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1. INTRODUCTION

Sessa[9] introduced the notion of weakly commuting maps as a generalization of commuting
maps. Later G.Jungck[4, 5] proposed compatibility as a further generalization of weakly com-
muting maps.

Among all generalizations[1,2,3,8] of metric spaces, G- metric spaces initiated by Zead Mustafa
and Brailey Sims[6, 7] are noteworthy, as several results are established by many researchers
on these.

The purpose of this paper is to prove a common fixed point theorem for two compatible self
maps of a G -metric space.
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2. PRELIMINARIES

Definition 2.1. Let X be a non empty set and G : X> — [0, 0) be a function satisfying

(G1) G(x,y,z) =0ifx=y=z

(G2) 0 < G(x,x,y) forall x,y € X withx # y

(G3) G(x,x,y) < G(x,y,z) forall x,y,z € X withz # y

(G4) G(x,y,z) = G(o(x,y,z)) for all x,y,z € X where o(x,y,z) is a permutation of the set
{x,y,z} and

(G5) G(x,y,2) < G(x,w,w) + G(w,y,z) for all x,y,z,w € X

Then G is called a G-metric on X and the pair (X, G) is called a G- metric space.

Definition 2.2. [7]: Let (X,G) be a G-metric Space. A sequence {x,} in X is said to be G-
convergent if there is a xo € X such that to each € > 0 there is a natural number N for which

G(xp,Xxn,x0) < € forall n > N.

Definition 2.3. [7]: Let (X,G) be a G-metric Space. A sequence {x,} in X is said to be G-
Cauchy if for each € > 0 there exists is a natural number N such that G(x,,x,,x;) < € for all

n,m,l > N.
Note that every G-convergent sequence in a G-metric space (X,G) is G-Cauchy.

Definition 2.4. [7]: A G-metric space (X,G) is said to be G-complete if every G-Cauchy se-
quence in (X, G) is G-convergent in (X, G)

Definition 2.5. Let f and g be two self maps of a G-metric space (X,G) such that

lim G(fgxn,gfxn,8fx,) = 0 for every sequence {x,} in X with lim fx, = lim gx, = ¢ for
n—oo n—oo n—oo

some ¢ € X, then the functions f and g are said to be compatible.
Clearly commuting pairs of selfmaps are compatible but not conversely.

Definition 2.6. A function ¢ : [0,00) — [0,00) is said to be a contractive modulus if ¢(0) =0

and ¢(t) <tfort>0

Definition 2.7. Let f and g be self maps of a non-empty set X and let xo € X, if we can find
a sequence {x,} in X satisfying that fx, = gx,_ for n > 0 then {x,} is called an associated

sequence of xg relative to the self maps f and g.
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3. MAIN RESULT

Theorem 3.1. Suppose f is continuous selfmap of a G-metric space (X,G), then f has a fixed
point in X if and only if there is a contractive modulus ¢ and a continuous selfmap g of X such

that

(i) f and g are compatible
(ii) G(gx,8y,8y) < 0(M(x,y)) for all x,y € X
where M(x,y) = max{G(fx, fy, fy),G(gx, fy, [¥),G(fx,8y,8y)}

and
(iii) there is a point xy € X and an associated sequence {x,} of xq relative to the selfmaps
f and g such that the sequence {fx,} converges to some point t of X. Further gt is the

unique common fixed point of f and g

Proof. To prove the necessary part, suppose that f has a fixed point, say ’a’, a € X, then fa =a.
Define g: X — X by gx =a for all x € X.

Now for any x € X, we have (gf)x = g(fx) =aand (fg)x = fgx = fa = a,giving that fg = gf,
so that f and g are compatible. Now let ¢ be a contractive modulus, then ¢(0) =0 and ¢(7) <t
fort > 0 and for any x,y € X

G(gx,gy,8y) = Gla,a,a) =0 < (G (fx, [y, [y).

Further an associated sequence of xo = a relative to the selfmaps f and g is given by x;,, = a for
n=0,1,2,3---, and since the sequence { fx,} is a constant sequence converging to a, which is
a point in X. Thus the condition (i) (ii) and (iii) of the theorem are satisfied.

Conversely, suppose that there is contractive modulus ¢ and a continuous selfmap g on X satis-
fying the conditions (i),(ii) and (iii) of the theorem.

From the condition (iii) of the theorem, there is an associated sequence {x,} of xo such that
fxn=gxy—1 forn=1,2,3--- it follows that gx, = fx, 11 —t asn — oo,

From the condition (i) of the theorem and since fx, —,gx, —t as n — oo,

we have lim G(fgxn, 8f%n, 8f%n) =0

Using the continuity of G, f and g, we get G(ft,gt,gt) = 0 gives fr = gt.

To show that fgr = gft, take z, =t forn =1,2,3--- so that fz, — ft and gz, — gt as n — oo.
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Since ft = gt, f and g are compatible , we get lim G(fgz,,8f7n,8f7n) = 0.
n—oo
Using the continuity of G, f and g , we obtain G(fgt,gft,gft) = o and hence fgr = g ft

Consequently
)] Jft=fgt =gft=ggt
If possible suppose that gr # ggt, then G(gt, ggr,ggt) > 0 and hence
2 ¢(G(gt,g8t,881)) < G(gr,88t,88t)
But from (ii)of the theorem and (1) we get
G(gr,88t,88t) < 9(M(1,81))
where
M(t,g1) = max{G(f1, fgt, f1),G(gt, f8t, fgt), G(ft,g8t,881)}
= max{G(gr,8g1,881),G(gr,881,881), G (g1, 881, 881) }
= G(gt,88t,881)

That is G(gt,ggt, 881) < ¢((G(gr,881,881))

which contradicts (2), hence gt = ggt.

Showing thatgt is a common fixed point of f and g.

Uniqueness: Suppose that u = fu = gu and v = fv = gv for some u,v € X.

if possible suppose that u # v,then G(u,v,v) # 0 so that
3) 0 (G(u,v,v)) < G(u,v,v)
from the condition(ii) of the theorem, we have
G(u,v,v) = G(gu,gv,gv)
< O(M(u,v))
= ¢(max{G(fu, fv,fv),G(gu, fv,fv),G(fu,gv,gv)})

= ¢(max{G(u,v,v),G(u,v,v),G(u,v,v)})

= ¢ (G(u7 Y, V))
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implies G(u,v,v) < ¢(G(u,v,v)) which contradicts (3), hence u = v, proving the theorem com-

pletely. U

Corollary 3.2. Suppose f and g are selfmaps of a G-metric space (X,G), if there is a contrac-

tive modulus ¢ and a positive integer k such that

(i) fe=28f
(i) G(g*x,&%y,8"y) < ¢(M(x,y)) for all x,y € X
where M (x,y) = max{G(fx, fy, fy), G(gx, fy, fy),G(fx,8,8Y)}
and
(iii) there is a point xo € X and an associated sequence {x,} of xo relative to the selfmaps f
and g* such that the sequence { fx,} converges to some point t of X. Then f and g have

unique common fixed point in X

Proof. From the condition (i) of the corollary, we get fg* = g*f. Thus f and g* are commuting
and hence satisfying the hypothesis of Theorem 3.1, and therefore f and g have a unique
common fixed point say b, then gb = b = fb.

Now g¥gb = g*T1b = gg*b = gb and fgb = gfb=gb

this shows that gb is a common fixed point of f and g*. The uniqueness of b implies that gb = b
since fb = b, b is a common fixed point of f and g.

To prove that f and g have unique common fixed point, suppose that u = fu = gu

and v = fv = gv for some u,v € X, so that gu = u and gkv = v.

This shows that u,v are common fixed points of f and g. The uniqueness of common fixed

point of f and g* implies u = v 0

Corollary 3.3. Suppose f is continuous selfmap of a G-metric space (X,G), then f has a fixed

point in X if and only if there is a contractive modulus ¢ and a selfmap g of X such that

(i) fe=gf
(ii) G(gx,8y,8y) < 0(M(x,y)) for all x,y € X
where M(x,y) = max{G(fx, fy, fy),G(gx, fy, fy),G(fx,8y,8y)}

and
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(iii) there is a point xg € X and an associated sequence {x,} of xq relative to the selfmaps
f and g such that the sequence {fx,} converges to some point t of X. Further gt is the

unique common fixed point of f and g

Proof. From the fact that the commutativity implies the compatibility of a pair of selfmaps,

proof of the corollary follows from the Theorem 3.1 0
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