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Abstract. In this paper Hartwig’s Triple reverse order law for the core inverses in C*-algebras. Further we have
the simply algebraic solution for the core inverse in C*-algebras.
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1. INTRODUCTION

Let <7 be a complex unital C*-algebra. An element a € o7 is said to be regular if there
exists b € o7 for which aba = a; any such b is called an inner inverse.

The core inverse for a complex matrix were introduced by Baksalary and Trenkler [1].
Let o7 € M,(C), where M, (C) denotes the ring of all n x n complex matrices. A matrix X €
M, (C) is called core inverse of A, if it satisfies AX = P4 and R(X) C R(A), where R(A) denotes
the column space of A, and Py is the orthogonal projector onto R(A). And if such a matrix exists,
then it is unique and denoted by A®.

Suppose A, B and C are complex matrices for which ABC can be defined.
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We use notations

P=APABCC®, Q =CCOPBBA®Y (1)
2. PRELIMINARIES

Definition 2.1. [13] An element @ is Hermitian if a* = a, and a is called an idempotent if

a®> = a. A Hermitian idempotent is said to be a projection.

Definition 2.2. [1] Let A € C,x,. A matrix A® € C,, satisfying (i))AA® = P, and
(ii))R(A®) C R(A) is called core inverse of A.

Definition 2.3. [1] The core inverse of a € .o/ is the element x € ./ which satisfies
(Waxa=a (2)xax=x (3)(ax)*=ax (6)xa’=a (7)ax*=x

The element x is unique if it exist and is denoted by a®.

Definition 2.4. [12] Let </ be unital C*-algebra. The element a € &/ has the core inverse if
there exists x € o7 such that
() axa=a (2)xo/ =ae/ and (3) dx=da*

The unique core inverse will be denoted by a®.

Definition 2.5. [13] An elements « is said to be normal aa® = a®a.

Definition 2.6. [13] An elements a is said to be invertible if ab = ba = e.

Theorem 2.7. [13] For any a € &/ ® the following is satisfied:
(@) (a®)® =q;

(b) (a")® = (a®)*;

©) (a*a)® = a®(a®)*;

(d) (aa*)® = (a®)*a®;

(e) a* = a®aa* = a*aa®;

) a® = (a*a)®a* = a*(aa*)®;
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@) (a")® =a(a*a)® = (aa*)®a.

3. RESULT

For regular element a,b and ¢ of C*-algebra ./ we use notations
p = a®Pabcc®, g = cc®p®q®q.
analogously to (1).
Theorem 3.1. Let <7 be a complex unital C*-algebra and let a,b,c € <7 be such that a,b,c and
abc are regular. Then the following conditions are equivalent:
() (abc)® = ®p®®;
(i) g € p{3,6,7} and both of a*apq and gpcc* are hermitian;
(iii) g € p{3,6,7} and both of a*apq and gpcc* are EP;
(iv) g € p{3,6,7}, a*aps/ = q* </ and cc*p* o = q;
(V) pq = pqpq, a*ap = q* o/ and cc*p* A = qo
Proof: (i) < (ii) : The condition xyx = x is easily seen to be equivalent to pgp = p, while
yxy = y holds precisely when gpg = ¢g. Next, if xy is Hermitian, so is a*xya = a*apq.
The converse part, since (a*)®(a*apq)a® = xy. Lastly, yx is Hermitian, So is c(yx)c* = gpcc*.
Again the converse relation part from the condition ¢® (gpcc*)(c*)® = yx.
(ii) < (iii) : We show that a*apq and gpcc* are regular.
Then a®(a®)* € (a*apq){3,6,7} and (c¢®)*c® € (gpcc*){3,6,7}.
Letx = a*apq, y = a®(a®)*, we get
xyx = a*apqa®(a®)*a*apq
= a*apqa®(aa®)*apq
= a*apga®aa®apq (Since a®aa® = a®)
= a*apqa®apq
= a*apqga®aa®abcc®cc®b®a®q
= a*apqa®abcc®b®a®q
= a*apqa® (abc)(abc)®a
= a‘apq

= X
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Therefore

yxy

(xy)*

yx?
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= (a®)(a®)*a*apqa®(a®)*

a®(aa®)*apqa® (a®)* (Since (aa®)* = aa®)
a®aa®apqa® (a®)* (Since a®aa® = a®)
a®apqa®(a®)*

a®aa®abcc®cc®b®a®aa® (a®)*

a®abcc®b®a® (a®)*

a®abc(abc)® (a®)*

a®(a®)*

y

= a‘apqa®(a®)*

a*aa®abcc®cc®b®a®aa® (a®)*
a*abcc®b®a® (a®)*
a*(abc)(abe)®(a®)*
&*(a®)"
a®a
(a*apqa® (a®)*)*
a*aa®abcc®cc®h®a®aa® (a®)*)*
a*abcc®b®a®aa® (a®)*)*
a*(abc)(abc)® (a®)*)*

(a®)*)*

CZ@CI

(
(
(
(a

Xy

(a®)(a®)*(a*apq)®
(a®)(a®)*a*apga*apq
(a®)(aa®)*apga*apq
(a®)aa®apqga*apq
a®apga*apq
a®aa®abcc®cc®b®a®aa*apq (Since a®aa® = a®)

a®abcc®b®a®aa*apq
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Xy

®(abc)(abc)®a*apq

a®aa*apq

(a®a)*a*apq

a*(a®)*a*apq

(aa®a)*apq

a‘apq

X

o apg(a®(a®)*)’

a*apqa®(a®)*a®(a®)*

a*aa®abcc®cc®b®a®aa® (a®)*a® (a®)*

a*abcc®b®a® (a®)*a® (a®)*
a*(abc)(abc)®(a®)*a® (a®)*

a*(a®)a®(a®)’

(a®a)"a®(a®)

a®aa®(a®)*

(a®)(a®)*

y

Letx = gpec*, y = (¢®)*c®, we get

xyx

(
— (c®
(

gpec*(c®)*c®gpect

gpe(c®c)*c®gpect

7721

gpcc®cc®gpect (Since aa®a = a)

q pcc®qpcc*
gpqpec’
gpcc*

X
(c®)* c®gpec* (c®)*c®
c®)* c®gpc(c®c)*c®
)*
)

®gpcc®cc®

) e®gpec®



7722 D. KRISHNASWAMY, V. VIJAYASELVI

c®)*c@cc®b@a@aa@abcc®cc@ (Since a®aa® = a®)
c®)* c®Pec®b®a®abec®
)
)

*(abc)® (abc)c®

xy = gpec*(c®)*c®
= qpc(c®c)*c®
= gpcc®cc®
= gqpcc®
= cc®b®a®aa®abcc®
= cc®b®a®abcc®
= c(abc)®(abc)c®
= cc®

(xy)* = (gpec* (c®)*c®)*

Therefore (xy)* = xy
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= (cc®)*gpcc*
= gpcc*
= x
Xy = gpect((c®)*e®)?
= gpcc*(c®)*c® (@) c®
= qpc(c®e)*c®(c®)*c®
= gpcc®cc®(c®)*c®
= gpcc®(c®)*c®
= cc®b®a®aa®abcc®cc® (¢®)*c®
= c(abc)®(abc)c®(c®)*c®
= (ab)®(ab)(c®)*c®
— (C®)*c®
=y
(iif) = (iv) : Since a*apo/ = q*<f is equivalent that a*ap € ¢* o/ and ¢* € a*ap</, we have
a‘ap = a*apqp
= a*apq(a*apq)®a*apqp (Using {1}-inverse)
= (a*apq)®a*apqa*ap
= g*p*a*a((a*apq)®)*a*ap € ¢* o/
and
q =qrq
= ¢'p*a®aq’
= ¢*p*(a®a)*q* (Since (ax)* = ax)
= ¢'pa’(a®)’q"
= ¢*p*a*aa®(a®)’q"
= (a*apq(a*apq)®a*apq)*a® (a®)*q* (Using {1}-inverse)
= a*apq(a*apq)®q* € a*apst
Similarly, cc*p*o/ = qo is equivalent that cc* p* and g € cc*p* /. So, we have

X ok k%

cc*p* = cc*prqtp
= (gpec*) p*
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= (gpcc*(gpec*)®gpec*)* p* (Since aa®a = a)
= gpcc*(gpec)®ec*p* € qf
and
q = 49p9q
= gpcc®q
= gpcc(c®)*c®q
= gpcc*(gpec”)Pgpe’(c®) c®q
= cc*p*q*((qpec*)®) q € cc*p*a
(iv) = (v) : Trivial.

(v) = (ii) : We show that pc and ga® are regular. Indeed, pc = a®abc and
a®abc(abc)®Paa®abe = a®abc

Also,
cc*p*((pe)®)*®ec*p* = c(pe)*((pe)®)*c®ecp*
= cc®cc*p*
= cc'p”
So cc* p* is regular and then, since ga® € gq.o7 = cc* p* o/ and cc* p*(cc* p*)® € cc*p* ot = qof .
We have
qga® = cc*p*x (Since x = a®)
= cc*p*(cc* p*)®ec* p*x
= qycc'p*x
= qyqa®
= qa®ayqa®.
Hence ga® is regular.
Now, analogously using cc*p*o/ = g7, we get
p = pec®
= pe(pe)®pec®
= pec*p*((pe)®)*c®
= pqu
and consequently pgp = pgpqu = pqu = p. This show that ¢ € p{1} and gpqp = qp.
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Also, using a*aps/ = q*o/, we get
g = qa®a
= ¢a®(qa®)®qa®a
= qa®(a®)*q*((qa®)®)"a
= qa®(a®)*a*apv
= qa®(aa®)*apv
= ga®aa®aapv (Since aa®a = a)
= ga®apv
= gqpv
qpq = 4pgpv = qpv = 4.
Since, a*aps/ = q*</ and cc*p*of = q,

X kK

g*p*a*apq = q*p*q't = q't = a*apq
and
gpcc*p*qt = qpgz = cc*p*q*

Hence a*apq and gpcc* are hermitian.

Remark 3.2. Let us mention for some special cases when triple reverse order low for the core
inverse of products of three regular elements a,b and ¢ of C*algebra .7 holds.

If a is unitary we get that

(abc)® = c®Pb®a® < (be)® = ®p®.
Similarly, if ¢ is unitary

(abc)® = c®Pb®a® & (ab)® = p®a®.

Theorem 3.3. Let o/ be complex unital C*-algebra, let a,b,c € <f be regular elements and let
b be unitary. Then the following statements are equivalent:

(i) abc is regular and (abc)® = c®p®a®

(i) [pcc®h® a*a] = 0 and [pPa®Pab,cc*] = 0.
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