons from S2) and a person of S2 has 

15 contacts (c2,1 = 12 contacts with persons from S2 and c2,2 = 3 contacts with persons from S1). 

We choose f=3, µ=0.1, ß1i = 0.03c1,i and ß2i = 0.02c1,i for i=1,2, and unrealistic no-immunization 

(k1 = 0.8, k2 = 0.5) and death rates (µ1 = 0.6, µ2 = 0.9) rates, for showing the consequences of an 

important fatality epidemic without mitigation, vaccination and/or therapy (Figure 12).  

 

FIGURE 12: SIR model with 2 age classes. 
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4.2 Median age and incidence of COVID-19 

The dependence of the incidence of COVID-19 on median age in the observed countries can 

change between two consecutive waves as shown in Figures 13 and 14, probably due to an adap-

tation of the virus to the demographic profile of the population in which it propagates, with a 

positive correlation of the incidence vs the median age (R=0.41) during the first wave (Figure 13) 

and a negative correlation (R = - 0.41) during the second wave (Figure 14). One possible explana-

tion lies in i) the exhaustion of the targets most sensitive to viruses (elderly people with chronic 

comorbidities) and ii) the application of mitigation measures (prevention, protection, eviction) be-

tween the two waves, which mainly concerned classes at risk, including the elderly. 

 

 

 

FIGURE 13: Positive correlation (R=0.41) between the slope of the exponential regres-

sion of the COVID-19 prevalence and the median age of the countries observed during 

the first wave. 
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FIGURE 14: Negative correlation (R=-0.41) between the slope of the exponential regres-

sion of the COVID-19 prevalence and the median age of the countries observed during 

the second wave. 

 

5. CONCLUSION 

The third wave of the COVID-19 outbreak started already in many countries and forecasting its 

start has not been possible (like for the start of the second wave) from the ARIMA approach, but 

the data about new cases are already showing similarities with the first wave, in particular for those 

concerning the correlation with temperature and elevation in the countries in which it occurred 

Seligmann et al., [38-39].  

   The same work has to be made for the third and fourth waves as for the two first ones, notably 

in the directions discussed in Section 4, in what concerns the influence of four factors on the out-

break dynamics: i) the age, because an adaptation has been observed during the second wave which 

seems to concern younger patients leading to discuss the value of R0 in a heterogeneous population, 

ii) the duration of the contagiousness, which seems to be longer than in previous waves, iii) the 

entropy of the distribution of the daily reproduction rates (as already pointed out in Demongeot et 

al., [12]; Oshinubi et al., [32-33]; Rhodes and Demetrius [34]) and which may correspond to a 

change in the immune defense sequence, with suppression of the apparent improvement due to 

innate immunity (causing a U-shaped profile of the distribution, hence a decrease of its entropy) 

and iv) the influence of geoclimatic but also of socio-economic factors. Eventually, the frequent 

over-deviation of the new daily cases observed in third and fourth waves in many countries (pos-
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sibly due to the entanglement of several successive or simultaneous health measures like distanc-

ing, lockdown and vaccination) would lead to replace in the future ARIMA models by generalized 

additive models (GAM) with a negative binomial regression. Indeed, descriptive ARIMA models 

and are known not to replace explanatory models based on plausible contagion mechanisms, such 

as ODE models and finding the best model to represent the COVID-19 data remains an open chal-

lenge despite notable advances in this direction (Demongeot et al., [13]; Griette et al., [20]; Wei et 

al., [42]). The spatial diffusion of SARS Cov-2 and its variants is also an important subject, not 

addressed here. Only Figure 1 Bottom shows a spatial difference between the French regions. To 

address this problem, we can, on a descriptive level, make use of the statistical techniques of spatial 

interpolation by kriging already used for malaria in (Gaudart et al., [16-17]) and of detection of 

spatial heterogeneities in public health data Guttmann et al., [21-23]. On the explanatory level, the 

spatiotemporal modeling using the partial differential equations (PDE) (Gaudart et al., [17-18]) 

would make it possible to estimate the speed of propagation, as well as its direction (NorthEast / 

SouthWest for the first wave in France). The analysis of the spatio-temporal heterogeneities men-

tioned above would also make it possible to propose a model containing delays between the causes 

(like date of contagion) and the effects (like limits of the period of the subsequent contagiousness), 

and also to work on the structure of the noise, cause of intrinsic fluctuations in epidemic data (in 

particular linked to variations in daily reproduction rates Demongeot et al., [12]), which is only 

addressed here through the residue of the ARIMA model. All of these important points will be 

covered in future articles. 

 

APPENDIX 

Table 3: Description of the parameters 

Parameter                  Description 

k                       index representing a country or a region 

i                  index representing a time-point (every i denotes a single day) 

R0          number of cases directly caused by one patient suffering COVID-19 

I                  time interval between infection and subsequent transmission 

k                             day when the first confirmed case is observed in region k 

j              parameter capturing the effect of lockdown for infection waves j=1,2,3 

k                      parameter indicating when trend changes its pattern in region k 
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Variable                       Description 

Xi,k                     number of confirmed new cases in region k at time i 

Di,k                                number of deaths in region k at time i 

Ri,k                        number of people recovered in region k at time i 

Pi,k                        population size (in millions) of region k at time i 

j,k                binary indicator of pre (j,k=0) and post (j,k=1) infection waves j=1,2,3 

Lj,i,k     dummy variable signifying the lockdown at time i in region k for wave j 

Pi,k = Yi,k/Pi,k proportion (prevalence) of total confirmed cases of region k at time i  

i,k = (Yi,k-Yi-1,k)/Pi,k     proportion of new cases (incidence) of region k at time i 

f(i,,k)                               trend function, at time i, for first day  and region k 

Ui,k                            stochastic error process at time i for region k 

j,k                        standard normal white noise process for wave j and region k 
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