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Abstract. The aim of this paper is to establish the existence and uniqueness of common fixed point for a pair of

set - valued mappings satisfying more generalized constructive condition in the cone metric spaces setting with

normal constant M = 1. An illustrative example is provided to support the result obtained. As an application, prove

the well–posedness of the common fixed point problem. The presented results generalize many known results in

cone metric spaces.
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1. INTRODUCTION

If (X ,d) is a complete metric space and T : X → X is a contraction mapping that is

d(T x,Ty) ≤ αd(x,y), for 0 < α < 1 and x,y ∈ X then the well known Banach contraction

mapping principle [7] says that the mapping T has a unique fixed point in X . A great number

of generalizations of this famous theorem have been obtained by relaxing or weakening the

contracting condition and sometimes by withdrawing the requirement of completeness or even

both, see [8, 10, 11, 19, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 37, 39] and references given
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there in. Later, Nadier Jr. [22] has proved multilvalued version of the Banach contraction prin-

ciple which states that each closed bounded valued contraction map on a complete metric space

has a fixed point. Many authors have been using the Hausdroff metric to obtain fixed point

results for multivalued maps on metric spaces.

Recently, a very interesting generalization of the concept of metric space was obtained by

Branciari [9], by replacing the triangle inequality of a metric space by a more general inequal-

ity. Correspondingly, the Banach contraction mapping principle was proved in such generalized

metric space. Quite Recently, Huang and Zhang [15] generalized the concept of a metrc space,

replacing the set of real numbers by an ordered Banach space and obtained some fixed point

theorems for mappings satisfying different contractive conditions. Later Wardowski [42] in-

troduced the concept of multivalued contractions in cone metric spaces and using the notion

of normal cones, obtained fixed point theorems for such mappings. As we know, most of

known cones are normal with normal constant M=1. Further, Rezapour [35] proved two results

about common fixed points of multifunctions on cone metric spaces. For a detailed study, see

[1, 2, 3, 6, 12, 13, 16, 17, 18, 32, 35, 36, 38, 40, 41] . Motivated by the above work, in this

paper, analyze the existence and uniqueness of common fixed point for a pair of set-valued

mappings satisfying more generalized contractive condition in cone metric spaces setting with

normal constant M = 1. An example is given to justify my results. Further, we prove the

well-posedness of common fixed point problem. The presented results generalize many known

results in cone metric spaces.

2. PRELIMINARIES

In this section, recall the definition of cone metric space and some of their properties. The

following notions will be used in order to prove the main results.

Definition 2.1. Let E be a real Banach space. A subset P of E is called a cone if the following

conditions are satisfied:

(i) P is closed nonempty and P 6= 0;

(ii) a,b ∈ R, a,b≥ 0 and x,y ∈ P imply that ax+by ∈ P ;

(iii) P∩ (−P) = {0}.
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Given a cone P of E, define a partial ordering≤with respect to P by x≤ y if and only if y−x∈P.

We shall write x < y indicate that x≤ y but x 6= y, while x� y will stand for y− x ∈ intP.

A cone P is called normal if there is a number K> 0 such that for all x,y ∈ E, 0≤ x≤ y implies

‖x‖ ≤ K ‖y‖. The least positive number satisfying the above inequality is called the normal

constant of P.

Definition 2.2. Let X be a nonempty set and d : X×X→E be a mapping such that the following

conditions hold:

(i) 0≤ d(x,y) for all x,y ∈ X and d(x,y) = 0 if and only if x = y ;

(ii) d(x,y) = d(y,x) for all x,y ∈ X;

(iii) d(x,y)≤ d(x,z)+d(z,y) for all x,y,z ∈ X.

Then d is called a cone metric on X and (X ,d) is called a cone metric space.

Example 2.1. Let X = R, E = R2, P = {(x,y) ∈ E : x,y≥ 0} ⊂ R2 and d : X×X → E such that

d(x,y) = (| x− y |,δ | x− y |), where δ ≥ 0 is a constant. Then (X ,d) is a cone metric space.

Example 2.2. Let E =C1
R([0, 1]) with ‖ f‖ = ‖ f‖

∞
+‖ f‖

∞
. The cone P = { f ∈ E : f ≥ 0} is

a non-normed cone.

Definition 2.3. Let (X ,d) be a cone metric space. We say that {xn} is

(i) a Cauchy sequence if for every c ∈ E with 0� c, there is N such that for all m,n > N,

d(xn,xm)� c;

(ii) a convergent sequence if for every c ∈ E with 0� c, there is N such that for all n > N,

d(xn,x)� c, for some x ∈ X. It is denoted by limn→∞ xn = x or xn→ x.

A cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.

The limit of a convergent sequence is unique provided P is a normal cone with normal constant

K([15]).

Lemma 2.1. Let (X ,d) be a cone metric space and P be a normal cone with normal constant

K. Let xn be a sequence in X. Then xn is a Cauchy sequence if and only if d(xn,xm)→ 0 as

m,n→ ∞.
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Lemma 2.2. Let (X ,d) be a cone metric space, P be a normal cone with normal constant M = 1

and A be a compact set in (X ,τc). Then for every x ∈ X there exists a0 ∈ A such that ‖d(x,a0)‖

= infa∈A ‖d(x,a)‖.

Lemma 2.3. Let (X ,d) be a cone metric space, P be a normal cone with normal constant

M = 1 and A,B be two compact sets in (X ,τc). Then supx∈B D(x,A) < ∞, where D(x,A) =

infa∈A ‖d(x,a)‖, for each x ∈ X.

Definition 2.4. Let (X ,d) be a cone metric space, P be a normal cone with normal constant

M = 1, Hc denote the set of all compact subsets of (X ,τc) and A ∈ Hc . Now by lemma(2.2),

define

hA : Hc(X)→ [0,∞) and dH : H(X)×Hc(X)→ [0,∞) by

hA(B) = supx∈A D(x,B)< ∞, and dH(A,B) = max{hA(B),hB(A)}, respectively.

Remark 2.1. Let (X ,d) be a cone metric space and P be a normal cone with normal constant

M = 1. Define ρ : X ×X → [0,∞) by ρ(x,y) = ‖d(x,y)‖. Then, (X ,ρ) is ametric space. This

implies that for each A,B ∈ Hc and x,y ∈ X, we have the following relations:

(i) D≤ ‖d(x,y)‖+D(y,A),

(ii) D≤ D(x,B)+hB(A), and

(iii) D≤ ‖d(x,y)‖+D(y,B)+hB(A),

Definition 2.5. (Implicit Relation) Let Φ be the class of real valued continuous functions

φ : R3
+→ R+ non-decreasing in the first argument and satisfying the following condition: for

x,y > 0,

(i) x≤ φ(y, x+y
2 , x+y

2 ) or

(ii) x≤ φ(x,0,x),

there exists a real number 0 < h < 1 such that x≤ hy.

Example 2.3. Let φ(r,s, t) = r−α min(s, t)+(2+α)t, where α > 0.

Example 2.4. Let φ(r,s, t) = r2−ar max(s, t)−bs, where a > 0,b > 0.

Example 2.5. Let φ(r,s, t) = r+ cmax(s, t), where c≥ 0.
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Definition 2.6. A sequence {xn} in a cone metric space in X is said to be asymptotically

T−regular if limn→∞ d(xn,T xn) = 0.

3. MAIN RESULTS

Theorem 3.1. Let (X ,d) be a complete metric space with normal constant M = 1 and S,T : X→

Hc(X) be two set-valued mappings such that

(3.1) d(Sx,Ty)≤ α max{d(x,y),d(x,Sx),d(y,Ty),
d(x,Sx)+d(y,Ty)

2
}

for all x,y ∈ X where 0≤ α < 1. Then S and T have a unique common fixed point in X.

Proof. Let x0 ∈ X be a arbitrary point. Then by lemma 2.2, there exist x1 ∈ Sx0 and x2 ∈ T x1

such that D(x0,Sx0)=‖d(x0,x1)‖ and D(x1,T x1)=‖d(x1,x2)‖.

Likewise, for n ∈ N, we define a sequence xn in X such that x2n−1 ∈ Sx2n−2, x2n ∈

T x2n−1.Therefore, D(x2n−2,Sx2n−2)= ‖d(x2n−2,x2n−1)‖ and D(x2n−1,T x2n−1)= ‖d(x2n−1,x2n)‖

for all n ∈ N. Thus, for all n ∈ N, we have the following

‖d(x2n,x2n+1)‖= D(x2n,Sx2n)

≤ hT x2n−1(Sx2n)

≤ dH(T x2n−1,Sx2n)

≤ α max{D(x2n,x2n−1),D(x2n,Sx2n),D(x2n−1,T x2n−1)

D(x2n,Sx2n)+D(x2n−1,T x2n−1)

2
}

= α max{‖d(x2n,x2n−1)‖ ,‖d(x2n,x2n+1)‖ ,‖d(x2n−1,x2n)‖

‖d(x2n,x2n+1)‖+‖d(x2n−1,x2n)‖
2

}

= α max{‖d(x2n,x2n+1)‖ ,‖d(x2n−1,x2n)‖}.

Case(i): If max{‖d(x2n,x2n+1)‖ ,‖d(x2n−1,x2n)‖} = ‖d(x2n,x2n+1)‖, then ‖d(x2n,x2n+1)‖ ≤

α ‖d(x2n,x2n+1)‖ which implies that ‖d(x2n,x2n+1)‖→ 0 as n→ ∞, since 0 < α < 1.

Case(ii): If max{‖d(x2n,x2n+1)‖ ,‖d(x2n−1,x2n)‖} = ‖d(x2n−1,x2n)‖, then ‖d(x2n,x2n+1)‖ ≤

α ‖d(x2n−1,x2n)‖ . Proceeding in this way, we obtain ‖d(x2n,x2n+1)‖ ≤ α2n ‖d(x0,x1)‖, n ∈N.
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Also for n > m, we have

‖d(xn,xm)‖ ≤ ‖d(xn,xn−1)‖+‖d(xn−1,xn−2)‖+ . . . · · ·+‖d(xm+1,xm,u)‖

≤ (αn−1 +α
n−2 + . . . · · ·+α

m)‖d(x1,x0)‖

≤ αm

1−α
‖d(x1,x0)‖

Thus ‖d(xn,xm)‖ → 0, as n→ ∞, since km

1−k → 0 as n→ ∞. Therefore, in both cases, {xn} is a

Cauchy sequence in X . Hence there exists a point z ∈ X such that xn→ z, as n→∞. Further, by

using Remark 2.1, we have

D(z,Sz)≤ D(z,T x2n−1)+hT x2n−1(Sz)

≤ D(z,T x2n−1)+dH(T x2n−1,Sz)

≤ ‖d(z,x2n)‖+α max{D(z,x2n−1),D(z,Sz),D(x2n−1,T x2n−1),

D(z,Sz)+D(x2n−1,T x2n−1)

2
}

= ‖d(z,x2n)‖+α max{D(z,x2n−1),D(z,Sz),D(x2n−1,x2n),

D(z,Sz)+D(x2n−1,T x2n)

2
}

= ‖d(z,x2n)‖+α max{D(z,x2n−1),D(z,Sz),D(x2n−1,x2n)},

now, letting n→ ∞, we get D(z,Sz) = 0. Hence by lemma 2.2, z ∈ Sz. Similarly,

D(z,T z)≤ D(z,Sx2n)+hSx2n(T z)

≤ D(z,Sx2n)+dH(Sx2n,T z)

≤ ‖d(z,x2n+1)‖+α max{D(z,x2n),D(z,T z),D(x2n,Sx2n),

D(z,T z)+D(x2n,Sx2n)

2
}

= ‖d(z,x2n+1)‖+α max{D(z,x2n),D(z,T z),D(x2n,x2n+1)},

now, letting n→ ∞, we get D(z,T z) = 0. Hence by lemma 2.2, z ∈ T z. Therefore, z ∈ X is a

common fixed point of S and T .

Uniqueness:
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Let z̃ be another common fixed point of S and T , that is, Sz̃ = T z̃ = z̃. Then

‖d(z, z̃)‖= ‖d(Sz,T z̃)‖

≤ α max{‖d(z, z̃)‖ ,‖d(z,Sz)‖ ,‖d(z̃,T z̃)‖ ,

‖d(z,Sz)‖+‖d(z̃,T z̃)‖
2

}

�

Which implies that ‖d(z, z̃)‖= 0, since α < 1 for all u ∈ X . Thus z is a unique common fixed

point of S and T .

Remark 3.1. Theorem 3.1 generalizes Theorem 3.1 of [12], Also, my result establishes the

uniqueness of the common fixed point of S and T .

Corollary 3.1. Let (X, d) be a complete cone metric space with normal constant M = 1 and

S,T : X → Hc(X) be two set-valued mappings such that

d(Sx,Ty)≤ ad(x,y)+bd(x,Sx)+ cd(y,Ty)+ e
d(x,Sx)+d(y,Ty)

2

for all x,y ∈ X and a,b,c,e≥ 0, where a+b+ c+ e < 1. Then S and T have a unique common

fixed point in X.

Remark 3.2. Note that corrollary 3.1 reduces to;

1. Theoram 2.3 of Razapour [35] when b = c and a = 0 = e in corollary 3.1.

2. Nadler’s result [22] in the case S = T and b = c = e = 0.

3. Corollary 3.3 of Poonkundran and Dharmalingam [30] if we take e = 0.

Note the following results are consequences of corollary 3.1.

Corollary 3.2. Let (X, d) be a complete cone metric space with normal constant M = 1 and

S,T : X → Hc(X) be two set-valued mappings such that

d(Sx,Ty)≤ ad(x,Sx)+bd(y,Ty)+ c
d(x,Sx)+d(y,Ty)

2
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for all x,y ∈ X and a,b≥ 0, where a+b < 1. Then S and T have a unique common fixed point

in X.

Corollary 3.3. Let (X, d) be a complete cone metric space with normal constant M = 1 and

S : X → Hc(X) be two set-valued mappings such that

d(Sx,Sy)≤ ad(x,y)+bd(x,Sx)+ cd(y,Sy)+ e
d(x,Sx)+d(y,Sy)

2

for all x,y ∈ X and a,b,c≥ 0, where a+b+ c < 1. Then S and T have a unique common fixed

point in X.

Corollary 3.4. Let (X, d) be a complete cone metric space with normal constant M = 1 and

S : X → Hc(X) be two set-valued mappings such that

d(Sx,Sy)≤ ad(x,Sx)+bd(y,Sy)+ c
d(x,Sx)+d(y,Sy)

2

for all x,y ∈ X and a,b,c ≥ 0, where a+ b < 1. Then S and T have a unique common fixed

point in X.

Remark 3.3. We obtain the set-valued Kamman type contracting condition [19] when c = 0 in

corollary 3.3 in the setting of cone metric spaces.

Theorem 3.2. Let (X, d) be a complete cone metric space with normal constant

M = 1 and S and T : X → Hc(X) be two set-valued mappings such that d(Sx,Ty) ≤

α{d(x,y),d(x,Ty),d(y,Sx),
d(x,Ty)+d(y,Sx)

2 } for all x,y ∈ X and 0≤ α < 1. Then S and T have a unique common fixed point

in X.

Proof. Using the similar argument of the proof of theorem 3.1, we can show that there exists a

Cauchy sequence xn in X such that x2n−1 ∈ Sx2n−2,x2n ∈ T x2n−1. Therefore, D(x2n−2,Sx2n−2) =

‖d(x2n−2,x2n−1)‖ and D(x2n−1,T x2n−1) = ‖d(x2n−1,x2n)‖ for all n ∈ N. Thus, we can find a

element x̃ ∈ X such that xn→ x̃ as n→ ∞.
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Applying Remark 2.1, we obtain

D(x̃,Sx̃)≤ D(x̃,T x2n−1)+hT x2n−1(Sx̃)

≤ D(x̃,T x2n−1)+dH(T x2n−1,Sx̃)

≤ ‖d(x̃,x2n)‖+α max{D(x̃,x2n−1),D(x̃,T x2n−1),

D(x2n−1,Sx̃),
D(x̃,T x2n−1)+D(x2n−1,Sx̃)

2
}

= ‖d(x̃,x2n)‖+α max{D(x̃,x2n),D(x2n−1,Sx̃),D(x̃,x2n−1)},

now, letting n→ ∞, we get D(x̃,Sx̃) = 0. Hence, by lemma 2.2, x̃ ∈ Sx̃.

D(x̃,T x̃)≤ D(x̃,Sx2n)+hSx2n(T x̃)

≤ D(x̃,Sx2n)+dH(Sx2n,T x̃)

≤ ‖d(x̃,x2n+1)‖+α max{D(x̃,x2n),D(x̃,Sx2n),

D(x2n,T x̃),
D(x̃,Sx2n)+D(x2n,T x̃)

2
}

= ‖d(x̃,x2n+1)‖+α max{D(x̃,x2n+1),D(x2n,T x̃),D(x̃,x2n)},

now, letting n→ ∞, we get D(x̃,T x̃) = 0. Hence, by lemma 2.2, x̃ ∈ T x̃. Therefore, x̃ ∈ X is a

common fixed point of S and T . Uniqueness:

Let z̃ be another common fixed point of S and T , that is Sz̃ = T z̃ = z̃. Then

‖d(x̃, z̃)‖= ‖d(Sx̃,T z̃)‖

≤ α max{‖d(x̃, z̃)‖ ,‖d(x̃,T z̃)‖ ,‖d(z̃,Sx̃)‖ ,

‖d(x,T z̃)‖+‖d(z̃,Sx̃)‖
2

}

which implies that ‖d(x̃, z̃)‖ = 0, since α < 1 for all u ∈ X . Thus x̃ is a unique common fixed

point of S and T . �

Remark 3.4. Theorem 3.2 generalizes Theorem 3.2 of [12]. Further, it establishes the unique-

ness of the common fixed point of S and T .
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Corollary 3.5. Let (X, d) be a complete cone metric space with normal constant M = 1 and

S,T : X → Hc(X) be two set-valued mappings such that d(Sx,Ty) ≤ ad(x,y) + bd(x,Ty) +

cd(y,Sx)+ ed(x,Ty)+cd(y,Sx)
2 for all x,y ∈ X and a,b,c ≥ 0, where a+ b+ c < 1. Then S and

T have a unique common fixed point in X.

The following example supports my results.

Example 3.1. Consider the metric defined i Example 2.1. Now define S,T : X → Hc(X) such

that Sx = {0} and T x = {x2}, for all x ∈ X.

d(Sx,Ty) = (|y|2,δ |y2|)(3.2)

and max{d(x,y),d(x,Sx),D(y,Ty),
d(x,Sx)+d(y,Ty)

2
}

= max{(|x− y|,δ |x− y|),(|x|,δ |x|),(|y− y2|,δ |y− y2|),

(|x|,δ |x|)+(|y− y2|,δ |y− y2|)
2

}(3.3)

From Equations (3.2) and (3.3), it can be easily viewed that all the conditions of theorem 3.1

and 3.2 are satisfied. Hence S and T have a unique common fixed point 0.

4. APPLICATIONS

The concept of well-posedness of a fixed point problem has generated much interest to several

mathematicians, for example [4, 5, 21, 34]. Here, we study well-posedness of a common fixed

point problem of mappings in theorems 3.1 and 3.2.

Definition 4.1. Let (X ,d) be a complete cone metric space and f be a set mapping. Then the

fixed point problem of f is said to be well-posed if

(i) f has a unique fixed point x0 ∈ X,

(ii) for any sequence {xn} ⊂ X and limn→∞ D(xn, f xn) = 0

we have limn→∞ D(xn,x0) = 0.

Let CFP(T, f ,X) denote a common fixed point problem of set mappings T and f on X and

CF(T, f ) denote the set of all common fixed points of T and f .



A NOTE ON CONE METRIC SPACES AND COMMON FIXED POINT RESULTS 7563

Definition 4.2. A CFP(T, f ,X) is called well-posed if CF(T, f ) is singleton and for any se-

quence {xn} in X with x̃ ∈CF(T, f ) and

limn→∞ D(xn, f xn) = limn→∞ D(xn,T xn) = 0 implies x̃ = limn→∞ xn.

Theorem 4.1. Let (X ,d) be a complete cone metric space and T, f be set mappings on X as in

Theorem 3.1. Then the common fixed point problem of f and T is well posed.

Proof. From Theorem 3.1, the mappings f and T have a unique common fixed point, say v∈ X .

Let {xn} be a sequence in X and limn→∞ D( f xn,xn) = limn→∞ D(T xn,xn) = 0.

Without loss of generality, assume that v 6= xn for any non-negative integer n. Using (3.1) and

v ∈ f v = T v, we get

D(v,xn)≤ D(T v,T xn)+D(T xn,xn)

= D( f v,T xn)+D(T xn,xn)

≤ D(T xn,xn)+α max(D(v,xn),D(v, f v),

D(xn,T xn),
d(v, f v)+d(xn,T xn)

2
)

As n→ ∞ we obtain (1−α)D(v,xn)≤ 0 which is a contraction since α < 1. Hence we obtain

d(v,xn)→ 0 as n→ ∞. This completes the proof. �

Corollary 4.1. Let (X, d) be a complete cone metric space with normal constant M = 1 and

S,T : X → Hc(X) be two set-valued mappings such that

d(Sx,Ty) ≤ ad(x,y)+ bd(x,Sx)+ cd(y,Ty)+ ed(x,Sx)+d(y,Ty)
2 for all x,y ∈ X and a,b,c,e ≥ 0,

where a+b+ c+ e < 1. Then the common fixed point problem of S and T is well-posed.

Corollary 4.2. Let (X, d) be a complex cone metric space with normal constant M = 1 and

S,T : X → Hc(X) be two set-valued mappings such that

d(Sx,Ty)≤ ad(x,Sx)+bd(y,Ty)+cd(x,Sx)+d(y,Ty)
2 for all x,y∈ X and a,b≥ 0, where a+b < 1.

Then the common fixed point problem of S and T is well-posed.

Corollary 4.3. Let (X, d) be a complete cone metric space with normal constant M = 1 and

S : X → Hc(X) be a set-valued mappings such that
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d(Sx,Sy)≤ ad(x,y)+bd(x,Sx)+cd(y,Sy)+ed(x,Sx)+d(y,Sy)
2 for all x,y∈X and a,b,c≥ 0, where

a+b+ c < 1. Then the common fixed point problem of S and T is well-posed.

Corollary 4.4. Let (X, d) be a complete cone metric space with normal constant M = 1 and

S : X → Hc(X) be a set-valued mappings such that

d(Sx,Sy)≤ ad(x,Sx)+bd(y,Sy)+cd(x,Sx)+d(y,Sy)
2 for all x,y ∈ X and a,b≥ 0, where a+b < 1.

Then the common fixed point problem of S and T is well-posed.

Theorem 4.2. Let (X ,d) be a complete cone metric space with normal constant M = 1 and

S,T : X → HC(X) be two set-valued mappings such that

d(Sx,Ty)≤α max{d(x,y),d(x,Ty),d(y,Sx), d(x,Ty)+d(y,Sx)
2 } for all x,y∈X and 0≤α < 1. Then

the common fixed point problem of S and T is well-posed.

Proof. Note that the mappings f and T have a unique common fixed point by Theorem 3.2, say

v ∈ X . Let {xn} be a sequence in X and limn→∞ D( f xn,xn) = limn→∞ D(T xn,xn) = 0.

Without loss of generality, assume that v 6= xn for any non-negative integer n. Using (3.1) and

v ∈ f v = T v, we get

D(v,xn)≤ D(T v,T xn)+D(T xn,xn)

= D( f v,T xn)+D(T xn,xn)

≤ D(T xn,xn)+α max(D(v,xn),D(xn, f xn),

D(xn,T v),
d(v, f xn)+d(xn,T v)

2
)

As n→ ∞ we obtain (1−α)D(v,xn)≤ 0 which implies that D(v,xn)→ 0 as n→ ∞. Therefore

the common fixed point problem of S and T is well-posed. �
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