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Abstract. We consider an M/M/1 queue with n types of working vacation. After a non zero busy period if the

server finds the system empty, it opts for one of the n types of working vacation depending on the environment.

On vacation completion epoch finding an empty system, it remains in the respective vacation. We demonstrate

the stochastic decomposition structure of the queue length and waiting time of this M/M/1 queue and obtain the

distribution of the additional queue length and additional delay.
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1. INTRODUCTION

If a queue is empty the server remains idle. The idle time of the server can be utilized

for supplementary jobs. This gives rise to extensive research work in the field of vacation

queueing models. The details regarding the research on queueing models can be found in the

survey of Doshi [1], the monograph of Takagi [2] and Tian and Zhang [3]. If the number

of customers in the queue is less, the functioning of the server at a slow rate will reduce the

operating cost, energy consumption, and start-up cost. These advantages are pointing towards
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working vacation. A working vacation is an extension of regular vacation. In working vacation,

instead of completely stopping the service, the server provides service at a slow rate. Working

vacation reduces the chance of reneging of the customers compared to normal vacation. In

this era of high demand for commodities and services which are available in a short spell, the

concept of working vacation is very useful. This may be the main reason for the extensive

research work going on in working vacation queueing models.

Servi and Finn [4] introduced the idea of working vacation in queueing models and applied

the results to the performance analysis of gateway routers in fiber communication networks.

Baba [5] studied GI/M/1 queue with working vacation.[6] gives a comprehensive overview

of the research results and analysis methods of vacation queue, including its applications in

the communication networks. Stochastic decomposition results for the number of customers

in the system in the case of an exhaustive service were first obtained by Fuhrmann [7] and

then confirmed by Doshi [1]. Fuhrmann and Cooper [8] and Shanthikumar [9] established

stochastic decomposition structures for a classical M/G/1 queue with general vacations. [10]

demonstrates stochastic decomposition in an M/M/1 queue with working vacation. In [11] the

authors discuss an M/M/1 queue with n types of vacations where the server opts out one among

these n vacations depending on the environment.

In this model, we consider a single server queueing system with working vacation. On

completion of service, if the server finds the system empty, he goes for a working vacation.

There are n types of working vacations. After a busy period, depending on the environment, the

server opts for ith type of vacation with probability pi,1≤ i≤ n. During vacation, if customers

arrive, the server provides service at a lower rate. On completion of service during vacation,

if there is no customer in the system the server continues to be on vacation. Otherwise, the

vacation is interrupted, i.e. the server returns to normal service without completing the vacation

and starts service at the normal rate. On completion of vacation, if the server finds the system

empty, he remains on the corresponding vacation. We demonstrate stochastic decomposition of

the queue length and waiting time using the method of induction and Little’s formula[12].
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FIGURE 1. Model description

The rest of the paper is organized as follows. In section 2 the model is described in detail.

Section 3 discusses the stochastic decomposition structures of the number of customers in the

system and waiting time and obtains the distributions of additional queue length and additional

delay.

2. MODEL DESCRIPTION

Consider a single server queueing system with working vacation in which arrival occurs

according to a Poisson process with parameter λ . The service time is exponentially distributed

with parameter µ . On completion of a service if the server finds the system empty it goes for a

working vacation. There are n types of working vacations. Depending on the environment, after

a busy period, the server goes for ith type of vacation with probability pi,1≤ i≤ n. The duration

of ith type of vacation is exponentially distributed with parameter γi,1≤ i≤ n. During vacation,

if customers arrive, the server provides service at a lower rate µi, provided the server is in ith

type of vacation, 1 ≤ i ≤ n. On completion of service during vacation, if there is no customer

in the system the server continues to stay on vacation. Otherwise, the vacation is interrupted,

i.e. the server returns to normal service without completing the vacation and starts service at

the normal rate µ . On completion of vacation, if the server finds the system empty, it remains

on the corresponding vacations. Figure 1 is a diagrammatic representation of the model.
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3. MATHEMATICAL DESCRIPTION

We establish the stochastic decomposition of the state space by induction on the number of

environmental factors.

Case.1 First we consider the case of n = 2.

Let N(t) be the number of customers in the system and S(t) be the status of the server at time t:

S(t) =


0, if the server is serving in normal mode;

1, if server is in the type I working vacation;

2, if server is in the type II working vacation;
Then X = {X(t), t ≥ 0} where X(t) = (N(t),S(t)) is a continuous time Markov chain with state

space {0,1}∪{0,2}∪{( j,k), j = 1,2, . . . ;k = 0,1,2}. The infinitesimal generator associated

with the Markov chain is

Q1 =



B0 B1

B2 A1 A0

A2 A1 A0

A2 A1 A0
. . . . . . . . .


where −B0 = A0 = λ I,

B1 =

 0 λ 0

0 0 λ

, B2 =


µ p1 µ p2

µ1 0

0 µ2

 , A2 =


µ 0 0

µ1 0 0

µ2 0 0

,

A1 =


−λ −µ 0 0

θ1 −λ −µ1−θ1 0

θ2 0 −λ −µ2−θ2



Stability analysis. We have A = A0 +A1 +A2 =


0 0 0

θ1 +µ1 −µ1−θ1 0

θ2 +µ2 0 −µ2−θ2


Then A is the infinitesimal generator of a Markov chain with state space {0,1,2} which repre-

sents the status of the server. Let y = (y0,y1,y2) be the invariant probability vector of A. Then
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yA = 0 and ye = 1. The left drift rate of the original Markov chain is yA2e and that for right drift

is yA0e. Left drift indicates a service completion and right drift represents arrival of customer.

Thus the system is stable if and only if yA0e < yA2e. Here yA0e = λ and yA2e = µ .

Hence we have

Theorem: The system is stable if and only if λ < µ.

3.1. Steady State Analysis. For the analysis of the model it is necessary to solve for the

minimal non-negative solution R1 of the matrix quadratic equation

(1) R2
1A2 +R1A1 +A0 = 0.

Since the Matrices A2,A1,A0 are lower triangular R1 is also lower triangular. Solving (1) we ob-

tain R1 as R1 =


r0 0 0

r1 r1 0

r2 0 r2

 where r0 = ρ , r1 =
ρ(λ+θ1)

(λ+µ1+θ1)
, r1 =

λ

(λ+µ1+θ1)
, r2 =

ρ(λ+θ2)
(λ+µ2+θ2)

and r2 =
λ

(λ+µ2+θ2)
.

Let x = (x0,x1,x2, . . . ,) be the steady state probability vector associated with the Markov pro-

cess X . Here x0 = (x01,x02) and xi = (xi0,xi1,xi2), i = 1,2, . . . ,∞. Assume that xi = x1Ri−1
1 , i =

2,3, . . ., then x can be obtained by solving xQ = 0 using the boundary condition

(2) x0e+x1(I−R1)
−1e = 1.

From xQ = 0 we get

(3) x0B0 +x1B2 = 0.

(4) x0B1 +x1(A1 +R1A2) = 0.

From (3) and (4) we will get

(5) µ p1x10 +µ1x11 = (λ )x01.

(6) µ p2x10 +µ2x12 = (λ )x02.

(7) µx10 = (λ +θ1)x11 +(λ +θ2)x12.
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(8) λx01 = (λ +µ1 +θ1)x11.

(9) λx02 = (λ +µ2 +θ2)x12.

Assume x01 = k1 and x02 = k2, then from (8) and (9), x11 = r1k1, x12 = r2k2. Substituting the

values of x11 and x01 in (5) we will get x10 =
k1r1
p1

. Also

k2 =
µ p2r1

p1(λ −µ2r2)
k1

To find the value of k1 we use the normalizing condition

x0e+x1(I−R1)
−1e = 1.

Let r
′
0 = 1− r0,r

′
1 = 1− r1,r

′
2 = 1− r2; then (I−R1)

−1 =


1/r

′
0 0 0

−r1/r
′
0r
′
1 1/r

′
1 0

−r2/r
′
0r
′
2 0 1/r

′
2


Using (2)

(10) k1

[
1+

r1

p1r′0
+

r1

r′1
− r1r1

r′0r′1

]
+ k2

[
1+

r2

r′2
− r2r2

r′0r′2

]
= 1.

Substituting k2 in (10)

(11) k1

[
1+

r1

p1r′0
+

r1

r′1
− r1r1

r′0r′1
+

µ p2r1

p1(λ −µ2r2)

[
1+

r2

r′2
− r2r2

r′0r′2

]]
= 1.

From (11) k1 =
1[

1+ r1
p1r
′
0
+

r1
r
′
1
− r1r1

r
′
0r
′
1
+

µ p2r1
p1(λ−µ2r2)

[
1+ r2

r
′
2
− r2r2

r
′
0r
′
2

]] .

Now Rk−1
1 =


r(k−1)

0 0 0

r1
(rk−1

0 −rk−1
1 )

(r0−r1)
r(k−1)

1 0

r2
(rk−1

0 −rk−1
2 )

(r0−r2)
0 r(k−1)

2

 and

xke = x10rk−1
0 + x11

[
r(k−1)

1 + r1
(rk−1

0 −rk−1
1 )

(r0−r1)

]
+ x12

[
r(k−1)

2 + r2
(rk−1

0 −rk−1
2 )

(r0−r2)

]
for k > 1.

Let Qv(z) be the PGF associated with the number of customers in the system. Then

Qv(z) = ∑
∞
n=0 xnezn

= x01 + x02 +
x10z

1−r0z +
x11z

1−r1z +
x12z

1−r2z +
x11r1z
r0−r1

[
1

1−r0z −
1

1−r1z

]
+ x12r2z

r0−r2

[
1

1−r0z −
1

1−r2z

]
= 1−r0

1−r0z

[
x01

(1−r0z)
(1−r0)

+ x02
(1−r0z)
(1−r0)

+ x10z
1−r0

+ x11z
1−r1z

(1−r0z)
(1−r0)

+ x12z
1−r2z

(1−r0z)
(1−r0)

+

x11r1z
r0−r1

(1−r0z)
(1−r0)

[
1

1−r0z −
1

1−r1z

]
+ x12r2z

r0−r2

(1−r0z)
(1−r0)

[
1

1−r0z −
1

1−r2z

]]
.

Q
′
v(z) =

r0
1−r0z

[
x01

(1−r0z)
(1−r0)

+ x02
(1−r0z)
(1−r0)

+ x10z
1−r0

x11z
1−r1z

(1−r0z)
(1−r0)

+ x12z
1−r2z

(1−r0z)
(1−r0)

+
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x11r1z
r0−r1

(1−r0z)
(1−r0)

[
1

1−r0z −
1

1−r1z

]
+ x12r2z

r0−r2

(1−r0z)
(1−r0)

[
1

1−r0z −
1

1−r2z

]]
+
(

1−r0
1−r0z

)(
1

1−r0

)
[
−r0x01− r0x02 + x10 +

x11r1
(r0−r1)

+ x12r2
(r0−r2)

+ x11

(
r0−r1−r1

r0−r1

)(
1−2r0z+r0r1z2

(1−r1z)2

)
+

x12

(
r0−r2−r2

r0−r2

)(
1−2r0z+r0r2z2

(1−r2z)2

)]
Expected queue length E(L) = Q

′
v(1) =

r0
1−r0

+
(

1
1−r0

)
[−r0x01− r0x02 + x10

+ x11r1
(r0−r1)

+ x12r2
(r0−r2)

+ x11

(
r0−r1−r1

r0−r1

)(
1−2r0+r0r1
(1−r1)2

)
+ x12

(
r0−r2−r2

r0−r2

)(
1−2r0+r0r2
(1−r2)2

)]
= r0

1−r0
+
(

1
1−r0

)[
−r0k1− r0k2 +

k1r1
p1

+ r1k1r1
(1−r1)(r0−r1)

+ k2r2r2
(r0−r2)

+ k1r1

(
r0−r1−r1

r0−r1

)
(

1−2r0+r0r1
(1−r1)2

)
+ k2r2

(
r0−r2−r2

r0−r2

)(
1−2r0+r0r2
(1−r2)2

)]
= r0

1−r0
+
(

k1
1−r0

)[
−r0 +

r1
p1
+ r1r1

(1−r1)(r0−r1)
+ r1

(
r0−r1−r1

r0−r1

)(
1−2r0+r0r1
(1−r1)2

)]
+
(

k2
1−r0

)
[
−r0 +

r2r2
(r0−r2)

+ r2

(
r0−r2−r2

r1−r2

)(
1−2r0+r1r2
(1−r2)2

)]

Case.2 Now consider the case of n = 3. Then S(t) has four states.

S(t) =



0, if the server is serving in normal mode;

1, if server is in the type I working vacation;

2, if server is in the type II working vacation;

3, if server is in the type III working vacation;
The state space of X is {(0,k)|k = 1,2,3}∪{( j,k), j = 1,2, . . . ;k = 0,1,2,3}. The infinitesimal

generator associated with the Markov chain is Q2 =



B0 B1

B2 A1 A0

A2 A1 A0

A2 A1 A0
. . . . . . . . .



where −B0 = A0 = λ I3, B1 =


0 λ 0 0

0 0 λ 0

0 0 0 λ

, B2 =


µ p1 µ p2 µ p3

µ1 0 0

0 µ2 0

0 0 µ3

,
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A2 =


µ 0 0 0

µ1 0 0 0

µ2 0 0 0

µ3 0 0 0

,

A1 =


−λ −µ 0 0 0

θ1 −λ −µ1−θ1 0 0

θ2 0 −λ −µ2−θ2 0

θ3 0 0 −λ −µ3−θ3

.

A = A0 +A1 +A2 =


0 0 0 0

θ1 +µ1 −µ1−θ1 0 0

θ2 +µ2 0 −µ2−θ2 0

θ3 +µ3 0 0 −µ3−θ3


We get λ < µ as the condition for stability.

R2 =


r0 0 0 0

r1 r1 0 0

r2 0 r2 0

r3 0 0 r3

 where r0 = ρ, r1 = ρ(λ+θ1)
(λ+µ1+θ1)

, r1 = λ

(λ+µ1+θ1)
, r2 = ρ(λ+θ2)

(λ+µ2+θ2)
,

r2 =
λ

(λ+µ2+θ2)
, r3 =

ρ(λ+θ3)
(λ+µ3+θ3)

and r3 =
λ

(λ+µ3+θ3)

Let x = (x0,x1,x2, . . . ,) be the steady state probability vector associated with the Markov

process X . Here x0 = (x01,x02,x03) and xi = (xi0,xi1,xi2,xi3), i = 1,2, . . .. Then assuming

x01 = k1 x02 = k2 and x03 = k3, we get x11 = r1k1, x12 = r2k2 x13 = r3k3. x10 = k1r1
p1

. Also

k2 =
µ p2r1

p1(λ−µ2r2)
k1, k3 =

µ p3r1
p1(λ−µ3r3)

k1.

Let r
′
0 = 1− r0, r

′
1 = 1− r1, r

′
2 = 1− r2, r

′
3 = 1− r3 then

(I−R2)
−1 =


1/r

′
0 0 0 0

−r1/r
′
1r
′
0 1/r

′
1 0 0

−r2/r
′
2r
′
0 0 1/r

′
2 0

−r3/r
′
3r
′
0 0 0 1/r

′
3



Using the normalizing condition x0e+x1(I−R2)
−1e = 1, we get
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k1 =
11+ r1

r
′
1
− r1r1

r
′
0r
′
1
+

r1
p1r
′
0
+

3

∑
j=2

µ p jr1

p1(λ −µ jr j)

(
1+

r j

r′j
−

r jr j

r′0r′j

)

Now Rk−1
2 =


r(k−1)

1 0 0 0

r2
(rk−1

1 −rk−1
3 )

(r1−r3)
r(k−1)

3 0 0

r4
(rk−1

1 −rk−1
5 )

(r1−r5)
0 r(k−1)

5 0

r6
(rk−1

1 −rk−1
7 )

(r1−r7)
0 0 r(k−1)

7

 and

xke = x10rk−1
1 + x11

[
r(k−1)

3 + r2
(rk−1

1 −rk−1
3 )

(r1−r3)

]
+ x12

[
r(k−1)

5 + r4
(rk−1

1 −rk−1
5 )

(r1−r5)

]
+

x13

[
r(k−1)

7 + r6
(rk−1

1 −rk−1
7 )

(r1−r7)

]
for k > 1.

Qv(z) = ∑
∞
n=0 xnezn

= x01 + x02 + x03 + x10z
1−r1z + x11z

1−r3z + x12z
1−r5z + x13z

1−r7z + x11r2z
r1−r3

[
1

1−r1z −
1

1−r3z

]
+

x12r4z
r1−r5

[
1

1−r1z −
1

1−r5z

]
+ x13r6z

r1−r7

[
1

1−r1z −
1

1−r7z

]
Expected queue length E(L) = Q

′
v(1)

= r1
1−r1

+
(

k1
1−r1

)[
−r1 +

r2
p1
+ r2r3

(1−r3)(r1−r3)
+ r3

(
r1−r2−r3

r1−r3

)(
1−2r1+r1r3
(1−r3)2

)]
+(

k2
1−r1

)[
−r1 +

r5r4
(r1−r5)

+ r5

(
r1−r4−r5

r1−r5

)(
1−2r1+r1r5
(1−r5)2

)]
+
(

k3
1−r1

)[
−r1 +

r7r6
(r1−r7)

+

r7

(
r1−r6−r7

r1−r7

)(
1−2r1+r1r7
(1−r7)2

)]
Case.3

Now we consider the case where there are n≥ 4 distinct type of vacations. Then

S(t) has n+1 distinct values.

S(t) =

 0, if the server is serving in normal mode;

i, if server is in the ith type working vacation, 1≤ i≤ n;
The state space of X is {(0,k)/k = 1,2, . . . ,n} ∪ {( j,k)/ j = 0,1,2, . . . ;k = 1,2, . . . ,n} The

infinitesimal generator associated with the Markov chain is

Qn =



B0 B1

B2 A1 A0

A2 A1 A0

A2 A1 A0
. . . . . . . . .


where B1 =



0 λ

λ

λ

λ


n×(n+1)

,
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B2 =



µ p1 µ p2 . . . µ pn

µ1

µ2

µn


(n+1)×n

A2 =


µ

µ1
...

µn


(n+1)×(n+1)

, −B0 = A0 = λ In

A1 =



−λ −µ

θ1 −λ −µ1−θ1

θ2 −λ −µ2−θ2
... . . .
... . . .

θn −λ −µn−θn


As in the earlier sections

A0 +A1 +A2 =



−λ −µ

θ1 +µ1 −µ1−θ1

θ2 +µ2 −µ2−θ2
... . . .
... . . .

θn +µn −µn−θn


Let y = (y0,y1,y2, . . . ,yn) be the invariant probability vector of A satisfying yA = 0 and

ye = 1. The system is stable if and only if yA0e < yA2e. Here yA0e = λ and yA2e = µ .

Theorem:The system is stable if and only if λ < µ

Rn =



r0

r1 r1

r2 0 r2
... . . . . . .
... . . . . . .

rn 0 rn


where r0 = ρ,ri =

ρ(λ+θi)
(λ+µi+θi)

,

ri =
λ

(λ+µi+θi)
.

Let x = (x0,x1,x2, . . . ,) be the steady state probability vector associated with the Markov
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chain X . Here x0 = (x01,x02, . . . ,x0n) and xi = (xi0,xi1,xi2, . . . ,xin), i = 1,2, . . .. Then assuming

x0 j = k j,1≤ i≤ n, we get x1 j = r jk j, x10 =
k1r1
p1

.

Also k j =
µ p jr1

p1(λ−µ jr j)
k1. Let r

′
i = 1− ri,1≤ i≤ n,r

′
0 = 1− r0,

`i = 1/r
′
i,0≤ i≤ n,χi =−ri/(r

′
ir
′
0),1≤ i≤ n then,

(I−Rn)
−1 =



`0

χ1 `2

χ2 `2

χn `n


k1 =

11+ r1
r
′
1
− r1r1

r
′
0r
′
1
+

r1
p1r
′
0
+

n

∑
j=2

µ p jr1

p1(λ −µ jr j)

(
1+

r j

r′j
−

r jr j

r′0r′j

)

Now Rk−1
n =



r(k−1)
0

r1
(rk−1

0 −rk−1
1 )

(r0−r1)
r(k−1)

1

r2
(rk−1

0 −rk−1
2 )

(r0−r2)
0 r(k−1)

2
... . . .
... . . .

rn
(rk−1

0 −rk−1
n )

(r0−rn)
r(k−1)

n


and

xke = x10rk−1
0 +

n

∑
i=1

x1i

[
r(k−1)

i + ri
(rk−1

0 − rk−1
i )

(r0− ri)

]
for k > 1.

Then Qv(z) = ∑
∞
n=0 xnzn

=
n

∑
j=1

x0 j +
x10z

1− r0z
+

n

∑
j=1

x1 jz
1− r jz

+
n

∑
j=1

x1 jr jz
r0− r j

[
1

1− r0z
− 1

1− r jz

]
Expected queue length E(L) = Q

′
v(1)

= r0
1−r0

+
n

∑
j=1

(
k j

1− r0

)[
−r0 +

r j

p1
+

r jr j

(1− r j)(r0− r j)
+

r j

(
r0−r j−r j

r0−r j

)(
1−2r0+r0r j
(1−r j)2

)]
.

The above discussions lead to

Theorem(Stochastic decomposition): The expected queue length E(L) can be de-

composed into the sum of the expectations of n + 1 independent random variables as:
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E(L) = E(L) +
n

∑
i=1

E(LVi) where E(L) is the queue length of classical M/M/1 queue and

n

∑
i=1

E(LVi) is the additional queue length due to n types of vacations.

3.2. Stationary waiting time. Using Little’s formula the expected waiting time E(W ) = E(L)
λ

.

(12) E(W ) = (
1

µ−λ
+

1
λ

n

∑
i=1

E(LVi))

From (12) it is clear that the expected waiting time can be decomposed into the sum of n+

1 independent random variables: E(W ) = E(W ) +
n

∑
i=1

E(WVi). where E(W ) is the expected

waiting time of a customer in the M/M/1 queue and
n

∑
i=1

E(LWi) is the additional waiting time

due to n types of vacations.
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