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Abstract: The solution of initial, boundary, and mixed value problems through the integral equation method yields 

certain boundary singular integral equations. In many scientific and industrial applications in artificial intelligence, 

biological systems, scattering, radiation, and image processing, there is a need to evaluate such types of singular 

integrals, especially the weakly singular kernels. This study presents a new numerical method for evaluating weakly 

singular kernels based on some advanced matrix-vector barycentric Lagrange interpolation formulas. We developed 

these formulas to be applied to numerically evaluating singular integrals. At the same time, we created three 

computational rules to determine the optimal locations for the distribution of the interpolation nodes to be within the 

integration domain and never be outside for any value of the interpolant degree. These rules are devised so that the 

equidistant nodes depend on the step-sizes, which are defined as functions of the interpolant degree by some small 

real number greater than or equal to zero. Thus, we overcame the singularity of the kernels on the whole integration 

domain and obtained uniform interpolation. Moreover, the presented method gives the kernel's values and the kernel's 

integral values at the singular points, whereas the numerical or exact values do not exist. The solutions to the illustrated 

four examples are shown in the given tables and figures. The interpolant solutions which we obtain by low-degree 

interpolants are faster to converge to the numerical or exact ones (if they exist). This confirms the originality of the 

presented method and its effectiveness in obtaining high-precision results. 

Keywords: barycentric Lagrange interpolation; singular integral; weakly singular Fredholm kernels; computational 

methods; biological systems; scattering, radiation; image processing. 
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1. INTRODUCTION 

The need to use the concept of interpolating functions is more urgent than ever before, especially 

after the progress that has happened in the development of biological systems science, 

environmental engineering, virology, and epidemiology and their impact on public health, since 

these applications rely on processing data mathematically and converting it into interpolant 

polynomials [1-4]. Oftentimes, researchers need to deal with interpolating polynomials via 

matrices rather than the polynomial forms. This greatly contributes to evaluating singular integrals 

more easily than by using the usual methods. The reason for this is that it is easy to separate the 

integration variables from polynomials and construct what is called the monomial basis matrix. 

Then it is easier to integrate only the monomial functions than to integrate the polynomials 

themselves.  

One of the most famous interpolations is the barycentric Lagrange interpolation [5-6]. Shoukralla 

et. al. [7-11] modified the barycentric Lagrange interpolation formula and obtained advanced 

matrix-vector barycentric interpolation formulas, which were applied to solve non-singular linear 

Volterra integral equations of the second kind. The solution of weakly singular integral equations 

is more difficult due to the singularity of the unknown functions and the kernels. Shoukralla et. al. 

[12-14] provide methods for the solution of such singular equations based on orthogonal functions 

with the analytical treatment of the kernel singularity. The mathematical treatment of the kernel 

singularity adopted in these methods was difficult and complicated. Additionally, there are many 

papers that have been published to evaluate singular integrals, but they are also not as easy as 

required and rely on more complicated techniques. [15-18]. Based on the specified asymptotic 

analysis, Jing Gao et al. [15], constructed a Filon-type method to approximate similar-type 

integrals which achieved high accuracy for both small and large frequencies. This method ensures 

the interpolation at the zeros of polynomials orthogonal to a complex weight function. Andrei K. 

Lerner [16], obtained a certain weak type estimate for maximal operators related to some classes 

of classical rough homogeneous singular integrals. Benjamin Jaye et al. [17], presented a small 

local action notation condition subjected to a singular integral operator that is necessary for the 

existence of the principal value integral. Andrei K et al. [18], established the necessity for many 

classes of operators to provide new results even in the unweighted setting for first-order 

commutators. Thus, a Bloom-type characterization of the two-weighted boundedness of iterated 

commutators of singular integrals is obtained. These aforementioned complications have pushed 
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us to search for new simple alternative methods that are easier, lead to accurate results, and can 

transform singular integrals into non-singular ones. 

The presented study focuses on evaluating singular kernels based on the advanced barycentric 

Lagrange matrix-vector double interpolant formulas which were applied for solving non-singular 

integral equations [12-14]. The goal is not only to develop these formulas based on providing them 

with optimal node distribution rules, but also to make them capable of treating the singularities of 

the singular integrals and their evaluation with ease. 

The rules for the equidistant node’s distribution are established so that the coefficients of the 

square matrices of the barycentric functions never become singular matrices. Using these rules, 

we considered the step-sizes depending on a small number greater than zero, which we imposed 

as a function of the degree of the interpolant polynomial, so that the value of this small real number 

changes as the degree of the interpolant polynomial changes. This ensures that the nodes are fully 

distributed inside the integration domain and never be outside, and hence we get uniform 

interpolation. Also, the presented method is eligible to provide the kernel functional values at the 

endpoints of the integration domain, whereas the exact (or numerical) integral values of the kernels 

at the endpoints do not exist. 

We concentrate on the weakly singular kernels of Fredholm integral equations of the second kind, 

which is usually given in the form ( ), ;  0 1k x y x t



−

= −   . The three established rules were 

created in such a way that the kernel denominator never approaches zero when .x t→

The interpolant integral values of the seven computed integrals in the four examples, as shown in 

the tables and graphs, strongly converge to the exact (or numerical) integral values in the 

integration domain. The obtained results ensure the originality and superiority of the presented 

method.  

 

2. INTERPOLATION METHOD 

We present a new method for evaluating weakly singular kernels of integral equations. The 

presented method is based on the modification of the matrix-vector interpolation formulas for non-

singular integral equations to be suitable for evaluating singular kernels. Shoukralla et al. [12-14] 

reformulated the traditional barycentric Lagrange formula through matrices and thus were able to 

separate the coefficients of the barycentric functions from the monomial basis functions. Thus, 

they obtained an advanced formula consisting of the product of four matrices, one of which is the 
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matrix of monomials, to be applied to interpolating single-valued functions. They also obtained 

another formula for functions in two variables and expressed it through five matrices, two of which 

are monomial basis functions; each one is related to one variable. Furthermore, let 

( )  1 , bnf x C a+
 
and ( )nf x  be the matrix-vector barycentric Lagrange interpolating polynomial 

of degree n  that interpolates ( )f x  at the ( )1n+  equidistant distinct nodes    
0

,
n

i i
x a b

=
 , then 

( )nu x  is expressed by [12] 

( ) ( )CWFnf x x=   (1) 

Here 
0

F=
n

i i
f

=
    is the ( )1 1n+   column matrix such that the entries if  satisfies the interpolation 

condition ( )n i if x f=  for 0 :i n= ,  
0

W
n

i i
diag w

=
=  is a square diagonal matrix whose entries are 

defined by ( )1
i

i

n
w

i

 
= −  

 
, ( )

0
X

n
i

i
x x

=
 =  is the ( )1 1n +  monomial basis functions row matrix 

and 
, 0

C
n

T
ij i j

c
=

 =
 

 is the ( ) ( )1 1n n+  +  known Maclaurin coefficients matrix whose entries ijc  

are defined by  

( )
( )

( )
( )

( )
( ) ( ) ( )

0

10
; , , 

!

n

i i i
ii

j
i i

ij i x w x x
x x

x
c x

j x
  

 


 =

= =
−

= =   

 

 (2) 

Where, we designed the rule of calculating the x − nodes distribution set  
0

n
i i

x
=

 by the formula 

( )
( ) ( )1 1

1 1 1 1 ;  ; 0,  0,i
b a

x a ih h i n
n

 
 

− − +
= + + =  =  

 

  (3) 

Now, we focus on the interpolation of certain types of the two-variable valued functions which are 

defined on the triangle ( ) , ; ,x t a x t b=   , where the integration will be held with respect to the 

only one variable t   namely, t  . We consider the weakly singular kernel of Fredholm integral 

equation of the second kind which often takes the form ( ),k x t x t
−

= −   where 0 1   and 

,a x t b  . Let ( ) ( ),
b

a

k x k x t dt=  , then ( )k x  is singular integral when x t→  under the assumption 
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that 1
b

a

dt
x t




−
  for some real number 0   where a x b  . As an inevitable consequence of 

the singularity of such kernels, when the variable x  approaches the variable ,t we follow the same 

steps as for the interpolation of ( )f x  but with some fundamental differences. The first difference 

is that the domain of the definition of the kernel is the triangle  , and the second difference is 

related to the way that the nodes will be distributed inside the kernel domain   for both variables 

x  and t , so that we ensure that x t  and hence ( ),k x t  never tends to infinity for any 1n . We 

provide three rules (I), (II), and (III) for the equidistant nodes distributions for the two variables 

x   and y   such that the t−  nodes distributions depend on the x−   nodes distribution. These 

distributions are considering the optimal choice since they ensure that the magnitude x t−  never 

approaches zero, and thus we overcome the kernel's singularity. The realization of this ambition 

needs to define the step size h  through a small number 0   which we establish as a function of 

the interpolant degree n . To obtain Rule (I), we interpolate ( ),k x t  twice with different step-sizes 

for the two sets of equidistance interpolation nodes  
0

n
i i

x
=

  and  
0

n
i i

t
=

  corresponding to both 

variables x   and t  . After getting the matrix-vector barycentric matrix-vector double interpolant 

kernel ( ), ,n nk x t , we integrate it with respect to the variable t  to get ( ), .n nk x We choose the set 

of x− nodes distributions  
0

n
i i

x
=

 as follows 

( ) ( ) ( ) ( ) ; 2  ; =0,or 1 , 0, ;  1ix a ih h b a n b a n i n     = + + = − − = − + = / /   (4) 

Here we emphasize that the smaller the   value (or the greater   value), the closer the endpoints 

of the integration of the double interpolant curve ( ),n nk x  to the exact curve of the integral values 

( )k x  at the endpoints of the domain of integration. Moreover, the value of   depends on the 

length ( )b a−  which we usually take it by the inequality 5 10   for ( ) 1.b a− = Based on  
0

n
i i

x
=

we construct the barycentric functions ( )i x , by which we present the known square Maclaurin 

Coefficients matrix 
, 0

n
T

ij i j
a

=
  =
 

whose entries ija  are then defined by 



7492 

E. S. SHOUKRALLA 

( )
( )

( )
( )

( )
( ) ( ) ( )

0

0 1; ; ,
!

j
n

i i
ij i i i i

ii

x
a x x w x x

j x xx

 
   

 =

= = = =
−

  

 (5) 

Thus, we get, similar to (6), the Maclaurin barycentric matrix-vector interpolant polynomial 

( ),n ik x t  of the thn  degree through the four matrices in the form 

( ) ( ) ( ), WK ,n i ik x t x x t=    (6) 

where, the column matrix ( ) ( )
0

K , ,
n

i i i
x t k x t

=
=    of the order ( )1n n+   is defined by 

( ) ( ) ( ) ( )0 1, , , ... , ; 1T
i nx t k x t k x t k x t n =      (7) 

Now, it is required to interpolate each entry ( ),ik x t  with respect to the variable t  to complete the 

interpolation prosses. How will we choose the nodes which corresponding to the variable ?t  We 

will choose 1n+  nodes , denoted by  
0

n
i
j j

t
=

 to each node ix  such that 0i
i jx t−  ; 0,j n=  ; this 

will be valid for each 0,1,2,...,i n=   . For example, the set of nodes for the variable t   that is 

assigned to the node 0x  will be denoted by  0

0

n

j j
t

=
, for the node 1x  will be denoted by  1

0

n

j j
t

=
, 

and for nx  will be denoted by  
0

n
n
j j

t
=

 and so on. Furthermore, to interpolate each entry ( ),ik x t  

we first construct the 1n+   barycentric functions ( )i
j t   for each 0,i n=   which is associated to 

each set of ( )1n+   nodes  
0

n
i
j j

t
=

  for all 0,i n=  . Second, for each barycentric function of 

( )i
j t  ,we create the corresponding Maclaurin coefficients square matrix denoted by 

, 0

n
i

i jq j q


=
  =
 

; 0,i n= . The entries i
jq  are defined by 

( )( )
( )

( )0
 ; , 0,   0,

!

q
i
ji

jq

t
j q n i n

q


 = =  =  

(8) 

wherever, 

( )
( )

( )
( ) ( ) ( )

0

1, , ; 0,  0,

i nji i i
i jj j j i

ji j

t
t t w t t j n i n

x t t


   

 =

= = = =  =
−


 

(9) 
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Thus, for all the ( )1n+ nodes  
0

n
i i

x
=

, we have a square matrix 
, 0

n
i
j

i j
t

=

 =
  

. All the sets of nodes 

i
jt  must fall within the domain  ,a b  and never outside, besides emphasizing that the integrand 

kernel never become singular when i
i jx t→ . The likelier way to achieve this goal is to choose i

jt  

by the following rule 

( )
 ;  0,   0,

2
ii

j

j x b
t j n i n

n

+
= =  =  

(10) 

Consequently, we get each entry ( ),ik x t  where 0,i n=  of the column matrix ( ),ix t  in terms 

of ; 0,   0,i
jt j n i n=  =  as follows 

( )   ( )
0

, , X W   0,
n

i T
i i j ij

k x t k x t t i n
=

 
= =    = 

 
 

(11) 

where ( )
0

X
n

i
i

t t
=

 =   is ( )1 1n +  monomial basis functions row matrix and the ( )1n n+   column 

matrix   is defined by 

( )0
; ,  0,

n i
i i i ji

n n k x t j n
=

= =  =    
(12) 

Finally, by inversing the matrix multiplication of (11), we get 

( ) ( ), W X   0,T T
i ik x t t i n=   =  (13) 

Since 

( ) ( ) ( )
0

, , ... ,   0,
n

i i iT
j j jj j j

j
k x t k x t k x t i n

=
  =  =
 

 
(14) 

Then, we find that 

0

W =   0,
n

T
i ij

j

i n
=

   =  
(15) 

In matrix form upon considering the n−power series 
0

 0,
n

ij
j

i n
=

 =  , (15) can be rewritten in the 

form  

, 0
W = ;   0,

n
T

i ij i j
i n

=
    =  =
 

 
(16) 
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By substituting (16) into (13), we get the matrix-vector double barycentric interpolant kernel 

( ), ,n nk x t in the matrix form 

( ) ( ) ( ), , W XT
n nk x t x t=     (17) 

The integration of ( ), ,n nk x t  with respect to t  is denoted by ( ),n nk x  and is given by 

( ) ( ), X Wn nk x x=    (18) 

where M is the column matrix of order ( )1 1n+   such that ( )1 1

0

1
1

n
i i

i
b a

i
+ +

=

 = −
  +

. The matrix-

vector barycentric double interpolant kernel ( ), ,n nk x t  given by (17) and its integration denoted 

by ( ),n nk x  that was given by (18) based on the node’s distribution (4) and (10) we refer to it with 

the phrase “Rule (I)”.  

To obtain Rule (II), we provide other nodes distributions for the variables ,x t . Let 

( ) ( )1 1 1 ; 2  ; 0, 0,ix a ih h b a n i n  = + + = − −  =/   (19) 

and 

( ) ( )( ) ( ) ( )2 2 13 5 ; 0,   ,2 ; 0i
ij n abs j n j n i nt x n n  − =+ + =+= =/ / /  (20) 

Hence the Maclaurin barycentric matrix-vector double interpolant kernel ( ), ,n nk x t  given by (17) 

and the integration of which that was given by (18) based on the node’s distribution (19) and (20) 

we refer to it with the phrase “Rule (II)”.  

To obtain Rule (III), we provide different nodes distributions for the variables ,x t . Let 

( ) ( ) ( )( )1 1 1 1; , 1/5ix a ih h b a n n   = + + = − − + =/  (21) 

and 

( ) ( )2 21 , ; 0,   0,
1

i
j i

nt a j x n j n i n
n

 = + − + = =  =
+

/  (22) 

Hence the matrix-vector double barycentric interpolant kernel ( ), ,n nk x t  given by (17) and the 

integration of which that was given by (18) based on the new node’s distribution (21) and (22) we 

refer to it with the phrase “Rule (III)”.  
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3. COMPUTATIONAL RESULTS 

We designed 3-codes using MATLAB, R2019a for the computation of the double interpolant 

kernel integration ( )2,2k x   subjected to the weakly singular kernels of the Fredholm integral 

equation of the second kind. We have solved four examples in detail. For examples 1 and 2, we 

apply the rules (I), (II). For examples 3 and 4, we apply rule (III). 

Example 1 

Given the singular kernels ( ), ;0 , 1k x t x t x t
 −

= −     for 1/2,1/4,1/3,1/5=  , we first find the 

Maclaurin barycentric Lagrange double interpolant polynomials ( ), ,n nk x t   and hence integrate 

them to find the double interpolant integrals denoted by ( ) ( )
1

, ,
0

,n n n nk x k x t dt =  . The obtained 

double interpolant integral kernels ( ),n nk x  will be compared with the exact (if exists) or with the 

numerical integral values denoted by ( ) ( )
1

0

,i ik x k x t dt =   at 0.0:0.1:1.0.x=   By applying 

Formula (I) with 5=   for 1/2,1/4,1/3,2/5=  , the equidistance nodes distributions  
0

n
i i

x
=

  and 

 
, 0

n
i

j
i j

t
=

 that correspond to the two variables x   and t   respectively, are common for all 

1/2,1/4,1/3,2/5=  and are given by 

   
2 22

0 , 0 , 0

0 4/15 8/15

1/15,1/2,14/15 , 0 3/8 3/4

0 29/60 29/30

i
i ji i j i j

x t
= = =

 
  = =

   
  

 

 

 (23) 

Based on (23), we find the double interpolant kernels ( ), ,n nk x t   and the associated double 

interpolant integrals ( ),n nk x  for 1/2,1/4,1/3,2/5=  as follows 

 

( ) ( )

( ) ( )

1/2 2 2
2,2

1/22 2 2
2,2

, 5.5375 8.812 63.886 69.712 12.123 4.4358

78.776 77.071 10.868 ,  0.14657 0.3536 1.9968

k x t x x t x x

t x x k x x x

= − − − + +

+ − + =− + +
 

 (24) 
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( ) ( )

( ) ( )

1/4 2 2
2,2

1/42 2 2
2,2

, 1.6162 19.448 21.291 3.4564 2.713 2.1417

23.118 22.375 2.7051 ,   0.40203 0.47429 1.3152

k x t x t x x x

t x x k x x x

= − − + − +

+ − + =− + +
 

(25) 

 

( ) ( )

( ) ( )

1/3 2 2
2,2

1/32 2 2
2,2

, 2.5819 30.557 33.413 5.5567 4.2468 2.7379

36.773 35.74 4.5781 ,  0.43924 0.54649 1.4856

k x t x t x x x

t x x k x x x

= − − + − +

+ − + =− + +
 

(26) 

 

( ) ( )

( ) ( )

1/5 2 2 2
2,2

1/52 2
2,2

, 15.78 14.756 1.4302 1.8598 1.0867 1.8069

13.607 14.641 2.1892 , 0.45702 0.54243 1.1891

k x t t x x x x

t x x k x x x

= − + − + +

− − + =− + +
 

(27) 

By applying formula (II) with 1 0.1 =   for 1/2.1/4,1/5 =   and 1 1/13 =   for 1/5=  , the 

equidistance nodes distributions  
0

n
i i

x
=

 and  
, 0

n
i

j
i j

t
=

that correspond to the two variables x  and 

t  respectively, are common for all 1/2,1/4,1/3,2/5=  and are given by 

   
22

0 , 0

3/10 5/8 19/20

1/10,1/2,9/10 , 3/10 17/40 11/20  

3/10 3/8 9/20

i
i ji i j

x t
= =

 
  = =

   
  

 

 

 (28) 

Based on (28), we find the double interpolant polynomials ( ), ,n nk x t   and the associated 

interpolant integrals ( ),n nk x  for 1/2,1/4,1/3,2/5=  as follows 

( ) ( )

( ) ( )

1/2 2 2 2
2,2

1/22 2
2,2

, 133.2 134.13 14.734 39.992 37.024 7.1526

173.22 179.45 21.301 ,  5.1848 5.0236 1.4136

k x t t x x x x

t x x k x x x

= − + − + +

− − + =− + +
 

 (29) 

 

( ) ( )

( ) ( )

1/4 2 2
2,2

1/42 2 2
2,2

, 11.708 56.93 59.262 7.1631 3.1236 12.832

47.213 47.478 5.162 , 1.0198 0.97271 1.2627

k x t x t x x x

t x x k x x x

= − − + + −

+ − + =− + +
 

(30) 

 

( ) ( )

( ) ( )

1/3 2 2 2
2,2

1/32 2
2,2

, 71.029 71.458 7.7915 19.869 18.226 4.2031

87.524 90.946 10.921 ,  1.8597 1.7842 1.3398

k x t t x x x x

t x x k x x x

= − + − + +

− − + =− + +
 

(31) 
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( )

( )

1/5 2 2 2
2,2

1/52 2
2,2

, (35.047 35.235 3.8248) 9.3778 8.526 2.578

(41.769 43.531 5.2834),  0.67622 0.64259 1.2112

k x t t x x x x

t x x k x x x

= − + − + +

− − + =− + +
 

(32) 

Tables 1,2,3, and 4 show the numerical integral values ( )ik x , the double interpolant integral 

values ( )2,2 ik x   and the absolute errors ( ) ( ) ( ), ,n n i i n n iR x k x k x
  

= −   at the points 

0.0:0.1:1.0ix =  according to formulas (I) and (II) for 1/2,1/4,1/3,2/5= . In figures 1,2.3 and 4, 

plotted are the graphs of the numerical integral values ( )ik x  and the double interpolant integral 

values ( ),n n ik x   at the points 0.0:0.1:0.9ix =   for 1/2=   because the integral diverges for 1x=  , 

and at the points 0.0:0.1:1.0ix =  for 1/4,1/3,2/5= . From table 1, we find that the kernel value 

( )0,0k   for 1/4,1/3,2/5=   does not exist while by the Rules (I) and (II), we get the values 

( )
1/2
2,2 0,0 4.4358k =   and ( )

1/2
2,2 0,0 7.1526k =  . For 1/4=  , we obtain ( )

1/4
2,2 70,0 2.141k =   and 

( )
1/4
2,2 0,0 3.1236k =  . For 1/3=  , we obtain ( )

1/3
2,2 0,0 2.7379k =   and ( )

1/3
2,2 0,0 4.2031k =  . For 

1/5= , we get ( )
1/5
2,2 0,0 1.8069k =  and ( )

1/5
2,2 0,0 2.578k = . Besides, the numerical integral value 

( )1/2 1k  does not exist whereas by Rule (I), we obtain ( )1/2
2,2

81 2.203k =  and by Rule (II), we get 

( )1/2
2,2

41 1.252k = . 

Example 2 

Consider the weakly singular Fredholm integral equation of the second kind 

( )
( )

( )( ) ( )( )
3 3
4 4

1

0

3 2 33 1 1 4 1
4 8

t
x dt x x x x

x t

  − = − − + −
−

  
 

 (33) 

whose exact solution [19] is given by ( ) ( )( )
3
42 2 1x x x = − . Substituting ( )x  into (33), we get 

the singular kernel ( )
( )( )

3
41

,
t t

x t
x t


−

=
−

 such that  

( ) ( )
( )( )

( )( )

3
4 3

4

1 1

0 0

1 3, 1 4 1
16 2

t t
x x t dt dt x x

x t

 
−

= = = + −
−

   

 (34) 
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This integral is singular due to the discontinuity of the integrand kernel when 0x t= =  and generally 

when x t→ . By using the Formula (I) with 1 1/15 = , we find ( )
I
2,2 ,x t  and ( )

I
2,2 x  as follows 

( ) ( )( ) ( )
( ) ( )( )

( )( ) ( )

2(3/4)

2 (3/4)

2 2(3/

I
2

4

,2

)

1 5.5375 8.812 4.4358

63.886 69.712 12.123 1

1 78.776 77.071 10.868

, t t x x

t x x t t

t t t x

x t

x

 − − − +

− − + − −

+ −

=

− − +

 

 (35) 

And  

( )2
2I

2, 0.59341 0.63399 0.4308x x x − += +  
 (36) 

Using the Rule (II) with 1 0.1 = , we get 

( ) ( )( ) ( )
( )( ) ( )
( )( ) ( )

2(3/4)

2(3/4)

2 2(3/4

II
2,2

)

1 37.024 39.992 7.1526

1 173.22 179.45 21.301

1 133.2 134.13 14.734

, t t x x

t t t x x

t t t x

x t

x

 − − − +

− − − − +

+ −

=

− − +

 

 (37) 

And 

( )2
2II

2, 2.2582 2.2238 0.25526x xx −= + +  
 (38) 

In tables 5, given are the exact integral values ( )ix  , the double interpolant integral values 

( )
I
2,2 x   and ( )

II
2,2 x   according to the Rules (I) and (II), and the absolute errors 

( ) ( ) ( )2,2 2,2
s s

i i iR x x x = −   at the points 0.0:0.1:1.0ix =  , where I,IIs=   denotes Rule (I) and 

Rule (II). In figures 5, plotted are the graphs of the exact integral values ( )ix  and the double 

interpolated integral values ( )
I
2,2 ix  and ( )

II
2,2 ix  at the points 0.0:0.1:1.0ix = . It is observed 

that the integrand kernel ( ),x t  is undefined at 0x t= =  whereas the double interpolated kernel 

give ( ) ( )
I II
2,2 2,20,0 0,0 0 = = . 
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Example 3 

Consider the weakly singular Fredholm integral equation of the second kind  

( ) ( ) ( ) ( )
3
4

1 1
2 2

1

2 1 2
3 2 2

x x dt x x
x t

 
−

− = − − −
−

  
 

(39) 

whose exact solution [20] is given by ( ) ( )
3
421x x = − . Substituting ( )x  into (39), we get the 

singular kernel ( )
( )

3
421

,
t

x t
K x t

−
=

−
 such that  

( ) ( )
( )

( )

3
421 1

2

1 1 2
,

1
3 2
4

K x K x dt
t

t dt x
x t



− −

−
= = −

−
=    

 

 (40) 

This integral is singular due to the discontinuity of the integrand kernel when 0x t= =  and generally 

when x t→ . By using Rule (III), we find the set of x− nodes distribution  
2

0i i
x

=
 and the matrix 

of t− nodes distributions as follows 

   
22

0 , 0

1 43/90 2/45

0.9,0,0.9 , 1 7/9 5/9

1 83/90 38/45

i
i ji i j

x t
= =

− − 
  = − = − − −

   
 − − − 

 

 (41) 

The double interpolant kernel ( )
III
22,2 ,K x t   that interpolate ( ),K x t   and the integration of 

( )
III
22 ,K x t  denoted by ( )

III
22K x  are given by 

( ) ( )
( )

( )

( )
( )

( )

( )
( )

( )

3/42 2 2

3/42 2

3/42

III
2

2

2 1 0.38854 1.0875 0.74777

1 1.4441 0.016296 2.1841

1 2.2209 0.25003 1.9319

, t t x x

t x x

t

K

t x

x t

x

− − +

−

=

− + −

+ − − + +

 

 (42) 

( )
I 2II
22 1.9522 0.37088 3.3792x xK x− −= +  

 (43) 

In tables 6, given are the exact integral values ( )iK x  , the double interpolant integral values 

( )
III
22 iK x , and the absolute errors ( ) ( ) ( )

III III
2,2 2,2i i iR x K x K x= −  at the points 0.0:0.1:1.0ix = . In 
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figures 6, plotted are the graphs of the exact integral values ( )iK x  and the double interpolate 

integral values ( )
III
22 iK x   at the points 0.0:0.1:1.0ix =  . It is observed that the integrand kernel 

( ),K x t  is undefined at 0x t= =  whereas we get ( )
III
22 0,0 0K = . 

Example 4 

Consider the weakly singular Fredholm integral equation of the second kind  

( ) ( ) ( ) ( ) ( )
1

2 2

1

log 0.5 log 1 log 1 0.5x x t t dt x x x x x x 
−

 − − = − + − − − −
   

 (44) 

whose exact solution [20] is given by ( )x x = . Substituting ( )x  into (44.), we get the singular 

kernel ( ), logx t t x t =  − . The integration of this kernel is denoted by ( )x . Thus, we have  

( ) ( ) ( ) ( ) ( )
1 1

2 2

1 1

, log 0.5 log 1 log 1 0.5x x t dt t x t dt x x x x x

− −

  =  = − = + − − − −
    

 

 (45) 

This integral is singular due to the discontinuity of the integrand kernel at 0x t= =  and generally 

when x t→ . By using Rule (III), with some change in the rule of the nodes 
i
jt  to become  

( ) ( ) ( ) ( )2 21 / 3 , ; 0,   0,
1

i
j i

nt n n j x n j n i n
n

 = + + + − = =  =
+

/  (46) 

we find the set of x− nodes distribution  
2

0i i
x

=
 and the matrix of the t− nodes distributions as 

follows 

   
22

0 , 0

3/5 11/60 29/30

0.9,0,0.9 , 3/5 4/15 1/15 .

3/5 43/60 5/6

i
i ji i j

x t
= =

− 
  = − = −

   
  

 

 

 (47) 

Hence, we get ( )
III
22,2 ,x t  and ( )

III
22 x  by 

( ) ( ) ( )
( )

2 2 2

3 2

III
22 8.0447 10.772 4.6767 1.3058 3.8098 2.3848

9.3981 9.8536 2. 1 .

,

589

t x x t xt x

t x x

x + + − + +

− +

=

+

 

 (48) 

And 

( )
I 2I I

22 0.32084 0.77777 0.28076xx x− −= −  
 (49) 
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Table 7 shows the exact integral values ( )ix , the double interpolant integral values ( )
III
22 ix  

and the absolute errors ( ) ( ) ( )
III III
2,2 2,2i i iR x x x=  −  at the points 0.0:0.1:1.0ix = . In figure 7, 

plotted are the graphs of the exact integral values ( )ix  and the double interpolate integral values 

( )
III
22 ix   at the points 0.0:0.1:1.0ix =  . It is observed that the integrand kernel ( ),K x t  is 

undefined at 0x t= = , whereas the double interpolant kernel gives ( )
III
22 0,0 0 = . 

 

4. TABLES 

 

Table 1 

A comparison of the numerical Integral Values ( )1/2
ik x  with the double interpolant integral 

values ( )1/2
2,2 ik x obtained by using Rules (I) and (II). 

Rule (I)  Rule (II) 

ix  ( )1/2
ik x  ( )1/2

2,2 ik x  1/2
2,2

R  

0 2 1.9968 0.0032 

0.1 2.5298 2.0307 0.4991 

0.2 2.6833 2.0617 0.6216 

0.3 2.7688 2.0897 0.6791 

0.4 2.8141 2.1148 0.6993 

0.5 2.8284 2.137 0.6914 

0.6 2.8141 2.1562 0.6579 

0.7 2.7688 2.1725 0.5963 

0.8 2.6833 2.1859 0.4974 

0.9 2.5298 2.1963 0.3335 

1 NaN 2.2038 *** 
 

ix  ( )1/2
ik x  ( )1/2

2,2 ik x  1/2
2,2

R  

0 2 1.4136 0.5864 

0.1 2.5298 1.8641 0.6657 

0.2 2.6833 2.2109 0.4724 

0.3 2.7688 2.454 0.3148 

0.4 2.8141 2.5935 0.2206 

0.5 2.8284 2.6292 0.1992 

0.6 2.8141 2.5612 0.2529 

0.7 2.7688 2.3896 0.3792 

0.8 2.6833 2.1142 0.5691 

0.9 2.5298 1.7352 0.7946 

1 NaN 1.2524 *** 
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Table 2 

A comparison of the numerical Integral Values ( )1/4
ik x  with the double interpolant integral 

values ( )1/4
2,2 ik x obtained by using Rules (I) and (II). 

Rule (I)  Rule (II) 

ix
 

( )1/4
ik x  ( )1/4

2,2 ik x  1/4
2,2

R  

0 1.3333 1.3152 0.0181 

0.1 1.4691 1.3586 0.1105 

0.2 1.5266 1.394 0.1326 

0.3 1.5609 1.4213 0.1396 

0.4 1.5796 1.4406 0.139 

0.5 1.5856 1.4518 0.1338 

0.6 1.5796 1.455 0.1246 

0.7 1.5609 1.4502 0.1107 

0.8 1.5266 1.4373 0.0893 

0.9 1.4691 1.4164 0.0527 

1 1.3333 1.3875 0.0542 
 

ix
 

( )1/4
ik x  ( )1/4

2,2 ik x  1/4
2,2

R  

0 1.3333 1.2627 0.0706 

0.1 1.4691 1.3498 0.1193 

0.2 1.5266 1.4165 0.1101 

0.3 1.5609 1.4627 0.0982 

0.4 1.5796 1.4886 0.091 

0.5 1.5856 1.4941 0.0915 

0.6 1.5796 1.4792 0.1004 

0.7 1.5609 1.4439 0.117 

0.8 1.5266 1.3882 0.1384 

0.9 1.4691 1.3121 0.157 

1 1.3333 1.2156 0.1177 
 

 

Table 3 

A comparison of the numerical Integral Values ( )1/3
ik x  with the double interpolant integral 

values ( )1/3
2,2 ik x obtained by using Rules (I) and (II). 

Rule (I)  Rule (II) 

ix  ( )1/3
ik x  ( )1/3

2,2
k x  1/3

2,2
R  

0 1.5 1.4856 0.0144 

0.1 1.7214 1.5358 0.1856 

0.2 1.8057 1.5773 0.2284 

0.3 1.8548 1.61 0.2448 

0.4 1.8814 1.6339 0.2475 

0.5 1.8899 1.649 0.2409 

0.6 1.8814 1.6553 0.2261 

0.7 1.8548 1.6529 0.2019 

0.8 1.8057 1.6416 0.1641 

0.9 1.7214 1.6216 0.0998 

1 1.5 1.5928 0.0928 
 

ix  ( )1/3
ik x  ( )1/3

2,2 ik x  1/3
2,2

R  

0 1.5 1.3398 0.1602 

0.1 1.7214 1.4996 0.2218 

0.2 1.8057 1.6222 0.1835 

0.3 1.8548 1.7077 0.1471 

0.4 1.8814 1.7559 0.1255 

0.5 1.8899 1.767 0.1229 

0.6 1.8814 1.7408 0.1406 

0.7 1.8548 1.6775 0.1773 

0.8 1.8057 1.577 0.2287 

0.9 1.7214 1.4393 0.2821 

1 1.5 1.2644 0.2356 
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Table 4 

A comparison of the numerical Integral Values ( )1/5
ik x  with the double interpolant integral 

values ( )1/5
2,2 ik x obtained by using Rules (I) and (II). 

Rule (I)  Rule (II) 

ix
 

( )1/5
ik x

 
( )1/5

2,2 ik x
 

1/5
2,2

R
 

0 1.25 1.1891 0.0609 

0.1 1.3471 1.2387 0.1084 

0.2 1.3906 1.2793 0.1113 

0.3 1.4168 1.3106 0.1062 

0.4 1.4312 1.3329 0.0983 

0.5 1.4359 1.346 0.0899 

0.6 1.4312 1.35 0.0812 

0.7 1.4168 1.3448 0.072 

0.8 1.3906 1.3305 0.0601 

0.9 1.3471 1.3071 0.04 

1 1.25 1.2745 0.0245 
 

ix  ( )1/5
ik x  ( )1/5

2,2 ik x  1/5
2,2

R  

0 1.25 1.2112 0.0388 

0.1 1.3471 1.2687 0.0784 

0.2 1.3906 1.3127 0.0779 

0.3 1.4168 1.3431 0.0737 

0.4 1.4312 1.3601 0.0711 

0.5 1.4359 1.3635 0.0724 

0.6 1.4312 1.3533 0.0779 

0.7 1.4168 1.3297 0.0871 

0.8 1.3906 1.2925 0.0981 

0.9 1.3471 1.2418 0.1053 

1 1.25 1.1776 0.0724 
 

 

Table 5 

A comparison of the exact integral values ( )k x  with the double interpolants integral values 

 and ( )
II
2,2 x  for example 2 obtained by using Rules (I) and (II)  

Rule (I)  Rule (II) 

ix  ( )k x  ( )
I
2,2 x  I

2,2
R  

0 0.41652 0.4308 0.01428 

0.1 0.52455 0.48826 0.03629 

0.2 0.60363 0.53386 0.06977 

0.3 0.65804 0.56759 0.09045 

0.4 0.68997 0.58945 0.10052 

0.5 0.7005 0.59944 0.10106 

0.6 0.68997 0.59756 0.09241 

0.7 0.65804 0.58382 0.07422 

0.8 0.60363 0.55821 0.04542 

0.9 0.52455 0.52073 0.00382 

1 0.41652 0.47138 0.05486 
 

ix  ( )k x  ( )
II
2,2 x  II

2,2
R  

0 0.41652 0.25526 0.16126 

0.1 0.56647 0.45506 0.11141 

0.2 0.68309 0.60969 0.0734 

0.3 0.7664 0.71917 0.04723 

0.4 0.81638 0.78348 0.0329 

0.5 0.83304 0.80262 0.03042 

0.6 0.81638 0.7766 0.03978 

0.7 0.7664 0.70542 0.06098 

0.8 0.68309 0.58908 0.09401 

0.9 0.56647 0.42757 0.1389 

1 0.41652 0.22089 0.19563 
 

 

( )
I
2,2 x
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Table 6 

The exact integral values ( )iK x , the double interpolant integral values ( )
III
2,2K x , and the 

absolute errors III
2,2

R  at 1:0.1:1ix =−  

ix  ( )iK x  ( )
III
2,2K x  III

2,2
R  

-1 1.6661 1.7979 0.1318 

-0.9 1.9826 2.1317 0.1491 

-0.8 2.2659 2.4265 0.1606 

-0.7 2.5158 2.6822 0.1664 

-0.6 2.7324 2.8989 0.1665 

-0.5 2.9156 3.0766 0.161 

-0.4 3.0656 3.2152 0.1496 

-0.3 3.1822 3.3147 0.1325 

-0.2 3.2655 3.3753 0.1098 

-0.1 3.3155 3.3967 0.0812 

0 3.3322 3.3792 0.047 

0.1 3.3155 3.3226 0.0071 

0.2 3.2655 3.2269 0.0386 

0.3 3.1822 3.0922 0.09 

0.4 3.0656 2.9185 0.1471 

0.5 2.9156 2.7057 0.2099 

0.6 2.7324 2.4539 0.2785 

0.7 2.5158 2.163 0.3528 

0.8 2.2659 1.8331 0.4328 

0.9 1.9826 1.4641 0.5185 

1 1.6661 1.0561 0.61 
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Table 7 

The exact integral values ( )ix , the double interpolant integral values ( )III
2,2 ix , and the 

absolute errors III
2,2

R  at 1:0.1:1ix =−  

ix  ( )ix  ( )
III
2,2 x  III

2,2
R  

-1 0.25 0.17617 0.07383 

-0.9 0.21831 0.15935 0.05896 

-0.8 0.1844 0.13611 0.04829 

-0.7 0.14792 0.10646 0.04146 

-0.6 0.10845 0.070395 0.038055 

-0.5 0.065406 0.027911 0.037495 

-0.4 0.018015 -0.02099 0.039005 

-0.3 -0.0348 -0.07631 0.041505 

-0.2 -0.09467 -0.13804 0.043366 

-0.1 -0.16433 -0.20619 0.04186 

0 -0.25 -0.28076 0.03076 

0.1 -0.36367 -0.36175 0.00192 

0.2 -0.4893 -0.44915 0.04015 

0.3 -0.61647 -0.54297 0.0735 

0.4 -0.73785 -0.6432 0.09465 

0.5 -0.84657 -0.74985 0.09672 

0.6 -0.93516 -0.86292 0.07224 

0.7 -0.9944 -0.98241 0.01199 

0.8 -1.0111 -1.1083 0.0972 

0.9 -0.96142 -1.2406 0.27918 

1 -0.75 -1.3794 0.6294 
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5. FIGURES 

 
 

Fig. 1. A comparison of the graph of the numerical integral Values ( )1/2
ik x  with the graphs of the 

double interpolants integral values ( )1/2
2,2 ik x by using Rules (I) and (II). 

 

 
 

Fig. 2. A comparison of the graph of the numerical integral values ( )1/4
ik x  with the graphs of the 

double interpolants integral values ( )1/4
2,2 ik x by using Rules (I) and (II)  

 

  

Fig. 3. A comparison of the graph of the numerical integral values ( )1/3
ik x  with the graphs of the 

double interpolants integral values ( )1/3
2,2 ik x  by using Rules (I) and (II)  
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Fig. 4. A comparison of the graph of the numerical Integral Values ( )1/5
ik x  with the graphs of the 

double interpolants integral values ( )1/5
2,2 ik x  of Rules (I) and (II)  

 

  

Fig. 5. A comparison of the graph of the numerical integral values ( )ik x  with the graphs of the 

double interpolants integral values ( )2,2 ik x by using Rules (I) and (II).  

 

 

Fig. 6. The graphs of ( )iK x  and ( )III
2,2 iK x  by using 

Rule (III 

 

Fig. 7. The graphs of ( )ix  and ( )III
2,2 ix  by 

using Rule (III) 
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6. CONCLUSION 

In this paper, we presented a new interpolation method for solving different types of weakly 

singular kernels of the Fredholm integral equation of the second kind. We developed an advanced 

matrix-vector barycentric interpolation formula to find the matrix-vector double interpolant kernel 

free of any singularities via matrices, two of which are monomial basis functions of the two kernel 

variables. We achieved this procedure by creating three rules to ensure optimum distribution of the 

interpolation nodes within the domain of the integration domain and never become outside it. We 

defined the node distribution of the second variable of the singular kernel to be deepening on the 

node distribution of the first variable. We also define the node distribution for each variable as a 

function of the interpolant's degree and, at the same time, depend on some small real number 

greater than or equal to zero to ensure that the values under the square root of the kernel never 

become zero or negative. Four examples containing seven singular kernels were solved in detail 

and supplemented with tables and graphs. The obtained interpolate solutions by low-degree 

interpolants strongly converged to the exact (if existing) or to the numerical quadrature solutions. 

This confirms the originality of the newly presented method. 
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