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Abstract: Of recent, stability has become an important concept and a qualitative property in any numerical integration 

scheme. In this work, we propose two stable linear multistep methods with off-step points for the numerical integration 

of ordinary differential equations whose development is collocation and interpolation 
based. The

 
boundary locus

 

techniques show that the proposed schemes are zero-stable, A-stable and
 

( )A  -stable for some step number k and 

are found suitable for stiff
 
differential equations. Numerical results obtained compare favourably with

 
some existing 

methods in literature.
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1.  INTRODUCTION 

Differential equations are equations resulting from modeling physical phenomena in sciences, 

social sciences, management, etc. In particular, ordinary differential equation (ODE) models have 

been playing a prominent role in physics, engineering, econometrics, biomedical sciences among 
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other scientific fields. In fact, ODEs are the most widespread formalism to model dynamical 

systems in science and engineering. When the models appear in one or more derivatives, they are 

referred to as first or higher order differential equations, respectively. Systems of first order 

differential equation and can be expressed as: 

    𝑦′ = 𝑓(𝑥, 𝑦), 𝑓: 𝑅 𝘹𝑅m → ℝm,    𝑥 ∈ [𝑥0, 𝑥𝑁]                      (1) 

It is generally known that the solutions of models are not generally written in closed form. In order 

to understand these solutions, it is often necessary to construct an approximation through 

computational methods which this work targets to achieve. This research work is concerned with 

the development and analysis of two new methods for solving first order initial value problems in 

ordinary differential equations with the aim of achieving high computational accuracy and whose 

solution can compete favourably with the exact solution in some selected problems without 

incurring high computational cost in implementation.  

 

2.  PRELIMINARIES 

Lately, there are several numerical methods that have been developed by researchers for 

approximate solutions to models [7], [8], [9], etc. This is ranging from the one-step method such 

as the Euler method, Runge-Kutta methods, etc to the multistep methods such as the Adam 

Bashforth method (AB), Adam-Moulton (AM), backward different formula (BDF), trapezoidal 

rule, General linear methods (GLM), etc. Each of these methods has its computational advantages 

and disadvantages based on the type of ODEs to be solved. The process of using numerical 

methods to provide approximate solutions to ODEs models is known as “numerical integration” 

[2]. Differential equation (1) can be further classified into initial value problems and boundary 

value problems (BVPS). The equation (1) can be called an initial value problem if it has specified 

values assigned to it called the initial conditions of the unknown function at a given point in the 

domain of the solutions. This is written as: 

 𝑦′ = 𝑓(𝑥, 𝑦), 𝑦 (𝑥0) = y0 ∈ ℝ                                      (2) 
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A solution to (2) is the function 𝑦(𝑥) and satisfies the initial condition. The differential equation 

(1) is a boundary value problem, if the conditions can be specified in more than one point in the 

domain of the solution (Lambert, 1991). i.e. 

𝑦′ = 𝑓(𝑥, 𝑦), 𝑦 (𝑥0) = y0,   y(𝑥1) = 𝑦1,    ∀ 𝑦0, 𝑦1 ∈ ℝ     (3) 

Numerical methods for solving (2) have been known for a long time. Among the famous examples 

is the forward Euler method introduced as early as 1768 by Leonard Euler. Since then more good 

methods have been developed like the Runge-Kutta and the linear multistep methods. Numerical 

implementation solvers have also played vital roles in the solutions of ODEs through advancement 

of numerical codes and computer era. 

Linear multistep methods as one of the promising methods for solving (1) and have been modified 

by researchers in recent time and have become useful methods for numerical integration of 

differential equations. Off grid collocation points have been introduced to the conventional linear 

multistep methods to improve stability and as well reduce errors during integration. This method 

is called “hybrid methods” which is the focal point of this research work. Two hybrid linear 

multistep methods that are ( )A  - stable and A-stable and both having wide regions of absolute 

stability for the numerical integration of (1) is derived. Numerical methods with these properties 

are often used for special classes of ODEs especially for stiff differential equations [4], [5], [6]. 

The concept of stiffness shall be explained later in this research work. Most of the existing methods 

cannot approximate stiff differential equation due to small regions of absolute stability. The two 

methods are obtained by incorporating off-step points to the conventional second derivative linear 

multistep methods so as to overcome the constraints imposed by [1] on the stability of linear 

multistep methods. On the other hand, we shall examine their error constants, region of absolute 

stability and test their efficiency. 

 

3.  STATEMENT OF THE PROBLEM 

Many methods have underperformed in some classes of problems in ordinary differential equations, 

especially stiff differential equations. This is due to the small region of absolute stability. 
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Numerical methods for the integration of stiff IVPs are often required to possess large region of 

absolute stability and smaller error constants for which small regions are constrained to this class 

of ODEs 

The aim of this study is to develop, by means of interpolation and collocation, two high order 

hybrid methods for solving systems of first order stiff initial value problems in ordinary differential 

equations.  

 

4. MAIN RESULTS 

Derivation of the proposed hybrid methods: The first method considered in this work is 

expressed as  

Method 1: 

 2
1 1 1

0

( ' ' )
k

n k n k j n j vm n vm vm n vm k n k
j

y y h f f h f f   + + − + + − + − +
=

 
= + + + + 

           

(4) 

Order of the method:  4= +p k  

Hybrid Predictors:  

1. 2
1

0

' '
k

n vm j n j k n k
j

y y h f + − + +
=

= +                                                    (5) 

of order * 1p k= +  

 2.  2

0

' '' '
k

n vm j n j k n k k n k
j

y y hf h f  + + + +
=

= + +                                        (6) 

of order ** 2p k= +  

where  
0

k

j j


=
,  

0

k

j j


=
 ,  

0
'

k

j j


= ,
 ,  kj )1(0= ,  vm , 1vm − , 'k ,  and k  , ''k  are constant 

coefficients which depend on step-size are carefully and uniquely determined so that the methods 

achieved higher order of stability. The Equations (5) and (6) are hybrid predictors of the methods. 

The parameters of the off-step points are chosen according as:  

 
2 1

2

k
vm

+
= ,  

2 1
1

2

k
vm

−
− =  
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The method (4) is an extended second derivative backward differentiation formula with off-step 

points. The parameters vm  and 1vm−  provide grid collocation points  

n vmx + , 
1n vmx + −
, in the open interval , )( n knx x + , (Gear, 1965). 

Derivation of proposed hybrid method 1:  In order to obtain (4), we proceed by seeking the 

approximate solutions of the exact solution of (1) by assuming a continuous solution ( )y x of the 

form 

 ( ) ( )
4

0

k
j

j
j

y x b x
+

=

=                     (7) 

where  0 , xNx x , jb , ( )1 1 4j k= + are unknown coefficients and ( )j x  are polynomial basis 

function of degree 4k + . We take first and second derivatives of (7) and obtained  

 ( )
4

1

1

'
k

j
j

j

y x jb 
+

−

=

=                                (8) 

 ( ) ( )
4

2

2

'' 1
k

j
j

j

y x j j b 
+

−

=

= −                   (9) 

Collocating (7) at 1n kx + −  and interpolating (8) and (9) at ( ), 0 1n jx j k+ = , n vmx +  and 1n vmx + − to 

obtain a system of equations through which the coefficients are obtained. The equations are 

obtained for each step number k. Now for step number 1k = is as follows  

𝑎0 = 𝑦𝑛 

                                               𝑎1 = 𝑓𝑛 

𝑎1 + 3ℎ𝑎2 +
27ℎ2𝑎3

4
+

27ℎ3𝑎4

2
+

405ℎ4𝑎5

16
= 𝑓3

2
+𝑛

 

𝑎1 + 2ℎ𝑎2 + 3ℎ2𝑎3 + 4ℎ3𝑎4 + 5ℎ4𝑎5 = 𝑓1+𝑛 

2𝑎2 + 3ℎ𝑎3 + 3ℎ2𝑎4 +
5ℎ3𝑎5

2
= 𝑓′

1
2

+𝑛
 

2𝑎2 + 6ℎ𝑎3 + 12ℎ2𝑎4 + 20ℎ3𝑎5 = 𝑓′
1+𝑛

 

where the hybrid parameters are obtained as  

2 1

2
vm

+
=  and 

2 1 1
1

2 2
vm

−
− = =  
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Solving with MATHEMATICA 10.0 software, we obtain the coefficients as  

𝑎0 = 𝑦𝑛, 𝑎1 = 𝑓𝑛 , 𝑎2 = −
6𝑓𝑛−6𝑓1+𝑛+4ℎ𝑓′

1
2

+𝑛
+ℎ𝑓′

1+𝑛

2ℎ
 ,   

𝑎3 = −
−101𝑓𝑛+117𝑓1+𝑛−16𝑓3

2
+𝑛

−96ℎ𝑓′
1
2+𝑛

+3ℎ𝑓′
1+𝑛

27ℎ2 ,  𝑎4 = −
19𝑓𝑛−27𝑓1+𝑛+8𝑓3

2
+𝑛

+21ℎ𝑓′
1
2+𝑛

−6ℎ𝑓′
1+𝑛

9ℎ3 , 

𝑎5 =
4(5𝑓𝑛−9𝑓1+𝑛+4𝑓3

2
+𝑛

+6ℎ𝑓′
1
2+𝑛

−3ℎ𝑓′
1+𝑛)

45ℎ4
  

We now obtain the method for k=1  

3 1
2 221 1

1

8 11 '2 13 19 '

27 15 135 45 90

n nn n n
n n

f ff f f
y y h h

+ ++ +
+

−   
   = + + + + −

  
  

               (10) 

with the error constant as 6

13

86400
c

−
= , and order 5p =  

For k=2 

We obtained the system of equations with the hybrid parameters as  

   
4 1 5

2 2
vm

+
= =  and 

4 1 3
1

2 2
vm

−
− = =  

𝑎0 + ℎ𝑎1 + ℎ2𝑎2 + ℎ3𝑎3 + ℎ4𝑎4 + ℎ5𝑎5 + ℎ6𝑎6 = 𝑦1+𝑛 

𝑎1 = 𝑓𝑛, 

𝑎1 + 2ℎ𝑎2 + 3ℎ2𝑎3 + 4ℎ3𝑎4 + 5ℎ4𝑎5 + 6ℎ5𝑎6 = 𝑓1+𝑛 

𝑎1 + 2ℎ𝑎2 + 3ℎ2𝑎3 + 4ℎ3𝑎4 + 5ℎ4𝑎5 + 6ℎ5𝑎6 = 𝑓1+𝑛 

𝑎1 + 4ℎ𝑎2 + 12ℎ2𝑎3 + 32ℎ3𝑎4 + 80ℎ4𝑎5 + 192ℎ5𝑎6 = 𝑓2+𝑛 

𝑎1 + 5ℎ𝑎2 +
75ℎ2𝑎3

4
+

125ℎ3𝑎4

2
+

3125ℎ4𝑎5

16
+

9375ℎ5𝑎6

16
= 𝑓5

2
+𝑛

 

2𝑎2 + 9ℎ𝑎3 + 27ℎ2𝑎4 +
135ℎ3𝑎5

2
+

1215ℎ4𝑎6

8
= 𝑓′

3
2

+𝑛
 

2𝑎2 + 12ℎ𝑎3 + 48ℎ2𝑎4 + 160ℎ3𝑎5 + 480ℎ4𝑎6 = 𝑓′
2+𝑛

 

Solving in similar manner as in k=1 we obtain the coefficients as  

𝑎0 =
1

25200
(−6249ℎ𝑓𝑛 − 78940ℎ𝑓1+𝑛 + 61845ℎ𝑓2+𝑛 − 1856ℎ𝑓5

2
+𝑛

+ 25200𝑦1+𝑛

− 45600ℎ2𝑓′
3
2

+𝑛
− 7110ℎ2𝑓′

2+𝑛
) 
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𝑎1 = 𝑓𝑛 

𝑎2 = −

114𝑓𝑛 − 1100𝑓1+𝑛 + 1050𝑓2+𝑛 − 64𝑓5
2

+𝑛
− 800ℎ𝑓′

3
2

+𝑛
− 75ℎ𝑓′

2+𝑛

70ℎ
 

𝑎3 = −

−345𝑓𝑛 + 5776𝑓1+𝑛 − 5943𝑓2+𝑛 + 512𝑓5
2

+𝑛
+ 4608ℎ𝑓′

3
2

+𝑛
+ 222ℎ𝑓′

2+𝑛

252ℎ2
 

𝑎4 = −

1053𝑓𝑛 − 23140𝑓1+𝑛 + 25095𝑓2+𝑛 − 3008𝑓5
2

+𝑛
− 19680ℎ𝑓′

3
2

+𝑛
+ 150ℎ𝑓′

2+𝑛

1680ℎ3
 

𝑎5 = −

2(−39𝑓𝑛 + 1010𝑓1+𝑛 − 1155𝑓2+𝑛 + 184𝑓5
2

+𝑛
+ 900ℎ𝑓′

3
2

+𝑛
− 60ℎ𝑓′

2+𝑛
)

525ℎ4
 

𝑎6 = −

9𝑓𝑛 − 260𝑓1+𝑛 + 315𝑓2+𝑛 − 64𝑓5
2

+𝑛
− 240ℎ𝑓′

3
2

+𝑛
+ 30ℎ𝑓′

2+𝑛

630ℎ5
 

We obtain the method for k=2 as; 

5 3
2 221 2 2

2 1

76 2 '13 37 221 173 '

8400 1260 240 1575 7 840

n nn n n n
n n

f ff f f f
y y h h

+ ++ + +
+ +

−   
   = + + + + + −
   
                  

(11) 

With error constant 

          7c =
67

1209600

−
 and order 6p = . 

We therefore generalized the nth step number to a matrix of system of difference equation to 

give  

( )

( )

( )( )

2 4

0
3

1

2
2

2
4

1

1 . . .

0 1 2 . . . 4

0 1 2 . . . 4

... 1 . .

... . . .

... . . .

'0 1 2 . . . 3 4

k
n n n n

k
n n n

k
n vmn vm n vm

k
n kk

n

x x x ya

x k x fa

fax k x

fak k

+

+

+
++ +

+
++

+

 
   
  + 
   
  + 
    =    
   
   
   
      + + 

               (12) 

Solving equation (12) with Mathematica 10.0 we obtain other members of the family of methods 

in (4). 
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4.1.2 Derivation of hybrid predictor 1 for method 1:  If the solution of the formula (4) at the 

point n vmx +  is given as the polynomial interpolant   

( )
1

0

k
j

n vm j
j

y x c x
+

+
=

=                                 (13)  

where ( )
1

0
, 0(1)k 1

k

j j
c j

+

=
= + the unknown coefficients to be determined, 

jx  is the polynomial 

basis function. The second derivative of (12) gives  

( ) ( )
1

2

2

'' 1
k

j
n vm j

j

y x j j c x
+

−
+

=

= −                                         (14)  

Collocating at point n vmx +  and points ,n jx + 0(1) kj = and interpolating at points  

n vmx +  and  n kx +  to obtain a system of equation for each value of k 

Now, let us consider for 1k = , we have the system of equations 

𝑎0 = 𝑦𝑛 

𝑎0 + ℎ𝑎1 + ℎ2𝑎2 + ℎ3𝑎3 = 𝑦1+𝑛 

𝑎1 + 2ℎ𝑎2 + 3ℎ2𝑎3 = 𝑓1+𝑛 

2𝑎2 + 6ℎ𝑎3 = 𝑓′
1+𝑛

 

Solving with the Mathematica 10.0  to obtain the values as  

𝑎0 = 𝑦𝑛 

𝑎1 = −
4ℎ𝑓1+𝑛 + 6𝑦𝑛 − 6𝑦1+𝑛 − ℎ2𝑓′

1+𝑛

2ℎ
 

𝑎2 = −
−3ℎ𝑓1+𝑛 − 3𝑦𝑛 + 3𝑦1+𝑛 + ℎ2𝑓′

1+𝑛

ℎ2
 

𝑎3 = −
2ℎ𝑓1+𝑛 + 2𝑦𝑛 − 2𝑦1+𝑛 − ℎ2𝑓′

1+𝑛

2ℎ3
 

With this we obtain the hybrid formula as 

2
1 1 1

3

2

3 9 3 '

8 8 8 16

n n n n

n

hf y y h f
y + + +

+
= − + +                    (15) 

of order * 3p =  and error constant 
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 4

1

128
c =  

For 2k = , 
5

2
vm =  

We have the system of equations as  

𝑎0 = 𝑦𝑛 

𝑎0 + ℎ𝑎1 + ℎ2𝑎2 + ℎ3𝑎3 = 𝑦1+𝑛 

𝑎0 + 2ℎ𝑎1 + 4ℎ2𝑎2 + 8ℎ3𝑎3 = 𝑦2+𝑛 

2𝑎2 + 12ℎ𝑎3 = 𝑓′
2+𝑛

 

Solving to obtain  

𝑎0 = 𝑦𝑛 

𝑎1 = −
11𝑦𝑛 − 16𝑦1+𝑛 + 5𝑦2+𝑛 − 2ℎ2𝑓′

2+𝑛

6ℎ
 

𝑎2 = −
−2𝑦𝑛 + 4𝑦1+𝑛 − 2𝑦2+𝑛 + ℎ2𝑓′

2+𝑛

2ℎ2
 

𝑎3 = −
𝑦𝑛 − 2𝑦1+𝑛 + 𝑦2+𝑛 − ℎ2𝑓′

2+𝑛

6ℎ3
 

Through these parameters, we now obtain the method of order * 4p = and error constant 

5 1/256c =  as 

2
2 1 2 2

5

2

15 3 5 165 15 '

64 128 16 128 64

n n n n n

n

hf y y y h f
y + + + +

+
= + − + +             (16) 

Continuing in this form other values for k are obtained. 

Derivation of hybrid predictor 2 for method 1:  The hybrid predictor methods in (6) are obtained 

following similar approach as in (5). we obtain the methods and error constants as follows 

For 1k = , 
1

1
2

vm − =  

2
1 1

1

2

'

2 2 8

n n n

n

y y h f
y + +

+
= + − , 3

1

6
c =                              (17) 
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For k=2,  
3

1
2

vm − =  

3

2
n

y
+

= −
𝑦𝑛

16
+

5𝑦1+𝑛

8
+

7𝑦2+𝑛

16
−

1

16
ℎ2𝑓 ′

2+𝑛
  

    4

7

384
c =                   (18) 

For 3k =  

We have the method and the predictors as 

7 5
2 221 2 3 3

3 2

1936 1004 '67 26 1807 3827 7550 '

219240 5075 73080 3915 45675 3045 36540

n nn n n n n
n n

f ff f f f f
y y h h

+ ++ + + +
+ +

   
   = + − + − + + + − −
   
   

 

of order 7p =  and error constant 8

881

35078400
c = −  

and the hybrid formulas as 

5
2

21 2 3
3

7 25 255 35 15
'

352 176 352 88 352

n n n n
nn

y y y y
y h f+ + +

++
= − + + −  

 * 4p = and error constant 5

23

2816
c =  

7
2

21 2 3
3 3

5 21 35 339535 35
'

384 576 256 64 2304 128

n n n n
n nn

y y y y
y hf h f+ + +

+ ++
= − + − + +  

** 5p = and error constant 6

7

3072
c =  

For 4k =  

 

9
2

7
2

1 3 4
4 3

2 4

19136881 853 2141 3103457

8968320 653940 653940 2989440 490455

456 ' 73723 '

1211 348768

nn n n n
n n

n n

ff f f f
y y h

f f
h

++ + +
+ +

+ +

 
 = + − + + + +
 
 

 
 − −
 
   

of order 7p =  and error constant 8

116411

8788953600
c

−
=  

With hybrid formulas 
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7
2

n
y

+
= −

23𝑦𝑛

2560
+

21𝑦1+𝑛

320
−

301𝑦2+𝑛

1280
+

259𝑦3+𝑛

320
+

189𝑦4+𝑛

512
−

21

640
ℎ2𝑓 ′

4+𝑛

 

of order * 5p =  and error constant 6

343

76800
c =    

 9
2

n
y

+
= −

105ℎ𝑓4+𝑛

2048
+

35𝑦𝑛

8192
−

5𝑦1+𝑛

128
+

189𝑦2+𝑛

1024
−

105𝑦3+𝑛

128
+

13685𝑦4+𝑛

8192
+

315ℎ2𝑓′
4+𝑛

1024
 

of order ** 6p = and error constant 7

3

2048
c =  

Method for 5k =  

𝒚𝒏+𝟓 = ℎ(−
116411𝑓𝑛

2800413000
+

36467𝑓1+𝑛

69828480
−

61937𝑓2+𝑛

17820810
+

4024217𝑓3+𝑛

203666400
−

1612007𝑓4+𝑛

10183320

+
4498911341𝑓5+𝑛

4073328000
+

54477824𝑓11
2

+𝑛

1470216825
) + 𝑦4+𝑛 + ℎ2(−

181304𝑓′
9
2

+𝑛

424305

−
14837593𝑓′

5+𝑛

67888800
) 

of order 9p =  

With hybrid formulas as  

9

2
n

y
+

=
343𝑦𝑛

70144
−

5445𝑦1+𝑛

140288
+

4977𝑦2+𝑛

35072
−

23835𝑦3+𝑛

70144
+

62055𝑦4+𝑛

70144
+

48699𝑦5+𝑛

140288

−
945ℎ2𝑓′

5+𝑛

35072

 

of order * 6p =  and error constant 7

771

280576
c =  

11
2

n
y

+
= −

3927ℎ𝑓5+𝑛

20480
−

63𝑦𝑛

25600
+

385𝑦1+𝑛

16384
−

55𝑦2+𝑛

512
+

693𝑦3+𝑛

2048
−

1155𝑦4+𝑛

1024
+

768383𝑦5+𝑛

409600

+
693ℎ2𝑓′

5+𝑛

2048

 

of order ** 7p = and error constant 8

33

32768
c =  
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TABLE 3: Discrete Coefficients of the method (4) 

K 1 2 3 4                              5 

0  2

27
 

13

1260
 

67

219240

−
 

881

8968320
 

116411

2800413000
 

1  13

15
 

37

1260
 

26

5075
 

853

653940
 

3647

69828480
 

2  0  221

240
 

180

73080
 

2141

653940
 

61937

17820810
 

3  0  0  382

3915
 

19136

490455
 

4024217

203666400
 

4  0  0  0  1234

480440
 

1612007

10183320
−  

5  0  0  0  0  4498911341

4073328000
 

vm  8

135
 

76

1575
 

1936

45675
 

19136

490455
 

54477824

1470216825
 

1vm −  11

45

−
 

2

7

−
 

1004

3045
 

456

1211
−  

181304

424305
 

k  19

90
 

173

840
 

7850

36540
 

73723

345768

−
 

14837593

67888800
 

 

 

TABLE 4: Discrete Coefficients of the Predictor (5) 

k  1 2 3 4 5 

0  1

2
 

1

16
−  

7

352
 

23

2560
 

343

70144
 

1  1

2
 

5

8
 

25

176
 

21

320
 

5445

140288
 

2  0  7

16
 

255

352
 

301

1280
 

4977

35072
 

3  0  0  35

88
 

259

320
 

23835

70144
−  

4  0  0  0  189

512
 

62055

70144
 

5  0  0  0  0  48699

140288
 

'k  1

8

−
 

1

16
−  

15

352
−  

21

640
−  

945

35072
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Derivation of proposed hybrid Method 2 

 
2

1 1 1
0 0

2

'
k k

n k k n k j n j j n k
nj j

y y h f h f h f   + − + − + +
+= =

= + + +                            (19) 

of order 1* 2 3p k= +  

With predictor  

 
2

1
0

2

k

j n j k n k k n k
n j

y y h f h f  + + +
+ =

= + +                  (20) 

of order 1** 2p k= +  

The coefficients 10 0
, , ,

k k

j j kj j
    −= =
   
    are to be determined. We normalized 1k − 1= . The 

methods (18) have only one off-step point with a fixed parameter at 1
2

n
x

+
 for stability and for each 

value of k. This method differs from the methods (4) since it has only one fixed hybrid predictor 

unlike the latter has two off-step points with variable hybrid parameters. Interpolation and 

collocation approach is adopted in its derivation as in methods (4) above. We obtain the constant 

parameters of the methods for k=1 below: 

𝑎0 = 𝑦𝑛 

𝑎1 = 𝑓𝑛  

𝑎2 =
𝑓′

𝑛

2
 

𝑎3 = −

11𝑓𝑛 − 16𝑓1
2

+𝑛
+ 5𝑓1+𝑛 + 4ℎ𝑓′

𝑛
− ℎ𝑓′

1+𝑛

3ℎ2
 

𝑎4 = −

−18𝑓𝑛 + 32𝑓1
2

+𝑛
− 14𝑓1+𝑛 − 5ℎ𝑓′

𝑛
+ 3ℎ𝑓′

1+𝑛

4ℎ3
 

𝑎5 = −

2(4𝑓𝑛 − 8𝑓1
2

+𝑛
+ 4𝑓1+𝑛 + ℎ𝑓′

𝑛
− ℎ𝑓′

1+𝑛
)

5ℎ4
 

Member of family of methods in (56) and predictor for 1k = are as follows; 

1ny + = ℎ(
7𝑓𝑛

30
+

8

15
𝑓1

2
+𝑛

+
7𝑓1+𝑛

30
) + 𝑦𝑛 + ℎ2(

𝑓 ′
𝑛

60
−

𝑓 ′
1+𝑛

60
) 
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of order 1* 5p = and error constant 6

1

604800
c =  

With hybrid point 

 
ℎ

2
+ 𝑦𝑛 =

3ℎ𝑓𝑛

16
+

11𝑦𝑛

16
+

5𝑦1+𝑛

16
−

1

32
ℎ2𝑓 ′

1+𝑛
 

of order ** 3p =  

For k=2 we have the method and its predictor as  

1
2

21 2 1 2
2 1

81 8 5659 43 ' 67 ' 209 '512

560 945 35 15120 1680 210 5040

n n n n n n
n n n

f f f f f f
y y h f h+ + + +

+ + +

   
= + − + + + + − + −   

   
of 

order 7 and error constant 8c =
67

4233600
 

With the predictor 

ℎ

2
+ 𝑦𝑛 =

39

64
ℎ𝑓2+𝑛 +

27𝑦𝑛

128
+

27𝑦1+𝑛

16
−

115𝑦2+𝑛

128
−

9

64
ℎ2𝑓 ′

2+𝑛
 

of order 4 and error constant 5

9

1280
c =  

Method for 3k =  

1
2 1 2 3

3 2

3 1 2 3

400636613 167 5947 2432131

272160 70875 1440 18144 6804000

403 ' 473 ' 10163 ' 16741 '

18144 1440 30240 453600

nn n n n
n n

n n n n

ff f f f
y y h

f f f f
h

+ + + +
+ +

+ + +

 
 = + − + − + + +
 
 

 
− + + − 
 

 

of order 9 and error constant  

10

649

228614400
c =  

With hybrid predictor  

ℎ

2
+ 𝑦𝑛 = −

335

384
ℎ𝑓3+𝑛 +

125𝑦𝑛

576
+

375𝑦1+𝑛

256
−

125𝑦2+𝑛

64
+

2929𝑦3+𝑛

2304
+

25

128
ℎ2𝑓′

3+𝑛
 

of order 5 and error constant 6

25

3072
c = −  

Method for 4k =  



15 

STABLE LINEAR MULTISTEP METHODS WITH OFF-STEP POINTS 

1
2 2 3 4

4 3

2 1 2 3 4

45137921955783 1097 909679 8048951

15966720 7640325 47520 4989600 23708160

1873 ' 28067 ' 344719 ' 3941 ' 609869 '

98560 66528 665280 9504 18627840

nn n n n
n n

n n n n n

ff f f f
y y h

f f f f f
h

+ + + +
+ +

+ + + +

 
 = + − + + − + +
 
 

 
− + + + − 
 

 

of order 11 and error constant 
12

36343

73766246400
c =  

With hybrid predictor 

 
ℎ

2
+ 𝑦𝑛 =

6965ℎ𝑓4+𝑛

6144
+

1715𝑦𝑛

8192
+

1715𝑦1+𝑛

1152
−

1715𝑦2+𝑛

1024
+

343𝑦3+𝑛

128
−

125555𝑦4+𝑛

73728
−

245ℎ2𝑓′
4+𝑛

1024
 

of order 6 and error constant  7

49

6144
c =  

Method for 5k =  

5ny + = ℎ(−
8328829𝑓𝑛

67567500
+

9048948736𝑓1
2

+𝑛

13408770375
+

172675𝑓1+𝑛

648648
+

2036𝑓2+𝑛

4455
+

71156𝑓3+𝑛

3378375

+
29962403𝑓4+𝑛

79459380
+

3579881423𝑓5+𝑛

10945935000
) + 𝑦4+𝑛

+ ℎ2 (−
122671𝑓 ′

𝑛

6756750
+

1003𝑓 ′
1+𝑛

1716
+

445646𝑓 ′
2+𝑛

405405
+

804472𝑓 ′
3+𝑛

675675

+
850151𝑓 ′

4+𝑛

1891890
−

3649783𝑓 ′
5+𝑛

121621500
) 

of order 13 and error constant 14

17317

18261482250
c =  

With hybrid  

ℎ

2
+ 𝑦𝑛 = −

28413ℎ𝑓5+𝑛

20480
+

5103𝑦𝑛

25600
+

25515𝑦1+𝑛

16384
−

945𝑦2+𝑛

512
+

5103𝑦3+𝑛

2048
−

3645𝑦4+𝑛

1024

+
883477𝑦5+𝑛

409600
+

567ℎ2𝑓 ′
5+𝑛

2048
 

of order 7 and error constant 8

243

32768
c

−
=

 

Zero-stability of the proposed methods:  Given the first hybrid method as in equation (4) 
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2
1 1 1

0

( ' ' )
k

n k n k j n j vm n vm vm n vm k n k
j

y y h f f h f f   + + − + + − + − +
=

 
= + + + + 

   

With members for different k values are as follows: 

For 2k =  

5 3
2 221 2 2

2 1

76 2 '13 37 221 173 '

8400 1260 240 1575 7 840

n nn n n n
n n

f ff f f f
y y h h

+ ++ + +
+ +

−   
   = + + + + + −
   
     

The first characteristic polynomial can be obtain by applying the shift operator to obtain  

( ) 2
P r r r= −  

Solving to obtain  

( )

20

1 0

0 1

r r

r r

r or r

= −

 − =

= =

 

Hence, the method is Zero-stable since a root lie inside the unit disc and a unit root on the disc.  

Given the hybrid method 2 for 2k =  

1
2

21 2 1 2
2 1

81 8 5659 43 ' 67 ' 209 '512

560 945 35 15120 1680 210 5040

n n n n n n
n n n

f f f f f f
y y h f h+ + + +

+ + +

   
= + − + + + + − + −   

   

Taking the first characteristics polynomial  

2 1 0n ny y+ +− =  

2

2

0

0

0 1,

n nr y ry

r r

r r

− =

− =

= =

 

The hybrid method 2 is also zero-stable. 

Stability structure and error constant of the proposed hybrid method:  In this section, we 

shall investigate the stability properties of the hybrid linear multistep methods 1 and 2 for fixed 

value k. The resulting schemes are applied on the scalar test problem 'y y= to obtain the stability 

polynomials. From (4) and (7), we can deduce the stability of the proposed hybrid methods as 

follows: 
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( ) ( ) ( )1 2
1

0

1
k

k k j k
j k vm vm

j

R z r r z r z r z R zvm z R zvn   −
−

=

 
= − − + − − − 

 
 
 

( ) 2

0

1 ' 
=

 
− = + 

 

k
j k

j k
j

R zvn r z r

 

( ) 2

0

''
k

j k k
j k k

j

R zvm r z r z r  
=

= + +  

From the stability polynomials we now investigate the A− stability and ( )A  − stability of the 

proposed methods. 

Stability structure of the proposed hybrid method 1 

Adopting the boundary locus techniques, the stability plots of method 1 are shown below. 

 

FIG. 1: Parametric plot for 1k = (method 1) 

 

FIG. 2: Parametric plot for 2k = (method 1) 

1 2 3 4 5 6
Re Z

4

2

2

4

Im Z

k 1

2 2 4 6 8
Re Z

6

4

2

2

4

6

Im Z

k 2

(21) 
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FIG. 3: Parametric plot for 3k = (method 1) 

 

FIG. 4: Parametric plot for 4k = (method 1) 

 

 

FIG. 5: Parametric plot for 5k = (method 1) 

2 4 6 8
Re Z

6

4

2

2

4

6

Im Z

K 3

5 10 15
Re Z

5

5

Im Z

k 4

10 5 5 10 15
Re z

15

10

5

5

10

15

im z

K 5



19 

STABLE LINEAR MULTISTEP METHODS WITH OFF-STEP POINTS 

From the plots above, it is seen that the method1 is A-stable for step number k=1 to 2 and ( )A  −

stable for step number 3 and 4. The method becomes unstable for step-number 5 and above.  

Stability structure of the proposed hybrid method 2:  From equation (56) we derived the 

general stability polynomial as 

( ) ( )1
2

1 2
2 2

0 0

k k
k k j jI

j jn
j j

R z r r z c r z R z z r−

+
= =

= − − − + 
                (22) 

where  

( ) 2

2
0

k
j k kI

j k k
j

R z r z r z r  
=

= + +

 
From the stability polynomials we now investigate the A− stability and ( )A  − stability of the 

proposed hybrid method 2.  

Adopting the boundary locus techniques, the stability plots of method 2 are shown below. 

 

FIG. 6: Parametric plot for 1k = (method 2) 

 

 

FIG. 7: Parametric plot for 2=k (method 2) 

5 4 3 2 1 1 2
Re Z ,

2

1

1

2

Im Z

k 1

6 4 2 2
Re Z ,

3

2

1

1

2

3

Im Z

k 2
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FIG. 8: Parametric plot for 3=k (method 2) 

 

 

FIG. 9: Parametric plot for 4=k (method 2) 

 

 

FIG. 10: Parametric plot for 5=k (method 2) 

 

6 4 2 2 4
Re Z ,

4

2

2

4

Im Z

k 3

8 6 4 2 2 4
Re Z ,

4

2

2

4

Im Z

K 4

5 5

6

4

2

2

4

6
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FIG. 11: Parametric plot for 6=k (method 2) 

From the plots above, it is seen that the method is A-stable for step number k=1 to 3 and ( )A  −

stable for step number 4 to 6. The method becomes unstable for step-number 7 and above. These 

methods are strong enough to be used for stiff differential equations. 

4.3.3 Error constants of the proposed hybrid methods 

Consider the operator, 

( )( ) ( ) ( )( )

( ) ( )1
2

2

0 0

1

1

2

,

' ' ''

n n n

k k

j n n j nn
j j

L y x h y x kh y x k h

h y x jh h y x h h y x kh  
+

= =

= + − + − −

 
+ − + − +  

   

We expand term by term in Taylor series about nx
 and obtain 

( ) ( ) ( ) ( ) ( ) ( )2

2

''

!
' ... ...

!

n

p p
y x n

n n

kh y x
y x khy x kh

p
+ + + + +

 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )2 2 11

1
2

''
' ... ...

! !

p pp
nn

n n

k h y xk h y x
y x k hy x

p

 −−
 − + − + + +
 
   

( ) ( )
( ) ( ) ( ) ( )

2 1

0 2

'''
' '' ... ...

! !

p p
k

n n

j n n
j

jh y x jh y x
h y x jhy x

p


+

=

 
 − + + + + +
 
   

( ) ( )
( ) ( ) ( ) ( )

1

2

12 11
241

2 2

'''
' '' ... ...

! !

p p

nn

n nn

h y xh y x
h y x hy x

p


+

+

 
 − + + + + +
 
   

10 5 5
Re Z

5

5

Im Z

K 6
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( ) ( ) ( )
( ) ( ) ( ) ( )2

22

0 2
'' ''' ... ...

! !

p piv
k

n n

j n n
j

y x kh y x
h y x khy x kh

p


+

=

 
 − + + + + +
 
   

Recall that  

( )  ( ) ( ) ( ) ( ) ( )2 1
0 1 2; ' '' ... p p p

n n n n p nL y x h C y x hC y x h C y x h C y x O h += + + + + +
 

Collecting terms in power of h we obtain 

0 0C =
 

1

2
1

0

1
k

j n
j

C  
+

=

= − −
 

( )
22

2
0

1 1

2 2 2! !

K

j j
J

KK
C j k 

=

−  
= − − + − 

   
.

.

.  

( )

( )

1 1

01

1! ! !

k
p p

p j jp
j

p

j k
kk

C
p p p

 − −

=

 
+ −  

= − −
−  

 

( )

( )

11
0

1

1

1 1! ! !

k
p p

p j jp
j

p

j k
kk

C
p p p

 ++
=

+

 
+ −  

= − −
+ +  

In similar manner, the error constant of the hybrid method 2 is obtain as 

( )
1

1
1 1

02
1

1 1 1! ! ! !

k
p

p
pj p

j k
p

j
k k

c
p p p p




+
+

−
=

+



= − − −
+ + −  

 

3. IMPLEMENTATION OF NUMERICAL SCHEME 

The numerical implementation is carried out in fixed and variable step-sizes. The Newton-

Ralphson iterative method is adopted to resolve implicitness of the proposed method during the 

implementation. 

We will consider three test problems for implementation with the proposed hybrid methods in this 

section. 
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Problem 1 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

 

1 1 2
1 1 2 1

2
2 1 2 2 2

2 0 1

0 1

0 1 0 0001

' ,

' ,

, , .

y x e y x e y x y

y x y x y x y x y

x h

− −= − + + =

= − − =

 =

 

The exact solution is given as ( ) 2
1

x
y x e

−= and ( )2
x

y x e
−=  . This is a singular perturbed 

problem suggested in Rosenbrock (1981). These problems become stiff as 0e → . Applying the 

proposed hybrid method in (22) to the IVP above using Newton iterative scheme: 

( ) ( ) ( )( ) ( )( )
1

1

n k n k n k n kY y J y F y
   

−
+

+ + + += −  

In order to resolve the implicitness, where 

( )( ) ( ) ( ) ( )( ) ( )( )2 2
1 1 1 1 1

0

, y , ' ,
k

n k n k k n k j n j n j vm n vm n vm k n k n k
j

F y y y h f x h f x y h f x y
   

   + + − + − + + − + − + − + +
=

= − − − −  with 

hybrid predictors 

 

The Jacobian matrix is given as 

( )( ) ( )( )( ) ( )( )  
 + + += /n k n k n kJ y F y y .  

We used the explicit Trapezoidal rule to generate the starting method. Result is tabulated below; 

 

TABLE 5: Result of problem 1 

 Proposed method 1 Ode15s 

e 
2

e  
2

e  

110−
 

54 3 10. −  
11 1 10. −  

210−
 

54 3 10. −  
21 0 10. −  

310−
 

54 4 10. −  
32 2 10. −  

410−
 

54 4 10. −  
32 5 10. −  

( ) ( )( )
( ) ( )( ) ( )( )

2
1

0

2

0

' ' ,

' . '' ' , .

k

n vm j n j k n k n k
j

k

n vm j n j k n k n k k n k n k
j

y y h f x y and

y y hf x y h f x y

 

 

 

  

+ − + + +
=

+ + + + + +
=

= +

= + +
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Problem 2 

A stiff system of equation  

( ) ( ) ( )

( ) ( ) ( ) ( )  

1 1 2

2 1 2

8 7

1
42 43 0 0 10

8

'

' , ,

y x y x y x

y x y x y x y x

= − +

 
= − =  

 

 

( )

( )

50
1

50
2

2

2 6

x x

x x

y x e e

y x e e

− −

− −

= −

= +
 

Implementing the problem with our proposed method for k=1in variable step-size techniques, we 

estimate the local error 
( )

1 1

e

n ny y+ +− at each step and we controlled it by taking a new step-size as  

( )

1

1

1 1

p

new olde

n n

TOL
h h

y y

+

+ +

 
 

=  
− 

 

                  (21) 

where  

( )
3 1

2 221 1
1

8 11 '2 13 19 '
, 5

27 15 135 45 90

+ ++ +
+

−   
   = + + + + − =

  
  

n ne n n n
nn

f ff f f
y y h h p

 

With predictors 

2
1 1 1

3

2

3 9 3 '
, 3

8 8 8 16

+ + +

+
= − + + =n n n n

n

hf y y h f
y p  

2
1 1

1

2

'
, 2

2 2 8

+ +

+
= + − =n n n

n

y y h f
y p  

If the local estimate is less than the tolerance i.e 
( )

1 1

e

n ny y TOL+ +−  , we accept the current step. 

We can now use (**) to predict the next step-size. But if 
( )

1 1

e

n ny y TOL+ +−  , reject the step. The 

result of the above experiment is tabulated below: 
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TABLE 6: Result of problem 2 

Method 

 

TOL FC FS TS 

SDMM 

Proposed 

method 1 

210−
 

210−
 

96 

73 

12 

4 

73 

38 

SDMM 

Proposed 

method 1 

410−
 

410−
 

284 

200 

14 

4 

132 

58 

SDMM 

Proposed 

method 1 

610−
 

610−
 

357 

270 

6 

4 

233 

140 

 

Problem 3 

Consider the stiff system: 

 
1 1 2

2 1 2

30 30

30 30

' ,

' ,

x

x

y y y e

y y y e

−

−

= − − +

= − −
 

With initial value ( ) ( )0 1 1,
T

y = and exact solution ( ) ( )1 2
x

y x y x e
−= = . Using step-size

0 002.h = , the numerical result is compared with the Hybrid Extended Backward Differentiation 

Formulas (HEBDF) for Stiff Systems proposed by Ezzzeddine & Hojjatti (2011).the numerical 

solution is in the table below. 

TABLE 7: Result of problem 3 

x  
iy  Error in 

HEBDF 

 Error in 

method 2 

0.04 
1y  4E-20 4E-21 

2y  1.81E-18 1.33E-20 

0.2 
1y  2.5E-19 2.33E-21 

2y  6.2E-19 7.1E-22 

2.0 
1y  2E-20 2.2E-21 

2y  3.8E-19 3.5E-20 

 



26 

ESUABANA, EKORO, ABASIEKWERE, EKPENYONG, OGUMBE 

Problem 4. 

Consider the nonlinear system  

 
( )

2
1 1 2

2 1 2 2

1002 1000

1

'

'

y y y

y y y y

= − −

= − +
 

With initial value ( ) ( )0 1 1,
T

y = , the theoretical solution is ( ) ( )2
1 2,

x x
y x e y x e

− −= = in the 

interval  0 5, . We integrate the system by our proposed methods with step-size 0 005.h = and 

obtain the following results: 

 

 TABLE 8: Result of problem 4 

x  
iy  Error in 

HEBDF 

Error in our proposed 

method 2 

0.4 
1y  5.46E-17 5.22E-17 

2y  4.05E-17 3.99E-17 

5.0 
1y  7.08E-20 6.80E-20 

2y  5.25E-18 4.88E-19 

 

TABLE 9: Result of problem 4 in the interval [0, 30] with a step-size h=0.01 

x  
iy  Exact Solution Error in 

HEBDF 

Error in 

method 2 

10.0 
1y  2.0611536224385578280E-9 3.88E-25 3.66E-25 

2y  4.539992972484851536E-5 4.28E-21 4.05E-22 

20.0 
1y  4.2483542552915889953E-18 1.50E-33 2.00E-34 

2y  2.0611536224385578280E-27 3.65E-25 3.55E-25 

30.0 
1y  8.7565107626965203385E-27 6.78E-32 6.00E-32 

2y  9.3576229688401746049E-14 2.46E-29 2.33E-29 
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4. CONCLUSION 

This study is an extension and modification of linear multistep methods. The modification is done 

by introducing hybrid points and adding second derivative points to the conventional linear 

multistep methods. Two methods are derived each with hybrid collocation points. We employed 

the interpolation and collocation approach in the derivation using Mathematica software. The 

implementation is carried out in fixed and variable step-size. Mathematica and MATLAB 

programming software are used in the derivations and implementation of the two new classes of 

hybrid linear multistep methods with predictors.  These methods have small error constants and 

are zero-stable and A-stable at higher orders which are important properties for numerical 

integrations. 

The experimental results in table 5-9 show that the methods are competitive with other existing 

methods in literature. 
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