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Abstract. In this paper we propose an impulsive predator-prey model with time delays. By applying the con-
tinuation theorem of coincidence degree theory, we establish a better estimation on the difference between the
supremum and infimum of a differentiable piecewise continuous periodic function.
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1. INTRODUCTION

One of the powerful and effective methods on the existence of periodic solutions to periodic
systems is the continuation method, which gives easily verifiable suffient conditions. In [5]
Bazykin proposed the following Predator-prey system.

u' (1) = u(r) (a—su(t) bv—(t))

1+ au(r)

V(1) =v(t) (—c+ Lt)f) - nv(t))

1+ ouu(
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where u(t),v(t) represents the densities of prey and predator populution respectively where
a,b,c,d,o,mn, € are positive parameters. System(1) is called Holling Type II predator system
model. It is investigated in [5] for the stability of equilibrium and condimension two bifurca-
tions.The global behavior of system(1) has been discussed by many authors, for example [3],
[16]. In [2] the effects of the periodicity of eco-logical and environmental parameters and time
delays due to gestation and negative feedbacks on the global dynamics of predator-prey systems

with Holling-type-II functional response.

/ ara(t)x2(t)
R
ax (t)x1(t — (1))

14+ mx (t — Tz(l‘))

(1) = 22(1) | = r2(0) +
where a;1,a12,a21,a12,T are continous @-periodic functions 71,73 > 0 denote the time delays
due to negative feedbacks of the prey and the predator populationt, is a time delay due to ges-
tation that is mature adult predators can only contribute to the reproduction of predator biomass
ay1(t),ax(t) are the intra-specific rates of the prey and the predator respectively,a;is the cap-
turing rate of predator ax,(t)/aj»(t) is the conversion rate of nutrients into the reproduction of
the predator.Time delays due to gestation is acommon example, the consumption of prey by the
predator throughtout its past history governs the present birth rate of predator.[1, 2, 5,7, 13]. Itis
well known from the fundamental theory of impulsive differential equations [4, 6, 9, 10, 11, 12]
that the system (2) has a unique solution.

In this paper we shall consider (2)with impulsive effects.Precisely, we consider the following
delayed impulsive system
X () =x1 ()] (1) —an(@)x1(t — (1)) — ?11(228))
3 (1) =x(t)[-r2(t) + 611241_(2;611 ((tt : Z((tt));
Axi(t) =x1(t) —x1(t) =dpux1 (1)t =1,

—an(t)x(t —13(1))]

Axy (1) = xo(t7) — xo(1) = dogx1 (1)1 = 1
where the assumptions are the same as in (2),d,dy; € (—1,0](k € N), 1 is a strictly increasing

sequence with 71 > 0 and limy_,., and assume that dy i, o) = dik-da (k) = dok-thtq = 1k + @ for

keN.
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In the next section , by using the continuation theorem of coincidence degree theory, we dis-
cuss the existence of positive w-periodic solutions of system(3)and in section [3] the uniqueness

and global stability of the positive w-periodic solutions of system(3).

2. EXISTENCE OF POSITIVE PERIODIC SOLUTIONS

In this section, we prove the existence of solutions of periodic solution. For the reader’s
convenience, we provide some notations and definitions and also we first prepare the functional

analytic settings:

Let PC, be the space of all functions ¢ such that ¢ left continuous at all points, ¢ is right
continuous at t # fy, lim, St ¢(1) exists and ¢(r + o) = ¢(¢), PC,, the space of all functions
¢ € PCy, which are continuously differentiable at ¢ # #,, lim, S exists and lim, St ¢’ (¢) and
lim,_, - o(t) exist, k € Z.

Let X,Z be normed linear spaces, L : Dom L C X — Z be a linear transformation, and N :
X — Z be a continous functionn. The map L is knows as a Fredholm map of index zero if
dimKer L = codim Im L < +o0and Im L is closed in Z. If L is a Fredholm mapping of index zero
there exist continuous projectors P: X — X, and Q : Y — Y such that Im P = Ker L,Ker Q =
Im L =1Im (I — Q). This implies that the restriction L|, of L to Dom LNKer P: (I—P)X —Im L
is invertible. The inverse of Lp is denoted by Kp. If Q is an open bounded subset of X, the
mapping N will be called L-compact on  if QN(Q) is bounded and Kp(I — Q)N : Q — X is
compact. Since Im Q is isomorphic to Ker L, there exists an isomorphism J : Im A — Ker L.

We will make some notations and defintions which will be used in the proof of the main

theorem

dy =Yy log(1+di) do=Yy_ log(l+dx)
_ 1 o
f= 5/0 f(t)dt
fr= SUP;c(0,m] (0] M= infc(o,o] | /(7)]

Definition 2.1. The set 7 C PCy, is said to be equicontinuous if for any € > 0 there exists a § >

0 such thatu € F k € Z*,f andt” € (tx_1,4] N[0, @] and |’ — 17| < &, then |u/ (') —u(r”)| < €.
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Lemma 2.2. [15] The set # C PCy is relatively compact if and only if

a is bounded, that is,

(ii

) F ul| = sup;cpo,o l[u(t)|| <M for eachu € F;
) F is quasi-equicontinuous.

Our existence theorem for periodic solution of the equation (2) is proved with the help of the

following theorem of Gaines and Mawhin [8]

Theorem 2.3. Let L be a Fredholm mapping of index zero and N be L-compact on Q. Suppose

that

(i) for each A € (0,1),every solution x of Lx # ANx is such thatx ¢ Q;
(ii) for each A € dQ N KerL,ONx # 0;

(iii) deg{JON,Q N KerL,0} # 0.

Then Lx = Nx has atleast one solution lying in Dom LN Q.

Theorem 2.4. The system (2) has atleast one positive ®-periodic solution provided that

(A1) (FT+d) (@1 —m(72 + o)) — (@i1) (72 + d) U104 > 0

Proof. Let x(t) = 1) x,(t) = ¢*2(). Then we obtain the following equivalent system:

[ (1)
1) — _ w(—v(r) _ G2(1)e”
uy () ri(t) —ap(t)e T (1)

ary (t)e”l (t—n2(1))
1+ me“l(fiTZ(t))

@) uh(t) = | —ra(t) +

Aul(t) = log(l —f—dlk)

_ azz(t)euz(tfa(l))]

Auz(l‘) = log(l +d2k)

It is easy to see that if system (4) has one w-Periodic solution (uj(t),u;(t)) then the corre-
sponding x*(t) = (x}(t),x5(t))T is a periodic solution of (3). Therefore, to complete proof, it

suffices to show that the system (4) has atleast one @ periodic solution.
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Let
X = {u=(u1,u2)" € PCo([0, 0], R?) : ui(t + ®) = ui(t),i = 1,2},Z = X x R?4+1),

Let us define

] = max 1 (1) + max us ()],
[0,00] t€[0,0]

and for any (u,n) € Z
2(g+1)

1M = llull+ Y. [yl
j=1

Then X and Z are Banach spaces. Set L :Dom LNX — Z,L(u) = (' (1), Au(ty)]_,),

where
Dom L = {u= (u1,u2)" € PCo(R,R?) : u; € PCo,i = 1,2}.
and N : X — Z,
N Uy _ ”l(t)—an(t)e”l(f—fl(t))_% log(1+diy) q
u (1) + aZI(I‘)eul(l—Tz(f)) _ ayyet2t=1(1) ’ log(1+ da) .

14+ meul(tffZ(t))
P:X =X, P((u,u2)") = (@, m)" and 0: Z ~ Z,

w
k
Ui my wof “’];1 0
Q 9 = 0} q b
u n 1 1 0
2 k) ) k=1 m({ Ndr+5 Y m k=1
k=1

It is easy to see that

KerL = {u = (u,un)T €X:3ceR? (ui(t),us(r)) =c, fort € R}.

ImL = {y_<u n,n2,.. n2q>€Y E'MGDOmL / ds_|_2nk_ }

Since Im L is closed in Y and dimker L = codimIlm L = 27L is a Fredholm mapping of index

zero. Moreover, the generalized inverse (to L) K, : Im L — Ker PN Dom L is

t 160[ zq
u(s)ds+ —//us dsdr — .
0/ Lo e yn

0<t; <t
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Then direct computation gives us

alz(;)euz(t)}

[0
1 - wl-n() @201 g
() w({[(”@ an(@)et-a0) - S2UC dt+wkzllog(1+d1k) 0
0 = | oy (1)1 1= 2(0) 7

B_Z)[—rz(t) Jar+

&=
["JQ
o
UQ
=
+
S
a

14+ met (t—2(t))

and

ui
Ky(I—Q)N
us

an(s)e”Z(S)

t
[ [1(s) = ani(s)em (s - Jas+ ¥ tog(1+an)
0

_ I men®) 1,
g[—rz( ) ?i(frz::((:_z((:)))) —azze”Z(ST3(s)>]ds+;log(1+d2k)

) %o‘(f)g [7”1 (5) —ayi (s)ems=al) — %]dt“f—élog(l +dix)
L S i

) (é - %) of[ (t) —an; (1)er—00) — —cl”i(;z::f((;)]dt +kélog(l +dii)
(é - %) z‘) [ ra(1) + ?21(2:11((:;(:)))) — anel(t — 13 (t)ﬂ dr +§110g(1 +dy)

Clearly, ON and K, (I — Q)N are continuous. Furthermore, it follows from Lemma 2.2 that
ON(Q) and K,(I — Q)N(Q) are relatively compact for any open bounded set Q C X. Therefore,
N is L- compact on Q for any open bounded set Q C X. In the following, we consider the

operator equation Lu = ANu, A € (0, 1), that is,

alz(t)euz(t)
1 4 me1(t)

_ azz(r)eu2(l_f3([))i| ,t ;A Iy,

) (1) = A [n (1) —apy(r)e" =2 — ] t # 1,

a (t)eul([*h(t))
1 4+ me (t=2(1))

(1) = A = (1) +

Auy (1) = Allog(1+dyx)],

(&)

Auy(t) = Aflog(1 +dy)]-
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Integration of both sides of the system (5) from O to ® gives

o -
uz ()
) d — w(t-n (), @2)e?”
a)(r1)+d1—/ ajje’! ! +1—|—me“1(t) dr

(6)

0

®

o B ar (t)e"1=7(1) wat—73(1))

o(r2) +dz = / 1 +memt—n() an(t)e™ R d.
0

It follows from the first equation of (5) that

e @ ur (1= (1)) M
/0|u1(t)\dt</0 [rl(t)Jran(f)e +1+meu1(r)}dt

=2(rno+d;)

@, @ az (r)e"1 ) ur(1—3(1))
/O\uz(t)\dt</0 [rz(t)+1+meu1(tTz(t))_azz(t>e |dt

Since (u1,uz)! € X, there exists &,1; € [0,®], i = 1,2 such that

u(&l) = min Lt](t) u(m) = max ul(t)
te0,m] 1€]0,0]
(7N
v(&) = min uy(r) u(1n) = max uy(t)
1€)0,] t€[0,0]

It follow from (5) and (7) that
(0]
(8) / an (e dr < Fo+d,
0

which gives

9) ui (1) < uy (&) + A |ud) (1) |dt

r1+dp
ar

<In

+2(f1(0+d1)

It follows from the second equation of (5) and (7) that

o [0 ur (1= (1))
/ 6122(t)€u2(t_r3(t))dl‘ S/ a21(t) ¢ dt < an®+d
0 0

1 _|_meu2(l‘—’t'2(t) m

which implies that

67210)}

. ]
uz(t)guz(ez)—l—/ ol <[22t a] 42
0 dy

manj
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(10) r(&) < In (@21) +ds.

majn

On the other hand, (5) yields that

w
(11) / a1 (1) 2D gt > 70+ db,
0
implying that
P00 +d
(12) u(ny) > In 2852
azi

We derive from (11) and (12) that

i +dy
asy

(13) w (1) > 1 (1) —/O 1, (1)|dt > In (Fo+ds)

which together with (9) gives

ri+d

r+d
max |u;(¢)| < max|In 14—2(;’160—1—(11)\,|1n’”2+ !

+2(7160+d2)| :
(14) t€[0,m] ail ar

Once again from the second equation of (5)

) ) u(t—m(1)) )
w(—t(r) , _ @ a22(t)e _ / _
/O e dt /0 1+meu1(tfrz(r))dt A r(t)dt —d;

) im0 @)
> m — o —dp

which implies
(16) axn(1+me 1)) > (ay)) —m(Fy — do)e"1 &) — 7y — .
Therefore

up(n) < M1(€1)+/0w|ull(f)|df
A7) <ui(&)+2(Fro+d;)

Fi +% < apetm 4 apem),
We derive from (16) that
(18) (14 me (€))gM) > (@21 —m(Py —da)) (F1 +di — @npe2 (™))

allez(rl CO+d1)

which together with (2.9) implies



IMPULSIVE PREDATOR-PREY MODEL 6691

uy(t) > u(ny) > ln(fl +d1)(@21 —m(F2 —dp)) — an (P2 +dp — N1 H))
(19) - a ayare2Motd) (14 m(7 +dy))e2no 4 ddTll)

+ay —m(7) —da) +az(a —m(f2+dy))

Hence, by (19) we obtain the inequality

t) 2 usm) — [ a0

(20 (F1 +d1) (@21 — m(F2 + da)) — ayy (P + dp) 11O+

B (2d21co
m

- (7 4 +dy)
51152262(71w+d1)(1 + (m(’—,l +d1)))€ (rla)-q-m)

which together with (10) leads to

20710 ‘
)

max ‘uz(t)‘ < max (‘ln 1 ‘—}—
m

t€[0,0] mayp

(71 —f—dl)(c_lzl — m(fz +d1)) —daj (72 + dz)ez(fl o+dy)

21 In - -
D a11ag (O ) (14 m(Fy +dy))e2 (P90 ) + ay — m(Fy +dy)
ar
+2-2 +d2) — H,
m

Clearly, H,,H; in (14) and (21) are independent ofA. Denote H = H| + H, + Hy. whereH) is

taken sufficiently latge such that each solution (o*, B*) of the following algebraic equations

d 7.~ oB
El—i-n—duea— 16125 7 =0
me
(22) P
g 2 azie” - B _
r2—|—w+1+mea ane 0
satisfies
(23) I(a*, B9 = |a*|+|B*| <H
if it exits and the following
Fi+d; r+dy
max ‘ln - ,‘ln — ’
art azl
(24) +maxH1n ) ‘ ‘ln (71+d1)(6721_—m(f2+d2)—511(f2+d2)) H
may; (311522(1 —i—mrl;l_fil +d12((iz] —m(fz —i—dz)))

< H.
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We now take Q = (uy(t),uz(¢))" € X : ||(u1,u2)”|| < H. This satifies the condition (a) in
Thoerem 2.3. When (u1(t),u2(t))T € 0QNKerL = dQNR?, (u1,u3)7 is a constant vector inR?
with |u;| 4 |uz| = H. If (22) has atleast one solution, then

n d_ = Uy n
uj my —]—l—rl—c'me”‘ _ _dne 0 0
QN{ , ] = | ® 1 4+ mett , 7&
0 m) ) —F+ L4 B e 0/ )., \O

If (22) does not have a solution, we can directly derive

ui

on| || ]#

up 0
This proves that condition (ii) in Theorem 2.3 is satisfied. Finally we prove that condition (iii)
in Theorem 2.3 holds. Now we define ¢ : Dom L x [0,1] — X by

05) (st 1) = [ fl_ —i—uclll —ap e i [<

14+me"1

ape'l 5
anpe2 T+mem — 12 d2> }
— a2

where @ € [0,1] is a parameter. When (u(t),uz)? € 9QN, KerL ¢(uy,ua, 1) # 0 otherwise,

ther is a constant vector(u1,u2)” with|uj 4 uy| = H satisfing ¢ (u1,us, 1) = 0

_ _ ay e

d — ur _ _— = 0
ri+dy—ape ‘u1+me”1
leeul = u = _
Thmen M€ —p(2tdy) = 0

A similar argument in (14) and (21) shows that

71+d2| |lnf1+d2‘}

lup| < max{‘ln - -
arn ar

) N N a5 g
lup| < max{\ln 921 |, |In _(r1_+ 1)(0217 +;“(sz 2)_) a11(fz+ ) }
man anaxn(1+m"2) +apn(an —m(i +d))

It follows from (24) that |u;| + |uz| < H which leads to a contradiction. Using the property of
topological degree and taking J = I : ImQ — KerL, we have (uj,us)” — (u1,uz)”
deg(JON ((u1,uz)",QNKerL,(0,0))) = deg(¢ (u1,u2,1), 2N KerL, (0,0)7)

= deg(¢(u,u,0),QNKerL,(0,0)7)

arje!
+met

=deg (((71 +dy)—ape", —ane™)’,dNKerL, (070)T>
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The system of algebraic equations

dy
Ffl+——ane =0

0]
axe _

— —ape? =0
1 4+ met1

which has a unique solution(uj, ;) which satisfies
r+d;
an
a (71 +di)
axn(an +m(r +dp))

uj =1In

u, =In

Thus a direct calculations shows that

T T —ajpet! 0
deg(JON (u1,uz)’ ,QNKerL,(0,0)" )= [sgn| _
@el =
[rmenyy 42267
= sgn{a ane 1}

=1

Finally, it is easy to show that the set k,(I —Q)Nx|x € Q is equicotinous and uniformly
bounded.By using the Arzela-Ascoli theorem, we see that k,(I — Q)N : Q — Xis compact. Con-
sequently L is compact. By now we have proved that Q satiesfies the Lemma(1.1). Hence (4)
has has at least one @ periodic solution.As a consequence,system (2) has atleast one positive

w—periodic solution. 0

3. STABILITY OF POSITIVE PERIODIC SOLUTIONS
We consider the nonimpulsive delay differential equation

wi(t) = y1 1) (ri (1) —an (O ¢ — 71 (1)) — 220

(26) AP bmy
val(t) = y2(0) (= r2(0) + a2 (1) 57y, ey — 92203201 = w(1)))

with the initial conditions

yi(s) = fi(s), fi(0) > 0, f; €€ ([=7,0],Ry),i=1,2

(27) T= max 7(t), 0 (t), 3(t)
te(0,0]
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where
an(t) = oy a1 (1+dik)
Di(t) = Moy (1+dik)(1 +d2k)_1

Dy(t) = Ty (1+dik) ™ (14 dak)

Lemma 3.1. Let x(t) = (x1(¢),x2(¢))7 is a solution of (4) with initial conditions. Then ther
eexists a Ty > 0 such that 0 < x;(t) < H;,i =1 2f0rt > T, where

I‘L
(28) H =H,>H= max{ 21
ailp azg

Lemma 3.2. Let x(t) = (x(t),x2(t)) is a solution of (4) with initial conditions. Then ther

exists a To > 0 such that 0 < x;(t) > h;,i = 1,2 fort > T>, where
*(Vz)U]}

Theorem 3.3. Assume that the conditions of Theorem(2.3) hold. In addition, assume

rk H
29) h=h<H= max{¢e
“11

(30) /0 “A(t)dt > 0
where
A(r) = min{minay (t) + a1 (t)D1(t)h — mHa (1)Da(t) },
min{ay, (t)mh+ ayi(t)D1(t)h+ mha,(1)Dy (1)}

Proof. Let x*(t) = (¥(t),x,(t))T be a positive @-periodic solution (2 ) then y*(¢) =
L)) T, (v () = oy (1 + dik) x5 (2),i = 1 2) is a positive w-periodic solution (26 )
and let (y1(t),y2)" be any positive solution of system (26 ) with the initial conditions ( 27). It

follows from Lemma 3.1, and Lemma 3.2 that there exists 7', H; and h; such that V¢t > T
(3D hi <yi(t) <Hj,hi <yi(t) <Hji=1,2.

Choose Lypnov function as follows

2
(32) V() = Y |logy; (1) —logyi(t)].
=1
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Since for any impulsive time #; we have
2
V(t]:_) = Z |logd,-ky;-k(tk1) — logdikyi(tk)| = V(lk).
i=1

V(t) is continuous for all > 0

On the other hand,from( 2. 3 )we can obtain that for any t € RKand 1 # 1,

(3) L7 (0) (1) < ltogy? (1)~ (0)] < () (o)

Calculating the upper -right derivative of V(t) along the solutions of (3.1) it follows that
1(1) i (t)
< sgn(yi(t) =y1(0) [—au it — () =yt —u (1))

O 10)) ]
)+myi(t)  Dy(t)+my;(z)

1) 2 (t —02(7))

2
DV(r) Z )sen(y; (t) —yi())

+sgn(y3(1) —y2(t)) [a21 (1) [

—an ()5 (t — 3(1)) — y2(t — w3(1))]]

(34) DTV (1) < —sgn(yi (1) =y1(t)[an (i (t = 7 (1)) = 1 (¢ = 22(1)))]

—sgn(y3(t) —y2(1)) [axa (1) 5 (t — w3(1)) = yat — T (1))]] + A1 + 49

where

Ay = —sgn(y1(t) —y1(t))ar2(1) [Dl( )yj_(n)/ly (1) Dl(t)yj-(n)ﬂ’l( )]
et V() (D1 0) +myr (1)) ~ 2 (0) (D1 () + my; (1)
——sgn(y1—y1)alz(f)[ (D1 (t) +my*(£)) (D1 (r) +my1 (1)) 1 ]

= —sgn(y] —y1)a(t)
V3D1(t) +m(y5y1 — yiy2 —yay1 +y2y1) — Di1(t)y2 + D1 (t)y2 — y2Dy (t)]

(D1 (2) +my7(0)) (D1 (1) +my1 (1))

< —appmhlys —y2| —aipmh|y] —y1| —anDi(t)]y; — 2

Dy (1) +myj(t — () Da(t) +myi(t —a(t))

6695
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. y*(l‘) yl(t)
—sgn(y5(t) —ya(t))an (1) [Dz(t) _l|_my>{ (1) - Ds (1) —l—m)’l(t)]

Dy (t)y; +my1y] — Da(t)yr —myiyi }
(Da(t) +my7)(Da(t) +myy)

—sgn(y> —y2)azi [

a1 (t)Da(t) |y} — 1

It follows from A; and A, that

DV(1)

< —an (0)y] —y1] — a2 (t)|y3 — y2| +a21(t)Da(t) [y] — y1

—ajpmh|y; —ya2| —apa(t)mh|y] —yi| —an(t)D1(1)]y5 — y2

< 1 —nill=ain(t) + a2 ()Da(r) — argmh]

+[y3 = yal[=axn(t) — ain(t)mh — ain(t)D ()]
< —lan(t) —ax()Da(r) +aromh]|yi —yi|

—laxn(t) + an(t)ymh —ain(t)D1(1)]|yz — y2|
< —A(r)

From this ,we further have any r > 0;V (1) < V(O)e(*f(;A(”)d”).From(26)we can

JoA(u)du — o as t — oo,Hence, V(t) — 0 as t — oo.Further from (33) we have

lim [y; —
t—ro0

yi(t)] = lim [Tz (1+di) 155 (0) —x(0)]] = 0.6 =1,2

Therefore lim; o0 |x] (1) —x;(¢)| = 0,i = 1,2

4. ILLUSTRATING EXAMPLE

Example 4.1. 7o illustrate the result obtained, we consider the system

xXy(1) = xi (1) {(I—I—O.lsint)—O.lxl(t—O.l)—lfT(tl)(t)}
x5 (1) = xp(1) {—%(Z—FSint)%—% —xz(t—O.l)]

1

Axi(1) = (= = 1)x (1), = 4

e
1

Axy(t) = (= = Dxa(t), 1 =1

e
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It is very simple to verify the conditions of the Theorem 2.4 and the system has atleast one

positive periodic solutions.
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