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Abstract. In this paper, the notions of left and right bases of an ordered LA-Γ-semigroup are introduced and

described. The structure of an ordered LA-Γ- semigroup with left identity containing right bases will be studied.

Moreover, we show that every right base of an ordered LA-Γ-semigroup with left identity has one element and the

compliment of the union of all right bases of an ordered LA-Γ-semigroup with left identity is the maximal proper

left Γ-ideal.
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1. INTRODUCTION

The notion of an left almost semigroup (abbreviated as an LA-semigroup) was first introduced

by Kazim and Naseerudin [9]. This algebraic structure is closely related to a commutative
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semigroup because a commutative LA-semigroup is a semigroup. For examples of some results

of LA-semigroups, we can see in [6, 7, 15]. The notion of a Γ-semigroup was introduced by Sen

[11]. Later, Shah and Rehmen [12] introduced the concept of an LA-Γ-semigroup analogous to

a Γ-semigroup. Moreover, ordered LA-semigroups were studied by the authors in [13]. Next,

Khan et al. [10] introduced the concept of an ordered LA-Γ-semigroup. Also, some results

of LA-Γ-semigroups and ordered LA-Γ-semigroups can be seen in [1, 2, 8]. The notions of

right bases and left bases of semigroups were introduced by Tamura [14]. Later, Fabrici [5]

examined the structure of a semigroup containing right bases. Changpas and Kummoon [4]

extended results in [5] from semigroups to Γ-semigroups. The aim of this paper is to extend the

results obtained by Changpas and Kummoon to ordered LA-Γ-semigroups. First, we now recall

some definitions and results used throughout the paper.

Definition 1.1. ([12]) Let S and Γ be non-empty sets. The algebraic structure (S,Γ) is called an

LA-Γ-semigroup if there exists a mapping S×Γ× S→ S, written (a,γ,b) and denoted by aγb

such that S satisfied the left invertive law

(aγb)βc = (cγb)βa

for all a,b,c ∈ S and γ,β ∈ Γ.

Definition 1.2. ([12]) An element e of an LA-Γ-semigroup S is called a left identity if eγa = a

for all a ∈ S and γ ∈ Γ.

Lemma 1.1. ([12]) If S is an LA-Γ-semigroup with left identity e, then SΓS = S and S = eΓS =

SΓe.

Proposition 1.2. ([1]) Let S be an LA-Γ-semigroup.

(1) Every LA-Γ- semigroup with left identity satisfy the equalities

aγ(bβc) = bγ(aβc) and (aγb)β (cαd) = (dγc)β (bαa)

for all a,b,c,d,∈ S and γ,β ,α,∈ Γ.

(2) An LA-Γ- semigroup S is Γ-medial, i.e.,

(aγb)β (cγd) = (aγc)β (bαd) = (aγc)β (bαd)
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for all a,b,c,d ∈ S and γ,β ,α ∈ Γ.

Definition 1.3. ([10]) An ordered LA-Γ-semigroup is the algebraic structure (S,Γ,≤) in which

the following conditions hold.

(1) (S,Γ) is an LA-Γ- semigroup.

(2) (S,≤) is a poset (i.e. reflexive, anti-symmetric and transitive).

(3) For all a,b and x ∈ S,a≤ b implies aαx≤ bαx and xαa≤ xαb for all α ∈ Γ.

Throughout this paper, unless stated otherwise, S stand for an ordered LA-Γ- semigroup. For

non-empty subsets A and B of an ordered LA-Γ- semigroup S, we defined

AΓB = {aγb|a ∈ A,b ∈ B andγ ∈ Γ} and (A] = {b ∈ S|t ≤ a, for some a ∈ A}.

In particular, we write BΓa instead for BΓ{a}, aΓB instead for {a}ΓB and a∪BΓa instead

for {a}∪BΓa. For A = {a}, we write (a] instead for ({a}].

Definition 1.4. ([2]) A non-empty subset A of an ordered LA-Γ-semigroup S is called an LA-Γ-

subsemigroup of S if AΓA⊆ A.

Definition 1.5. ([10]) A non-empty subsets A of an ordered LA-Γ- semigroup S is called a left

(resp. right) Γ-ideal of S if

(1) SΓA⊆ A (resp. AΓS⊆ A);

(2) if a ∈ A and b ∈ S such that b≤ a, then b ∈ A.

Definition 1.6. A proper left Γ-ideal M of an ordered LA-Γ-semigroup S is said to be maximal

if for any left Γ-ideal A of S,M ⊆ A⊆ S implies M = A or A = S.

Lemma 1.3. ([10]) Let S be an ordered LA-Γ-semigroup, then the following are true.

(1) A⊆ (A], for all A⊆ S.

(2) If A⊆ B⊆ S, then (A]⊆ (B].

(3) (A]Γ(B]⊆ (AΓB], for all subsets A,B of S.

(4) (A] = ((A]], for all A⊆ S.

(5) For every left (resp. right) Γ- ideal T of S,(T ] = T.

(6) ((A]Γ(B]] = (AΓB], for all subsets A,B of S.
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(7) (A∪B] = (A]∪ (B], for all subsets A,B of S.

Lemma 1.4. Let S be an ordered LA-Γ-semigroup with left identity and Ai be a left Γ-ideal of

S for each i ∈ I, then the following statements hold ;

(1) If
⋂
i∈I

Ai 6=∅ then
⋂
i∈I

Ai is a left Γ-ideal of S.

(2)
⋃
i∈I

Ai is a left Γ-ideal of S.

Proof. (1) Assume that
⋂
i∈I

Ai 6=∅. We will show that SΓ
⋂
i∈I

Ai⊆ (
⋂
i∈I

Ai). First, let x∈ SΓ(
⋂
i∈I

Ai).

Then x = sγa for some s = S,γ ∈ Γ and a ∈
⋂
i∈I

Ai. Since a ∈
⋂
i∈I

Ai, we obtain a ∈ Ai for all i ∈ I.

Since Ai is a left Γ- ideal of S for all i ∈ I, then x = sγa ∈ SΓAi ⊆ Ai, for all i ∈ I. So x ∈
⋂
i∈I

Ai.

Thus SΓ(
⋂
i∈I

Ai)⊆
⋂
i∈I

Ai. Next, let x ∈
⋂
i∈I

Ai and y ∈ S such that y≤ x. Since x ∈
⋂
i∈I

Ai, we obtain

x∈ Ai where Ai is a left Γ-ideal of S for all i∈ I. So y∈ Ai for all i∈ I. Thus y∈
⋂
i∈I

Ai. Therefore⋂
i∈I

Ai is a left Γ- ideal of S.

(2) To show that
⋃
i∈I

Ai is a left Γ-ideal of S, we let x ∈ (SΓ
⋃
i∈I

Ai). Then x = sγa for some

s ∈ S,γ ∈ Γ and a ∈
⋃
i∈I

Ai. Since a ∈
⋃
i∈I

Ai, we obtain a ∈ Ai for some i ∈ I. Since Ai is a left Γ-

ideal of S for all i ∈ I, so x = sγa ∈ SΓAi ⊆ Ai ⊆
⋃
i∈I

Ai. Thus x ∈
⋃
i∈I

Ai. Hence SΓ(
⋃
i∈I

Ai)⊆
⋃
i∈I

Ai.

Next, let x ∈
⋃
i∈I

Ai, and y ∈ S such that y ≤ x. Since x ∈
⋃
i∈I

Ai, we obtain x ∈ Aifor some i ∈ I ,

where Ai is a left Γ-ideal of S for all I ∈ I. So y ∈ Ai for some i ∈ I. Thus y ∈
⋃
i∈I

Ai. Therefore⋃
i∈I

Ai is a left Γ-ideal of S. �

Definition 1.7. Let A be a non-empty subset of an ordered LA-Γ-semigroup S. Then, the inter-

section of all left Γ-ideals of S containing A is the smallest left Γ-ideal of S generated by A and

is denoted by (A)L.

Lemma 1.5. Let A be a non-empty subset of an ordered LA-Γ-semigroup S with left identity e.

Then (A)L = (A∪SΓA].
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Proof. Let B = (A∪SΓA]. First, we consider

SΓB = SΓ(A∪SΓA] = (S]Γ(A∪SΓA]

⊆ ((S)Γ(A∪SΓA] by Lemma 1.2(3)

= (SΓA∪SΓ(SΓA)]

= (SΓA∪ (SΓS)Γ(SΓA)] by Lemma 1.1

= (SΓA∪ (AΓS)Γ(SΓS)] by Proposition 1.2(1)

= (SΓA∪ (AΓS)ΓS]

= (SΓA∪ (SΓS)ΓA] by left invertive law

= (SΓA∪SΓA] = (SΓA]⊆ (A∪SΓA] = B

Then SΓB ⊆ B. Next, let a ∈ B = (A∪ SΓA] and b ∈ S such that b ≤ a. Since b ≤ a and a ∈

(A∪SΓA], we obtain b ∈ ((A∪SΓA]] = (A∪SΓA] = B. So b ∈ B. Thus B is a left Γ-ideal of S

containing A. Next, let C be a left Γ-ideal of S containing A. Since A⊆C, then SΓA⊆ SΓC⊆C.

So A∪ SΓA ⊆ C. Thus B = (A∪ SΓA] ⊆ (C] = C. Hence B is the smallest left Γ-ideal of S

containing A. Therefore (A)L = (A∪SΓA]. �

For an element a ∈ S, we write (a)L for ({a})L which is called the principal left Γ-ideal of S

generated by a. Thus

(a)L = (a∪SΓa].

Corollary 1.6. Let S be an ordered LA-Γ- semigroup with left identity. Then (SΓa] is a left

Γ-ideal of S for all a ∈ S.

2. MAIN RESULTS

We begin this section with the definition of a right base of an ordered LA-Γ- semigroup with

left identity as follows:

Definition 2.1. Let S be an ordered LA-Γ-semigroup with left identity. A non-empty subset A

of S is called a right base of S if it satisfies the two following conditions:

(1) S = (A∪SΓA], i.e. S = (A)L;
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(2) if B is a subset of A such that S = (B)L, then B = A.

For a left base of S is defined dually.

Example 2.1. Let S = {e,a,b,c,d} and Γ = {β} with the multiplication defined by

β e a b c d

e e e e e e

a e a a a a

b e a c d b

c e a d c c

d e a b c d

and ≤:= {(e,e),(a,a),(a,b),(a,c),(a,d),(b,b),(c,c),(d,d)}

Then S is an ordered LA-Γ- semigroup with left identity d. The right bases of S are A = {b},

B = {c} and C = {d}. The left bases of S are the same as the right bases of S.

Example 2.2. Let S = {1,2,3,4} and Γ = {β} with the multiplication defined by

β 1 2 3 4

1 2 2 4 4

2 2 2 2 2

3 1 2 3 4

4 1 2 1 2

and ≤:= {(1,1),(2,2),(3,3),(4,4),(1,2),(4,2)}

Then S is an ordered LA-Γ- semigroup with left identity 3. The right base of S is A = {3}.

The left base of S is the same as the right base of S.

First, we have the following useful lemma:

Lemma 2.1. Let A be a right base of an ordered LA-Γ- semigroup with left identity and let

a,b ∈ A. If a ∈ (SΓb], then a = b.

Proof. Assume that a,b ∈ A such that a ∈ (SΓb], and suppose that a 6= b. Let B = A\{a}. Then

B⊂ A. Since a 6= b, we have b ∈ B. We will show that (A)L ⊆ (B)L. Let x ∈ (A)L = (A∪SΓA].

Then x ≤ z for some z ∈ A∪SΓA. Let z ∈ A. If z 6= a, then z ∈ B ⊆ (B∪SΓA]. Since x ≤ z and

z ∈ (B∪SΓB], then x ∈ ((B∪SΓB]] = (B∪SΓB]. So x ∈ (B)L. If z = a, then by assumption, we
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have z= a∈ (SΓB]⊆ (B∪SΓB]. Since x≤ z and z∈ (B∪SΓB], then x∈ ((B∪SΓB]] = (B∪SΓB].

So x ∈ (B)L. Next, let z ∈ SΓA, then z = sγc for some s ∈ S,γ ∈ Γ and c ∈ A. If c = a, then

z = sγc ∈ SΓ(SΓb]. Since (SΓb] is a left Γ-ideal of S for all b ∈ S, so z ∈ (SΓb] ⊆ (B∪ SΓB].

Since x≤ z and z ∈ (B∪SΓB], we have x ∈ ((B∪SΓB]] = (B∪SΓB]. So x ∈ (B)L. If c 6= a, then

z = sγc ∈ SΓB ⊆ (B∪SΓB]. Since x ≤ z and z ∈ (B∪SΓB], then x ∈ ((B∪SΓB]] = (B∪SΓB].

So x ∈ (B)L. Hence (A)L ⊆ (B)L. By S = (A)L ⊆ (B)L ⊆ S, we have that (B)L = S. This is a

contradiction. Therefore, a = b. �

Definition 2.2. Let S be an ordered LA-Γ-semigroup with left identity. Define a quasi-order on

S by, for any a,b ∈ S,

a≤L b :⇔ (a)L ⊆ (b)L.

We write a <L b if a≤L b but a 6= b, i.e., (a)L ⊂ (b)L.

From Definition 2.2, the relation ≤L is not a partial order. By Example 2.1, we have (b)L ⊆

(c)L and (c)L ⊆ (b)L. So b≤L c and c≤L b. But b 6= c. Thus ≤L is not a partial order on S.

Lemma 2.2. Let S be an ordered LA-Γ- semigroup with left identity. For any a,b ∈ S, if a≤ b,

then a≤L b.

Proof. Let a,b ∈ S such that a ≤ b. We will show that a ≤L b, i.e., (a)L ⊆ (b)L. Suppose that

x∈ (a)L. Since x∈ (a∪SΓa], then x≤ y for some y∈ a∪SΓa. We have y= a or y∈ SΓa. If y= a,

then x≤ a≤ b, we have x≤ b for some b ∈ b∪SΓb. So x ∈ (b∪SΓb], and x ∈ (b)L. If y ∈ SΓa,

then y = sγa for some s ∈ S,γ ∈ Γ. Since a ≤ b, then sγa ≤ sγb and sγb ∈ SΓb ⊆ b∪SΓb. So

y = sγa∈ (b∪SΓb]. Since x≤ y and y∈ (b∪SΓb], then x∈ ((b∪SΓb]] = (b∪SΓb]. So x∈ (b)L.

Thus (a)L ⊆ (b)L, i.e., a≤L b. �

The following theorem characterizes when a non-empty subset of an ordered LA-Γ-

semigroup is a right base of the ordered LA-Γ-semigroup.

Theorem 2.3. A non-empty subset A of an ordered LA-Γ-semigroup with left identity is a right

base of S if and only if A satisfies the two following conditions:

(1) for any x ∈ S there exists a ∈ A such that x≤L a ;

(2) for any two distinct elements a,b ∈ A neither a≤L b nor b≤L a.
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Proof. Assume that A is a right base of S. Then S = (A)L. First, to show that the condition (1)

holds, we let x∈ S. Then x∈ (A∪SΓA]. Since x∈ (A∪SΓA], we have x≤ y for some y∈A∪SΓA.

Then y ∈ A or y ∈ SΓA. If y ∈ A, and x≤ y, by Lemma 2.2, x≤L y. If y ∈ SΓA, then y = sγa for

some s∈ S,γ ∈ Γ and a∈ A. Since y = sγa∈ SΓa⊆ (SΓa]⊆ (a)L and SΓy⊆ SΓ(SΓa]⊆ (SΓa]⊆

(a)L, then y∪ SΓy ⊆ (a)L. So (y)L = (y∪ SΓy] ⊆ ((a)L] = (a)L, i.e., y ≤L a. Since x ≤ y, by

Lemma 2.2, x≤L y. So x≤L y≤L a. Thus x≤L a. Hence the condition (1) holds. Next, to show

that the condition (2) holds. Let a,b ∈ A such that a 6= b. Suppose a≤L b. Let B = A\{a}, then

B ⊂ A. Since a 6= b, we have b ∈ B. Let x ∈ S, by condition (1), there exists c ∈ A such that

x ≤L c. Since c ∈ A, there are two cases to consider. If c = a, then x ≤L c≤L b, and so x ≤L b.

By x ∈ (x)L ⊆ (b)L ⊆ (B)L. Thus s⊆ (B)L and S = (B)L. This is a contradiction. If c 6= a, then

c ∈ B. So x ∈ (x)L ⊆ (c)L ⊆ (B)L. Thus S ⊆ (B)L and S = (B)L. This is a contradiction. The

case b≤L a proved similarly. Hence the condition (2) holds.

Conversely, assume that the conditions (1) and (2) hold. We will show that A is a right

base of S. First, to show that S = (A)L. Clearly, (A)L ⊆ S. Let x ∈ S, by condition (1), there

exists a ∈ A such that x ≤L a, i.e. (x)L ⊆ (a)L. Then x ∈ (x)L ⊆ (a)L ⊆ (A)L. So S ⊆ (A)L.

Thus S = (A)L. Next, to show that A is a minimal subset of S with the property S = (A)L. Let

B ⊂ A such that S = (B)L. Then there exists a ∈ A and a /∈ B. Since a ∈ A ⊆ S = (B∪ SΓB] =

(B]∪ (SΓB], then a ∈ (B] or a ∈ (SΓB]. If a ∈ (B], then a ≤ y for some y ∈ B, by Lemma

2.2, a ≤L y. This is a contradiction. Thus a /∈ (B], and so a ∈ (SΓB]. Since a ∈ (SΓB], we

have a ≤ c for some c ∈ SΓB. Let c = sγb for some s ∈ S,γ ∈ Γ and b ∈ B. Since a ≤ c and

c = sγv ∈ SΓb ⊆ b∪ SΓb, we have a ∈ (b∪ SΓb]. Since {a} ⊆ (b∪ SΓb] and (b∪ SΓb] is a

left Γ- ideal of S, we have SΓa ⊆ SΓ(b∪ SΓb] ⊆ (b∪ SΓb]. Thus a∪ SΓa ⊆ (b∪ SΓb], and so

(a)L = (a∪ SΓa] ⊆ ((b∪ SΓb]] = (b∪ SΓb] = (b)L. Hence a,b ∈ A. This is a contradiction.

Therefore A is a right base of S. �

Theorem 2.4. A right base A of an ordered LA-Γ-semigroup S with left identity is a left Γ-ideal

of S if and only if A = S.

Proof. Assume that A is a left Γ-ideal of S. Then S = (A)L = (A∪ SΓA] = (A∪A] = (A] = A.

So S = A. Conversely, assume that A = S. To show that A is a left Γ- ideal of S. First, we have
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SΓA = SΓS = S = A, so SΓA = A. Next, let a ∈ A and b ∈ S such that b ≤ a. Since b ∈ S and

S = A, then b ∈ A. Thus A is a left Γ-ideal of S. �

Theorem 2.5. The right bases of an ordered LA-Γ- semigroup S with left identity have the same

cardinality.

Proof. Assume that A and B are right bases of S. Let a ∈ A. Since B is a right base of S, by

condition (1) of Theorem 2.3, there exists b ∈ B such that a ≤L b. Since A is a right base of S,

there exists a
′ ∈ A such that b≤L a

′
. So a≤L b≤L a

′
i.e., a≤L a

′
. By condition (2) of Theorem

2.3, we have a = a
′
. Thus (a)L = (b)L. Define a mapping ϕ : A→ B;ϕ(a) = b for all a ∈ A. We

will show that ϕ is well-defined. Let a1,a2 ∈ A such that a1 = a2, ϕ(a1) = b1, and ϕ(a2) = b2,

for some b1,b2 ∈ B. Then (a1)L = (b1)L and (a2)L = (b2)L. Since a1 = a2, then (a1)L = (a2)L,

so (a1)L = (a2)L = (b1)L = (b2)L. We have b1≤L b2 and b2≤L b1, by condition (2) of Theorem

2.3, b1 = b2. Thus ϕ(a1) = ϕ(a2). Therefore ϕ is well-defined. Next, we will show that ϕ is

one-to-one. Let a1,a2 ∈ A such that ϕ(a1) = ϕ(a2). Then ϕ(a1) = ϕ(a2) = b for some b ∈ B.

We have (a1)L = (a2)L = (b)L. Since (a1)L = (a2)L, so we have a1 ≤L a2 and a2 ≤L a1. Thus

a1 = a2. Therefore ϕ is one-to-one. Finally, we will show that ϕ is onto. Let b ∈ B, then there

exists a∈ A such that b≤L a. Similarly, there exists b
′ ∈ B such that a≤L b

′
. Then b≤L a≤L b

′
,

i.e., b ≤L b
′
. By condition (2) of Theorem 2.3, b = b

′
. So (b)L ⊆ (a)L and (a)L ⊆ (b)L. Thus

(a)L = (b)L. Therefore ϕ is onto, and the proof is completes. �

Theorem 2.6. Let A be a right base of an ordered LA-Γ-semigroup of S with left identity and

let a ∈ A. If (a)L = (b)L for some b ∈ S such that a 6= b, then b belongs to some right base of S

which is different from A.

Proof. Assume that (a)L = (b)L for some b ∈ S such that a 6= b. Setting B = (A \ {a})∪{b}.

Then B 6= A. We will show that B is a right base of S using Theorem 2.3. First, let x ∈ S. Since

A is a right base of S by Theorem 2.3(1), x ≤L c for some c ∈ A. If c 6= a, then c ∈ B. If c = a,

then (c)L = (a)L. Since (a)L = (b)L. we have (c)L = (b)L, i.e., c ≤L b. So x ≤L c ≤L b. Thus

x≤L b and b ∈ B. Next, let b1,b2 ∈ B such that b1 6= b2 We will show that neither b1 ≤L b2 nor

b2 ≤L b1 . Since b1 ∈ B and b2 ∈ B we have b1 = b or b1 6= b and b2 = b or b2 6= b. Then are

four cases to consider:



10 JANTANAN, THONGPHITAK, CHONGPRA, HOBANTHAD, CHINRAM, GAKETEM

Case 1 : b1 6= b and b2 6= b. Then b1,b2 ∈ A. Since A is a right base of S, neither b1 ≤L b2

nor b2 ≤L b1.

Case 2 : b1 6= b and b2 = b. Then (b2)L = (b)L. If b1 ≤L b2, then (b)L ⊆ (b2)L = (b)L = (a)L.

Thus b1 ≤L a and b1,a ∈ A. This is a contradiction. If b2 ≤L b1, then (A)L = (b)L = (b2)L ⊆

(b1)L. Thus a≤L b1 and b1,a ∈ A. This is a contradiction.

Case 3 : b1 = b and b2 6= b. Then (b1)L = (b)L. If b1≤L b2, then (a)L = (b)L = (b1)L⊆ (b2)L.

Thus a ≤L b2 and b2,a ∈ A. This is a contradiction. If b2 ≤L b1, then (b2)L ⊆ (b1)L = (b)L =

(a)L. Thus b2 ≤L a and b2,a ∈ A. This is a contradiction.

Case 4 : b1 = b and b2 = b. This is impossible.

Therefore B is a right base of S. �

Theorem 2.7. Let U be the union of all right bases of an ordered LA-Γ- semigroup S with left

identity. If S\U 6=∅, then S\U is a left Γ- ideal of S.

Proof. Assume that S\U 6=∅. First, let x∈ S,γ ∈Γ and a∈ S\U. We will show that xγa∈ S\U.

Suppose that xγa /∈ S\U. Then xγa∈U. Thus xγa∈ A for some a right base A of S. Let xγa = b

for some b ∈ A. Then b = xγa ∈ SΓa⊆ (a∪SΓa]. Since {b} ⊆ SΓa⊆ (SΓa] and (SΓa] is a left

Γ-ideal of S, then SΓb ⊆ SΓ(SΓa] ⊆ (SΓa]. So b∪ SΓb ⊆ (a∪ SΓa], and (b)L = (b∪ SΓb] ⊆

(a∪SΓa] = (a)L. Thus (b)L ⊆ (a)L. If (b)L = (a)L, by Theorem 2.6, we have a ∈U. This is a

contradiction. Hence (b)L ⊂ (a)L, i.e., b <L a. Since A is a right base of S, there exists b
′ ∈ A

such that a ≤ b
′
. We have b <L a ≤L b

′
, and b ≤L b

′
where b,b

′ ∈ A. This contradicts to the

condition (2) of Theorem 2.3. Thus xγa ∈ S \U. Next, let b ∈ S \U and c ∈ S such that c ≤ b.

We will show that c ∈ S \U. If c ∈U, then c ∈ B for some a right base B of S. Let d ∈ B such

that b ≤L d. Since c ≤ b, by Lemma 2.2, we have c ≤L b. So c ≤L d where c,d ∈ B. This is a

contradiction. Thus c /∈U, i.e., c ∈ S\U. Therefore S\U is a left Γ-ideal of S. �

Theorem 2.8. Let U be the union of all right bases of an ordered LA-Γ-semigroup S with left

identity such that ∅ 6=U ⊂ S. If S contains the maximal left Γ-ideal of S containing every proper

left Γ- ideal of S, denoted by L∗, then S\U = L∗ if and only if |A|= 1 for every right base A of

S.
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Proof. Assume that S contains a maximal left Γ-ideal of S containing every proper left Γ-ideal of

S, say L∗. Let S\U = L∗. To show that U ⊆ (a)L for all a∈U, suppose U * (a)L for some a∈U.

Then (a)L⊂ S and (a)L is a proper left Γ- ideal of S. This implies that a∈ (a)L⊆ L∗= S\U, and

so a ∈ S\U. This is a contradiction. Hence U ⊆ (a)L for all a ∈U. We claim that S\U ⊆ (a)L

for all a∈U. Suppose that S\U * (a)L for some a∈U. Then (a)L ⊂ S and (a1)L is a proper left

Γ- ideal of S. This implies that a1 ∈ (a)L⊆ L∗= S\U, and so a1 ∈ S\U. This is a contradiction.

Hence S\U ⊆ (a)L for all a ∈U. Since U ⊆ (a)L and S\U ⊆ (a)L for all a ∈U, it follows that

S = (S \U)∪ ⊆ (a)L ⊆ S. So (a)L = S for all a ∈U. Therefore, {a} is a right base of S for all

a ∈U. Next, let A be a right base of S, and let a,b ∈ A. Suppose that a 6= b. Since A⊆U,a ∈U,

so S = (a)L. Since a 6= b and b∈ S = (a∪SΓa] = (a]∪(SΓa], then b∈ (a] or b∈ (SΓa]. If b∈ (a]

then b≤ a, by Lemma 2.2, b≤L a where a,b ∈ A. This contradicts to condition (2) of Theorem

2.3. Thus b ∈ (SΓa], by Lemma 2.1, a = b. This is a contradiction. Hence a = b. Therefore

|A|= 1.

Conversely, assume that every right base of S has only one element. Then S = (a)L for all

a∈U. We will show that S\U = L∗. Since ∅ 6=U ⊂ S, then ∅ 6= S\U ⊂ S. By Theorem 2.7, we

have S\U is a proper left Γ- ideal of S. Next, let M be a left Γ-ideal of S such that S\U ⊆M⊆ S.

Suppose that S \U 6= M. We have S \U ⊂M and there exists x ∈M and x /∈ S \U, i.e., x ∈U.

Then x ∈ M ∩U and so M ∩U 6= ∅. Let a ∈ M ∩U. Then a ∈ M and a ∈ U. Since a ∈ M

and SΓa ⊆ SΓM ⊆ M, then a∪ SΓa ⊆ M. So (a)L = (a∪ SΓa] ⊆ (M] = M. Since a ∈ U, by

assumption we have S = (a)L. So S = (a)L ⊆M ⊆ S. Thus S = M. Hence S \U is a maximal

proper left Γ- ideal of S. Finally, let B be a proper left Γ- ideal of S. If B * S \U, then exists

b ∈ B such that b /∈ S \U. So B∩U 6= ∅ Let c ∈ B∩U. It follows that (c)L ⊆ B and S = (c)L.

Then S = (c)L ⊆ B ⊆ S. Thus S = B. This is a contradiction. Hence B ⊆ S \U. Therefore

S\U = L∗. �

Theorem 2.9. Let S be an ordered LA-Γ-semigroup with left identity. If e is a left identity of S,

then {e} is a right base of S.

Proof. Assume that e is a left identity of S. Let A = {e}. We will show that A is a right base of S

using Definition 2.1. First, we will show that S = (A)L. Since e is a left identity of S, by Lemma
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1.1, we have SΓe = S. So e∪SΓe = S. Thus (A)L = (e∪SΓe] = (S] = S. Hence (A)L = S. The

condition (2) of Definition 2.1 is obvious. Therefore A = {e} is a right base of S. �

In Example 2.1 and Example 2.2, it is observed that every right base of S is only one element.

However, it turns out that is true in general. The following corollary is combining Theorem 2.5

and Theorem 2.9.

Corollary 2.10. Let S be an ordered LA-Γ- semigroup with left identity. Then every right base

of S is one element.

In Example 2.1, the right bases of S are A = {b},B = {c} and C = {d}. We have set S

eliminating the union of all right bases of S denoted by S \U and S \U = {e,a}. Thus S \U is

a maximal proper left Γ-ideal of S containing every proper left Γ-ideal of S. From Theorem 2.8

and Corollary 2.10, we conclude the following theorem.

Theorem 2.11. Let U be the union of all right bases of an ordered LA-Γ-semigroup S with left

identity. Then S\U is a maximal proper left Γ-ideal of S containing every proper left Γ-ideal of

S.

Proof. Let S be an ordered LA-Γ-semigroup with left identity. By Corollary 2.10, we have every

right base of S is one element. Since every right base of S is one element, by Theorem 2.8, we

have S \U = L∗. Therefore S \U is a maximal proper left Γ-ideal of S containing every proper

left Γ-ideal of S. �
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