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Abstract. In the present paper, we developed an explicit finite difference scheme for stochastic time fractional

heat transfer equation. Furthermore, we proved the conditional stability of the solution of the scheme and analyze

the effect of the multiplier of the random noise in mean square stability. Also, we discuss the convergence of

the explicit scheme in the mean square sense. The approximate solution of the practical problem is obtain by

developed scheme and it is represented graphically by Mathematica software.
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1. INTRODUCTION

Stochastic partial differential equations are very useful in describing random effects occuru-

ing in the fields of science, engineering and mathematical finance. Several numerical methods

have been developed to solve stochasstic partial differential equations (SPDEs), Allen [2] has

constructed finite element and difference approximation of some linear SPDEs. Kamrani and

∗Corresponding author

E-mail address: archana1704@gmail.com

Received August 07, 2021
7805



7806 ARCHANA MOURYA, KALYANRAO TAKALE, SHRIKISAN GAIKWAD

Hosseini [9] discussed explicite and implicit finite difference methods and their stability con-

vergence for general SPDEs. Furthermore, Soheili et al. [29] presented higher order finite

difference scheme and Saul’yev scheme for solving linear parabolic SPDEs.

Now a days, fractional calculus is a developing branch of mathematics which deals with

the derivative and integrals of non-integer order and attracted lots of attention in several fields

such as physics, chemistry, engineering, hydrology and finance. Recently, fractional diffu-

sion equations are becoming more popular in many areas of applications [11, 14, 23, 27, 37]

and stochastic fractional partial differential equations[1, 36] etc. Stochastic partial differential

equations with fractional time derivative can be used to describe random effects on transport of

particles in medium with thermal memory or particles subjected to sticking and trapping [4].

The theoretical analysis of fractional stochastic partial differential equations have been inten-

sively investigated in the literature [4, 15, 16], also, Sweilam et al. [31] presented compact

finite difference method to solve stochastic fractional advection diffusion equation. Amaneh et

al [3] introduced stochastic generalized fractional diffusion equation and used finite difference

method for finding numerical solution. Chen et al [4] introduced a class of SPDEs with time

fractional derivatives and proved existence and uniqueness of their solutions.

The classical heat equation deals with heat propagation in homogeneous medium and the time

fractional diffusion equation has been widely used to model the anomalous diffusion exhibiting

sub diffusive behavior due to particle sticking and trapping phenomena [13]. When noise is

introduced in partial differential equations, turns it to SPDEs. According to the nature of the

noise term there are two main classes of SPDEs like SPDEs with additive noise and SPDEs with

multiplicative noise. In additive SPDEs, noise term does not depends on the state of the system,

while the noise term depends on the state of the system in multiplicative SPDEs. Additive noise

occurs due to temporal fluctuations of internal degrees of freedom, while multiplicative noise

arrives due to random variations of some external control parameters [8]. Fractional stochastic

partial differential equation considers both memory and environmental noise effect. Now a

days, Liu et al [36] studied some properties of a class of fractional stochastic heat equations.

Babaei et al [1] applied a spectral collection method to solve a class of time fractional heat

equation driven by Brownian motion. Guang-an Zou [6] presented a Galerkin finite element
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method for time fractional stochastic heat equation driven by multiplicative noise. Stochastic

fractional heat equations driven by additive noise are yet to be investigated. At the same time,

it is very difficult to find exact solution of stochastic fractional heat equations by analytical

methods but finite difference methods that gives large algebraic system to solve in place of

differential equation. In this connection, the theme of this paper is to develop a fractional order

explicit finite difference scheme for stochastic time fractional heat transfer equation (STFHTE)

driven by additive noise with initial and boundary conditions, given as follows,

∂ αS(x, t)
∂ tα

= D
∂ 2S(x, t)

∂x2 +σẆ (t); (x, t) ∈Ω : [0,L]× [0,T ]

Initial condition : S(x,0) = S0(x), 0≤ x≤ L

Boundary conditions : S(0, t) = S(L, t) = 0, x→ ∞, t ≥ 0

where, D > 0 is the diffusivity constant, σ > 0 is the constant noise intensity, i.e.additive noise.

Now, W (t) is one dimensional standard Winner process, where Ẇ (t) = ∂W (t)
∂ t , such that white

noise ∆W (t) is a random variable generated from Gaussian distribution with zero mean and

standard deviation ∆t and S(x,t) is temperature at the position x and at time t. Here, ∂ α S(x,t)
∂ tα is

Caputo time fractional derivative of order α . We consider the following definitions for further

developments.

Definition 1.1. The Caputo time fractional derivative of order α , (0 < α ≤ 1) is defined as

follows [22]

∂ αS(x, t)
∂ tα

=

 1
Γ1−α

∫ t
0

∂S(x,t)
∂ξ

dξ

(t−ξ )α , 0 < α < 1
∂S(x,t)

∂ t , α = 1

where Γ(.) is a Gamma function.

Definition 1.2. Euler-Maruyama Scheme:

For the d-dimensional Stochastic differential equation of Itó type [25] dS(t) = f (t,S(t))dt +g(t,S(t))dW (t), t ≥ 0

S(0) = S0 ∈ Rd,
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where f ,g : Rd → Rd , the Euler-Maruyama Scheme for computing approximations Sk
i takes the

form

Sk+1
i = Sk

i + f (Sk
i )∆t +g(Sk

i )∆Wk,

where

∆W k =W (tk+1−W (tk) =W ((k+1)∆t)−W (k∆t)

and ∆W k ∼N (0,∆t).

Definition 1.3. A sequence of random variables {Xnk}, (n, k > 0) converges in mean square to

random variable X if lim
nk→∞

||Xnk−X ||= 0 [30].

Definition 1.4. A Stochastic difference scheme is stable in mean square if there are positive

constants ε,δ and constants k, b such that [30]

E|Sk+1
i |2 ≤ kebt |S0|2

for all 0≤ t = (k+1)∆t, 0≤ ∆x≤ ε and 0≤ ∆t ≤ δ .

Definition 1.5. A Stochastic difference scheme Lk
i Sk

i = Gk
i approximating Stochastic partial

differential equation Lv = G is convergent in mean square at time t = (k+1)∆t if

E|Sk
i −S|2→ 0,

as i→ ∞, n→ ∞, (∆x,∆t)→ (0,0) and (i∆x,k∆t)→ (x, t) [30].

Definition 1.6. The symmetric second order difference quotient in space at time level t = tk is

given as follows [28]

∂ 2S(x, t)
∂x2 =

S(xi−1, tk)−2S(xi, tk)+S(xi+1, tk)
h2

We organize the paper as follows: In section 2 , we develop the explicit fractional order finite

difference scheme for Stochastic time fractional heat transfer equation. The stability of the

solution is proved in section 3 and section 4 deals with convergence of the scheme. Finally, in

the last section, the numerical solutions of Stochastic time fractional heat transfer equation is

obtained and simulated graphically by Mathematica.
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2. FINITE DIFFERENCE SCHEME

We consider the following Stochastic time fractional heat transfer equation driven by additive

noise (STFHTE) with initial and boundary conditions

(1)
∂ αS(x, t)

∂ tα
= D

∂ 2S(x, t)
∂x2 +σẆ (t); (x, t) ∈Ω : [0,L]× [0,T ]

(2) Initial condition : S(x,0) = S0(x), 0≤ x≤ L

(3) Boundary conditions : S(0, t) = S(L, t) = 0, t ≥ 0

where, D > 0 is the diffusivity constant, σ > 0 is the constant noise intensity, i.e.additive noise.

Now, W (t) is one dimensional standard Winner process, where Ẇ (t) = ∂W (t)
∂ t , such that white

noise ∆W (t) is a random variable generated from Gaussian distribution with zero mean and

standard deviation ∆t. Note that for α = 1, we recover in the limit the well known Stochastic

heat transfer equation of Markovian process

∂S(x, t)
∂ t

= D
∂ 2S(x, t)

∂x2 +σẆ (t), x ∈ R; t ≥ 0.

For the numerical approximation of the explicit scheme, we define h = L
N and τ = T

N the space

and time steps respectively, such that tk = kτ; k = 0,1, · · · ,N be the integration time 0≤ tk ≤ T

and xi = ih for i = 0,1, · · · ,N. Define Sk
i = S(xi, tk) and let Sk

i denote the numerical approxima-

tion at the mesh point (xi, tk) to the exact solution S(xi, tk).

The time fractional derivative ∂ α S(x,t)
∂ tα at the mesh point (xi, tk+1), i = 1,2, · · ·N − 1, k =

0,1,2, · · · . is approximated as follows

∂ αS(xi, tk+1)

∂ tα
≈ 1

Γ(1−α)

∫ tk+1

0

1
(tk+1−ξ )α

∂S(xi,ξ )

∂ξ
dξ

=
1

Γ(1−α)

k

∑
j=0

S(xi, t j+1)−S(xi, t j)

τ

( j+1)τ∫
jτ

dξ

(tk+1−ξ )α

=
1

Γ(1−α)

k

∑
j=0

S(xi, t j+1)−S(xi, t j)

τ

(k+1− j)τ∫
(k− j)τ

dη

ηα
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=
1

Γ(1−α)

k

∑
j=0

S(xi, tk+1− j)−S(xi, tk− j)

τ

( j+1)τ∫
( j)τ

dη

ηα

=
τ1−α

Γ(2−α)

k

∑
j=0

S(xi, tk+1− j)−S(xi, tk− j)

τ
× [( j+1)1−α − j1−α ]

(4)
∂ αS(xi, tk+1)

∂ tα
=

τ−α

Γ(2−α)
[S(xi, tk+1)−S(xi, tk)]+

τ−α

Γ(2−α)

k

∑
j=1

b j[S(xi, tk+1− j)−S(xi, tk− j)]

where b j = ( j+1)1−α − j1−α , j = 0,1,2, · · · ,k.

We adopt a symmetric second order difference quotient in space at time level t = tk for approx-

imating the second order space derivative,

(5)
∂ 2S(x, t)

∂x2 =
S(xi−1, tk)−2S(xi, tk)+S(xi+1, tk)

h2 .

Therefore, from equations , (4) and (5), we approximated the Stochastic fractional heat transfer

equation (1) as follows

τ−α

Γ(2−α)
[Sk+1

i −Sk
i ]+

τ−α

Γ(2−α)

k

∑
j=1

b j[S
k− j+1
i −Sk− j

i )]

= D
[S(xi−1, tk)−2S(xi, tk)+S(xi+1, tk)]

h2 +σ
W ((k+1)τ)−W (kτ)

τ
(6)

After simplification, we get

Sk+1
i = rSk

i−1 +(1−2r−b1)Sk
i + rSk

i+1 +
k−1

∑
j=1

(b j−b j+1)S
k− j
i

+bkS0
i +a

[
W ((k+1)τ)−W (kτ)

τ

]
(7)

where i = 1,2, · · · ,N− 1, k = 0,1,2, · · · ., r = D τα Γ(2−α)
h2 , a = σταΓ(2−α) and b j = ( j +

1)1−α − j1−α , j = 1,2, · · ·k.

The initial condition is approximated as S0
i = S0, i = 1,2, · · · ,N−1.

The boundary conditions are approximated as Sk
0 = 0, Sk

N = 0, k = 0,1,2, · · · ,N−1.

Sk+1
i = rSk

i−1 +(1−2r−b1)Sk
i + rSk

i+1 +
k−1

∑
j=1

(b j−b j+1)S
k− j
i +bkS0

i +aW k(8)
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where, W k ∼
√

kτ N (0,1), k = 0,1,2, · · ·N−1.

Therefore, the complete discretization of STFHTE with initial and boundary conditions is

(9) S1
i = rS0

i−1 +(1−2r)S0
i + rS0

i+1 f or k = 0

(10) Sk+1
i = rSk

i−1 +(1−2r−b1)Sk
i + rSk

i+1 +
k−1

∑
j=1

(b j−b j+1)S
k− j
i +bkS0

i +aW k, f or k ≥ 1

(11) Initial condition: S0
i = S0, i = 1,2, · · · ,N−1.

(12) Boundary conditions: Sk
0 = 0 and Sk

N = 0.

where r = D τα Γ(2−α)
h2 , a = σταΓ(2−α) and b j = ( j+1)1−α − j1−α , j = 0,1,2, · · · ,k.

Therefore, the fractional approximated IBVP (9)− (12) can be written in the following matrix

equation form

S1 = BS0, f or k = 0(13)

Sk+1 = ASk +
k−1

∑
j=1

(b j−b j+1)Sk− j +bkS0 ++aW k, f or k ≥ 1(14)

where Sk = (Sk
1,S

k
2, ...,S

k
N−1)

T , k = 0,1,2...,N− 1, A and B are tri-diagonal matrices of order

N−1 given by

A =



(1−2r−b1) r 0 0 · · · 0 0 0

r (1−2r−b1) r 0 · · · 0 0 0

0 r (1−2r−b1) r · · · 0 0 0
...

...
...

...
. . .

...
...

...
...

...
...

...
. . .

...
...

...

0 0 · · · 0 · · · r (1−2r−b1) r

0 0 · · · 0 · · · 0 r (1−2r−b1)


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B =



(1−2r) r 0 0 · · · 0 0 0

r (1−2r) r 0 · · · 0 0 0

0 r (1−2r) r · · · 0 0 0
...

...
...

...
. . .

...
...

...
...

...
...

...
. . .

...
...

...

0 0 · · · 0 · · · r (1−2r) r

0 0 · · · 0 · · · 0 r (1−2r)


.

3. STABILITY

In the present section, we discuss the stability of the solution of fractional order explicit finite

difference scheme (9)− (12) for the Stochastic time fractional heat transfer equation (1)− (3).

Theorem 3.1. The solution of stochastic time fractional heat transfer equation (1)− (3) ob-

tained by developed fractional order explicit finite difference scheme (9)− (12) is conditionally

stable in mean square sense, when r ≤min
{

1
2 ,

1−b1
2

}
, 0≤ b1 ≤ 1.

Proof: Proof: We define E|Sk|2 = sup
1≤i≤N−1

E|Sk
i |2, where Sk = (Sk

1, Sk
2, Sk

3 · · · , Sk
N−1)

T .

Then equation (9) leads to

E|Sk
i |= E|rS0

i−1 +(1−2r)S0
i + rS0

i+1|2

≤ |r+(1−2r)+ r|2 sup
1≤i≤N−1

E|S0
i |2, (when1−2r ≥ 0⇒ r ≤ 1

2
)

∴ E|S1
i |2 ≤ K E|S0|2, when r ≤ 1

2
.

We assume that

E|Sk
i |2 ≤ KE|S0|2, ∀n≤ k.

Then we prove

E|Sk+1
i |2 ≤ KE|S0|2 forn = k+1.
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From equation (10), we obtain

E
∣∣∣∣Sk+1

i

∣∣∣∣2 = E
∣∣∣∣rSk

i−1 +(1−2r−b1)Sk
i + rSk

i+1 +
k−1

∑
j=1

(b j−b j+1)S
k− j
i +bkS0

i +aW k
∣∣∣∣2

E
∣∣∣∣Sk+1

i

∣∣∣∣2 ≤ E
∣∣∣∣rSk

i−1 +(1−2r−b1)Sk
i + rSk

i+1 +
k−1

∑
j=1

(b j−b j+1)S
k− j
i +bkS0

i +a
√

∆tVn

∣∣∣∣2
when (1−2r−b1) ≥ 0⇒ r ≤ 1−b1

2 , where Vn ∼N (0,1) and Vn is Normally distributed with

mean 0 and variance 1 i.e. N (0,1) random variable.

We know that E[Vn] = 0 and E[V 2
n ] = 1, therefore,

E|Sk+1
i |2 ≤ |r+(1−2r−b1)+ r+(b1−b2 +b2−b3 + · · ·+(bk−1−bk)+bk|2 sup

1≤i≤N−1
E|Sk

i |2

+(a2
∆t) sup

1≤i≤N−1
E|S0

i |2

≤ sup
1≤i≤N−1

E|Sk
i |2 +a2

∆t sup
1≤i≤N−1

E|S0
i |2

≤ (1+a2
∆t) sup

1≤i≤N−1
E|S0

i |2

≤ K sup
1≤i≤N−1

E|S0
i |2, where K = (1+a2

∆t).

≤ K E|S0|2, where K = (1+a2
∆t).

Hence, by induction, we prove

E|Sk
i |2 ≤ KE|S0|2, ∀n, K = (1+a2

∆t), when r ≤min
{

1
2 ,

1−b1
2

}
, 0≤ b1 ≤ 1.

Therefore, we prove that the solution of the scheme is conditionally stable in mean square sense.

4. CONVERGENCE

In the present section, we discuss convergence of the fractional order explicit finite difference

scheme (9)− (12) developed for the STFHTE (1)− (3).

Theorem 4.1. The fractional order explicit finite difference scheme (9)− (12) for stochastic

time fractional heat transfer equation (1)− (3) is convergent in mean square sense with r ≤

min
{

1
2 ,

1−b1
2

}
.
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Proof: Let S̄k =
(

S̄k
1, S̄

k
2, S̄

k
3, · · · , S̄k

N−1

)T
and Sk =

(
Sk

1,S
k
2,S

k
3, · · · ,Sk

N−1

)T
be the vectors of exact

solution and approximate solution of the STFHET (1)− (3) respectively. Then the fractional

order explicit finite difference scheme (9)− (12) becomes

(15) S̄k+1
i = rS̄k

i−1 +(1−2r−b1)S̄k
i + rS̄k

i+1 +
k−1

∑
j=1

(b j−b j+1)S̄
k− j
i +bkS̄0

i +aW k +T k

where T k is vector of truncation error at time level tk. Suppose, |ek
i | = |S̄k

i − Sk
i | is the error

vector. Let us assume that

E|ek
l |

2 = max
1≤i≤N−1

E|ek
i |2 = ||E∗

k
||2∞ andT k

l = max
1≤i≤N−1

|T k
i |= h2O

(
τ +h2)for l = 1,2,3, · · ·

For k=0, from equation (9), we obtain

E|e1
l |2 = E|re0

i−1 +(1−2r)e0
i + re0

i+1|2 + r|τ1
i |

≤ |r+(1−2r)+ r|2E|e0
l |

2 + r|τ1
l | (when 1−2r ≥ 0⇒ r ≤ 1

2
)

≤ E|e0
l |

2 + r|τ1
l |

≤ E|e0
l |

2 + r|τ1
l |

≤ E|e0
l |

2 + rh2O(τ +h2)

∴ E‖E∗
1
‖2

∞ ≤ E‖E∗
0
‖2

∞ + τ
α

Γ(2−α)O(τ +h2)

For n = k, we assume that

E‖E∗
k
‖2

∞ ≤ E‖E∗
0
‖2

∞ + kτ
α

Γ(2−α)O(τ +h2).

For n = k+1, we prove that

E‖E∗
k+1
‖2

∞ ≤ E‖E∗
0
‖2

∞ +(k+1)τα
Γ(2−α)O(τ +h2).
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Now, from (10), we have

E‖ek+1
l ‖2 = E|rek

i−1 +(1−2r−b1)ek
i + rek

i+1 +
k−1

∑
j=1

(b j−b j+1)e
k− j
i +bke0

i |2 + r|τk
l |

≤ |r+(1−2r−b1)+ r+(b1−b2 +b2−b3 + · · ·+bk−1 +bk)

+bk|2E|ek
l |

2 + r|τk
l | (when 1−2r−b1 ≥ 0⇒ r ≤ 1−b1

2
)

≤ E|ek
l |

2 + r|τk
l |

≤ E‖E∗
k
‖2

∞ + r|τk
l |

≤
(
E‖E∗

0
‖2

∞ + kτ
2
Γ(2−α)O(τ +h1)

)
+ τ

α
Γ(2−α)O(τ +h2)

≤ E‖E∗
0
‖2

∞ +(k+1)τα
Γ(2−α)O(τ +h2)

∴ E‖E∗
k+1
‖2

∞ ≤ E‖E∗
0
‖2

∞ +(k+1)τα
Γ(2−α)O(τ +h2).

Therefore, we conclude that E|S̄k
i −Sk

i |2→ 0 as (h,τ)→ (0,0) when r ≤min
{

1
2 ,

1−b1
2

}
.

Hence, we prove that the scheme is conditionally convergent in mean square sense. This com-

pletes the proof.

5. NUMERICAL SOLUTIONS

We consider the following stochastic time fractional heat transfer equation with initial and

boundary conditions

∂ αS
∂ tα

=
∂ 2S
∂x2 +σẆ (t),0 < x < 1, 0 < t < 1(16)

initial condition:S(x,0) = sinπx, 0≤ x≤ 1(17)

boundary conditions:S(0, t) = S(1, t) = 0, t ≥ 0.(18)

where 0 < α ≤ 1, σ > 0 is the constant noise intensity. Now, W (t) is one dimensional standard

Winner process, where Ẇ (t) = ∂W (t)
∂ t , such that white noise ∆W (t) is a random variable gener-

ated from Gaussian distribution with zero mean and standard deviation ∆t. In Figure 1, we plot

the exact solution of stochastic heat transfer equation in absence of noise term.
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FIGURE 1. The exact solution of Stochastic heat transfer equation (5.1)− (5.3)

without noise.
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FIGURE 2. Approximation solution of the STFHTE with constant noise inten-

sity σ = 1,2 and the parameters α = 1,0.9,0.8 respectively.
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FIGURE 3. Comparison of approximation solution of the STFHTE with con-

stant noise intensity σ = 1,2 and the parameters α = 0.9,0.8 respectively.

In Figure 2, we obtain the numerical solution of the STFHTE (5.1)-(5.3) for α = 1,0.9,0.8 with

additive noise σ = 1,2 respectively and observed that these solutions are good approximation

to the exact solutions. Therefore the developed fractional order explicit finite difference scheme

provides a effective approximate solution. We observed that as α increased the amplitude of

the solution behavior is increased. From Figure 3, we observed that the approximate solu-

tions of STFHTE (5.1)-(5.3) for α = 0.8 and α = 0.9 with σ = 1,2 are approximately same.

Therefore we conclude that if the additive noise intensity changes the numerical solutions are

approximately same.

6. CONCLUSIONS

(1) In present paper, we successfully developed the fractional order explicit finite difference

scheme for Stochastic time fractional heat transfer equation.

(2) The stability and consistency of the scheme are investigated for Stochastic time frac-

tional heat transfer equation in mean square sense and the bound of stability is r ≤

min
{

1
2 ,

1−b1
2

}
, where 0≤ b1 ≤ 1.

(3) The numerical examples with plots of the results are given to demonstrate the efficiency

of the scheme. It has been observed that the numerical scheme is very powerful and

provide approximate solution which is very near to the exact solution.
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