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Abstract. In this paper, for n > 1, we initiate the notion of Hankel operators on the polydisk D" and slant Hankel
operators on Lz(’JI‘") where T" denotes the n-torus. We give the necessary and sufficient condition for a bounded
operator on L?(T") to be a slant Hankel operator and study some algebraic properties of slant Hankel operators.
Also, we extend our study on the Bergman space.
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1. INTRODUCTION

Let D be the open unit disk and T denotes the unit circle in the complex plane C. For n > 1,
let D" and T" be respectively the polydisk in C" and n-torus having a distinct boundary of D".
Let € = (y1,...,yn) Where y; = &;j, j = 1,2,...,n. Throughout this paper, z denotes the vector
2= (21,22,-.,zn) €C", r=(r1,r2,...,1n) €2", 2" =2{"--- z and |r| = ri +--- +r,. For
m= (my,my,...,my,) € Z", mis even if each m; is even for i = 1,2,3,...,n. Otherwise, m is

said to be odd. Also, forz € Z", Z=Z122" " Zn = Zl_lzz_l ..zl =771 Let do be the Haar
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measure on T". The space L?(T") is given by

2= { i Cle@ = ¥4 L 1P <o)

rez reZ

The inner product for any two functions f, g in L?(T") is given by (g, h) = / ’ g(2)h(z)do(z). If
em(z) = 2" form € Z", then {e,;} uc z» is an orthonormal basis for L?(T") fnd X =A{em}tmen
is an orthonormal basis for H%(ID"). The Hardy space H*(ID") consists of all the analytic func-
tions g € D" such that sup - |g(az)|*do(z) < eo. Let Rim;....ms) = L€(my.omy) i € 7Zt,1<
i< j}forje€[2,n] OOZTelmd arbitrarily fixed mj,mjiy,...,m, € Z*. So, Rlm....m,) 1s an or-
thonormal basis for H*(D/~"). For 1 < i < jand m; € Z* with j < i < n, Gy (). m,) 15
used to denote the space H2(ID/~!) to convey that the basis being considering is L@[mjwmn}. Any
function g € H*(ID"), the radial limit al_ig{ g(az) exists for almost every z € T" [12]. The notion
of Toeplitz operators was initiated by Toeplitz [16] in the year 1911. Ho [5, 6] defined the slant
Toeplitz operators on L?(T) as those operators whose matrix representation for an orthonormal
basis can be obtained by eliminating every other row of a doubly infinite Toeplitz matrix. Han-
kel operators are the formal companions of Toeplitz operators that have occurred in realization
problems for certain discrete-time linear systems and in determining which systems are exactly
controllable [11]. The study of Hankel and slant Hankel operators has various applications
in Hamburger’s moment problem, rational approximation theory, interpolation problems, and
stationary process. In 2006, Arora et al. [1] developed the notion of slant Hankel Operators
which is motivated by the matricial definition of slant Toeplitz operators on L*(T) as given by
Ho [5, 6]. Recently, Hazarika and Marik [4] initiated the idea of Toeplitz and slant Toeplitz
operators in the polydisk and discussed several properties. For relevant results on Hankel, slant
Hankel operators, Toeplitz, slant Toeplitz operators, and the concept of polydisk we refer the
readers to [2, 3, 7, 10, 12, 13, 14, 18].

Motivated by the works of Ho [5, 6] we introduce Hankel operators of level n on H>(ID"*) and
slant Hankel operators of level n on L?>(T") for n > 1. We show in this paper that a bounded
linear operator . on L?(T") is a slant Hankel operator of level n iff . can be expressed as

slant Hankel matrix of level n and discuss the properties of #” and 7. In the later part, we give

the notion of slant Hankel operators of level n on the Bergman space of the polydisk.
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Definition 1.1. [4] For ¢ € L™(T"), the Laurent operator My is defined as My f = ¢ f V f €
L2(T™).

Remark 1.2. [4]

(i) For ¢ € L™(T"), My = Mj.

(i) If ¢(z)=z forl<i<ni€Z,thenMyf=zf VfeL*T.
(i) M =Mz, and M e =ep—¢; Vm €Z"andi=1,2,3,...,n.
(iv) M e, = €mte; forl<i<mandm € 7Z".

(V) MyM:=1=M:M, Y1<i<n.

Definition 1.3. Flip operator : We define the flip operator J : L?(T") — L?(T") as an operator
(Jf)em(z) = (Jf)(Z") = f(z7™). It is very easy to show that a flip operator is a self-adjoint

operator.

2. HANKEL OPERATOR OF LEVEL n

Let ¢ be a linear operator on L(T") and P be the projection from L?(T") onto H*(D"). The
Hankel operator of level n, 5 on H 2(D™) is defined as y = PJMy where J is the flip operator
on L*(T").

2.1. Hankel Matrix of level n. Let {u,} e z» be a sequence of scalars. A matrix of the form

is called Hankel matrix of level 1. A block matrix of the form

(1) (1) (1)
%,im.,...mn %—17m37...,m” <%ﬂ—27m3,...,mn
(2) _ (1) 1) (1)
%3"”7’"” I jf—],m3,...,mn ‘%p—Z,m37...,m,1 <%p—3,m3,...,mn
(1) (1) (1)
%_27"’!37-“7’"" %—3,7713,...,}11” <%_47”’37'“7””7!
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is called Hankel matrix of level 2. While proceeding in this manner, a block matrix

%(”—1) %—(’11_1) jf_(;—l)

) = A )l
n—1 n—1 n—1

%—(2 ) %—3 ) %—4 )

is called Hankel matrix of level n.

Theorem 2.1. If T is a bounded linear operator on H*(D"), then T is a Hankel matrix of level

n i]j‘(fem,gj,em/+£j> = <Tem,em/> Vm,m' €Z and1 < j< n.

Proof. Suppose <’L’em,gj,em/+sj> = <’Cem,em/>Vm, meZiand 1< j< n

Let {uy c}n.ceczr be scalars such that Te; = Z upcen ¥V ¢ € ZL and m =
nezr
(my,my,...,my) and m’ = (m},m), ... ,m),) € Z" . Fixing (my,...,my,), (m),...,m,) and varying

/
ml, I’I’ll

< Tem—g (2),em1e, (z)> = < Ten(z),en (Z)>
= < Z Un.m—e, €n(2); €' ve, (Z)> = < Z “n7men(z)’em’(z)>

nezy nez
= Y upme(en(@),emie () =Y, unmen(z),en(z))
nez nezt

_ /
= U/ ey m—e; = Um'im Vim,m' € Z.

This implies that T : ), ] %17[,”/27“.7,”2} can be expressed as Hankel matrix of level 1,

%p(’(’:/) ) (.. A&RIN, I We vary m, nt, and fixing (m3, . ..,my), (mj,...,m,) then
W IRRUT geeelitn
< ’L'em_gz,em/+82> = < Tem, e:n>
— ) — )

(mhy+1,m,....my) (my—1,m3,....,my) (my,...,mpy) (my,...,mp)"
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So, T D jms,.my H 5427[,”/37._.7”1” can be expressed as Hankel matrix of level 2,

%55/3)7.A”m;1)(m37m7m”). Further, if we vary m3, m} and fixing (ma, ...,my), (m}, ... ,m)) then
< Tem_£3,em/+g3> = < Tem, em/>
) . 2)
= (%p(m3+1,m4,...,m,,)(mgfl,mg,...,m,’l) - jﬁmg, ) (m3,...my)

Hence, T : 9%, .m,] — 5437[,,127“.’,,,;] can be expressed as Hankel matrix of level 3,

x8 . If we continue in this manner, we can conclude that T : L?>(T") ~ H?(D")
() ()

can be expressed as Hankel matrix of level n after n steps. For converse part, suppose

T can be expressed as Hankel matrix of level n. So, for arbitrary m = (my,...,m,) and
m = (my,...,m)), T: G\ mjmn) gj,[m’j,m,m;} can be represented as a Hankel matrix of
level (j—l),,}f(ﬁl) for j=1,2,...,n—1. Now,

(m,..om)y) (mj,...mn )

<Tem*€j>em’+£j> = < Z Un,m—e; €n (Z)aem’+£j(z)>

nez
= Z ”n,m—ej<€n (Z)7e'nl+8j(z)>
nez
=l yejme; | €n (z)'s are orthonormal basis]

=Upy o Vi=12,...,n—1

= <’Cem,eml>.

Finally, we have to show <’L' em_gn,em/+8n> = <’L’ em,em/>. Let’s consider the n — 1 disk
H*(D""1). H*(D"!) is an isomorphic copy of 4,_; (,, ) for each m, € Z, and hence the n
disk H*(D") can be decomposed as H*(D") = @m,cz 9,1 (m,)- S0, T : L*(T") — H*(D")

can be represented as a Hankel matrix where the (n,,m,)" entry is ,%”ni," ;11) and also we have
n—1 n—1
A oyt = ) Henee, (Ten—esentse,) = ( Temsem). .

Theorem 2.2. An operator T on H*>(D") is a Hankel operator of level n if it can be expressed

as a Hankel matrix of level n.
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Proof. Let T = 4 = PIMy, ¢ € L*(T"). Now, form,m’ € Z', and 1 < j < n. We have,

<T€m—£ja€m’+£_,-> Tem— ej ), em +€; (Z)>

PIMy ey ez emx+£j(z)>

) em— 8] Jem’+£ (Z)>

Z MkaZm € . Z —m’ 8]>

ke

Z Mk<Zk+m 8172 m 8]>

kez"

— Z uk/ ZkerijZmurdeG(Z)
keZn "

(2.1) =Y w / ) 2 s (z).

kez"

<
<
(o6
<

Also,
(Ten(@).ew(@)) = { PIMyen(2) ew(2) )
= (0@)en(2). Jew(3))
= Lu(dm )
(2.2) = kénuk / Fmm e (z).

Hence, from (2.1) and (2.2) < Tem_g_i,em/+8j> = < ’L'em(z),em/(z)>.

The proof then follows from Theorem 2.1. U

Theorem 2.3. For every ¢ in L™(T"), H3" = Hj-.
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Proof. Let f and g be any two functions in H?(ID"). Then,

(A5 f.8) = (f. H48) = (f,PIMyg) = (f, H38) = (MyJ f.g) = (Mgl f.g)

= (IMyf,g) (" MzJ =JIMy)
= <PJM¢*f,g>
= (A f.8) Vf € H*(D").
Hence, %* = Hy OJ

3. SLANT HANKEL OPERATOR OF LEVEL n

Let {u, }mezn be a sequence of scalars. A matrix of the expression

u(07m2>"'7mn) u(_l>m27"~7mn) u(_27m27'“7mn)

1

sonn T u(_27m27'“7mn) u(_3>m27"~7mn) u(_47m27'“7mn)

u(_47m27"'7mn) u(_5>m27"~7mn) u(—(),mz,...,m,,)

is called a slant Hankel matrix of level 1. A block matrix of the form

1 1 1
y()(,nzy,...,mn '7—( l),m3,...,m,, y—(2)7m3,...,m,1
(2) _ 1 1 1
Jy%%“”m"__ te JWEZnQ,“mm ngimgywnm 52E£m3w”mn
(1) (1) (1)
“9274Jn3,“4nn ;9%—5Jn3w”4nn ;;<—6Jn3,ngnn

is called a slant Hankel matrix of level 2. Continuing in this way, we get the slant Hankel matrix

of level n as

n—1 n—1 n—1
gD ) gl

gW=|. g g gl

n—1 n—1 n—1
gl g gl
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Theorem 3.1. A bounded linear operator . on L*(T") is a slant Hankel matrix of level n iff

<,Vem_28j,em/+sj> =(Lemenw) ¥ mm €L

Proof. The proof is trivial and it follows directly from Theorem 2.1.

O

Theorem 3.2. A bounded linear operator . on L*(T") is slant Hankel operator of level n iff
M, =M Vj=12,....n
J

Proof. We have,

My =SM, > Vj=12...n
S (M, S em e ) = <YMZ;2 emsep) Y mm €'
& (S em, M, em ) = <YMZ;2 emep) ¥ m,m' € 1"
& (S emem—g;) = (S em-ae;ew) ¥ mm' €L
& (S emen) = (S emae; eme;) ¥ mm' €LV,
The proof now follows from Theorem 3.1. 0

Definition 3.3. Let ¥ be a linear operator defined on L?(T"), then for m € Z"

e if mis even;

Y oey, =
0 otherwise.
Let h(z Z wz € LZ(T”) then ¥ h(z Z urz ¥. Further, the adjoint of ¥ is given
kEZ” keZn
by V* ey = e_y, for each m € Z"" . Therefore, V" h Z uz K = f(z72) for h(z) =

kezn
Z wz* e LZ(T”). For j € Z", let P, be the projection on the closed span of {ezm tme Z”} in
kezn
L?>(T™). Then,

e; if jis even;
3.1 P.ej=
0 otherwise.
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Also, for m,m’ € 7",

1 if2m’ =—m;

(3.2) (V em,em) =
0 otherwise.

Hence, || 7| = 1.

Definition 3.4. A slant Hankel operator of level # is defined as .7y = "M, where ¢ € L*(T").
Theorem 3.5. ||.% || < ||¢]| for ¢ € L=(T").

Theorem 3.6. A slant Hankel operator of level n, ./ on L™ (T") has the property

<y¢em728j7em’+8j> = <<§ﬂ¢€m,€ml> Vm,m, € Znal < .] <n.

Proof. We have,

LHS = <y¢€m—2£j (Z)aemur&‘j (Z>>

= </7/M¢em—2€j (Z)vem/+£ <Z)>

B <¢(z)z’”2£’ 7 m’*8’>>

_ u ZkZm_zgj,Z 2m 28J>
(Lo

_ u Zk—|—m—2£—:j’Z—2m/—2£j>
¥
kezZn "

g
kezn

- <¢<z>z’"ﬂ/ *<Z'"’>>

= (FMoen(2)ew (@)

a3 ~ (vente)em(a)) = RS

Hence, the theorem is proved. U



HANKEL AND SLANT HANKEL OPERATORS 8297

Theorem 3.7. A bounded linear operator . on L*(T") is a slant Hankel operator of level n iff

< can be represented as a slant Hankel matrix of level n.

Proof. Let . be a slant Hankel operator of level n on L*(T"). Then, by Definition 3.4, .7 = .7
for some ¢ € L™(T"). If (B )mme z» is the matrix representation of ./ with respect to the

given orthonormal basis, then by Theorem 3.6
<‘y¢em*28j7€m'+8j> = <y¢emvem’> vm,ml € Zn7 1<j<n

Therefore, (B )mm e z» is a slant Hankel matrix of level n.

Conversely, let the matrix (B, ) mm'e z» of -7 be a slant Hankel matrix of level n.Then,

(S emew) = Bnw)
= (Bu+ejm—2¢;)
(34 = (SLem2¢),eme;)-
Now,
(M, S em,eny) = (S em, Mz, )
= (SLem ew—e;)
= (L em—2¢e; m')

(35) == <¢5/sz2€m,em/>
J

=M, S em =M, 26 YV me 7"
J
(3.6) =M, =S M.
J
Hence, by Theorem 3.2 .# is a slant Hankel operator. 0

4. PROPERTIES OF ¥ AND ¥*

Lemma 4.1. [4] Let S = {(Ly,...,1,) € Z" : each l; is either 0 or 1}. Then for m € 7", m odd,
there exists unique p € 7" and | # 0 € S such that m =2p + 1.

Lemma 4.2. [4] For m,l € S with m # 0,1 # 0, we have m+1 is even iff m = L.
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Theorem 4.3. Forallm € Z", V' M 2w V" = M and V' M-, V* = 0 if | € Z" is odd.

Theorem 4.4. Let &, € L*>(T") such that E{ € L>(T"). Then,
(@) 7*(EC) =77(5)V* ().
(b) V(EC)=7(85)V ().
(c) V[V (&)V*(0)]=¢¢.

Lemma 4.5. Let &(z) Z unz ™, & € L2(T). If &(2) Z Upmy1 2 " for 1 €S, then
me 7" me 7z
=Y 27'8(2%). Also, &(2%) = P& (2) and &(z) = V&(2).
les

Proof. Let &(z) Z unz ™ I $(2) Z Upz ™ and N (z Z umz ™.

me " me 7" me 7"

mis even mis odd
Then, &(z) = {(z) +n(z). For L € S, we define & (z) Z Wmi1 2 "
me 7"

As & € L2(T"),s0 & € L>(T") V I € S. We have,

Y unz =Y wmz " =60(2).
me 7z me7Zn
mis even

Y uz"= Y ¥ oz~ 2D

me 7zt 0#£leSmeZr
m is odd
= 7Y wpm ()
0#l€eS me 7"
= &),
0£1€S
Thus, &(z) = &o(%)+ Y, 2'&(%) = Y 27'& (). Now, by Definition 3.3
0#£1€S les
=7 ), und "= ), wnd" =80(2), VM) =0
me 7" me 7"

m is even

= &(2) = 7' &(z) and

P, £(z) = £(2) by (3.1). Also, P.1(z) = 0.

Therefore, P, §(z) =P, §(z) = 50(22)-
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Theorem 4.6. If one of { and 1 is in L™(T") for {,n € L*(T"), then ¥ ({,n) = (V) (¥ n) +
Z Zl(“//le)("//zln).

les
1#£0

Proof. We have, {(z) = {o(2%)+ Y, 27'{(2%) [by Lemma 4.5] and
04l€S

n(z) = no(z%) + Z Z_mnm(zz) [by Lemma 4.5]
0#£#meS

where {o(z2) = P.{(z) and my(z*) = P. n(z). So,

tn="05)Mo) +6() Y, M) +mE) Y 'G()

0£meS 0#1€S
4.1) + Y 740 Y ).
0#1€S 0#meS
Now,
V{1 {%()} {no(zz)}] 27/[{7/*50(2)} {#*m0(z)}|  [by Definition 3.3]
=o(z) Mo(z) [by Theorem 4.4(b)]
4.2) ={7¢(z)} {¥n(z)} [byLemma4.5].

Since, {y(z°) Z 2 "M (2%) and Mo () Z 271¢(2?) are the expressions which involves
0#meS 0#1€S
only the powers of z that are odd. Therefore, by Definition 3.3

@3) 7|6 Y z_'"nm(zz)} =0 and ¥ [no(zz) Y )| =o.

0#meS 0#l€eS

Also,

Y G Y @)= Y Y G E).

0#£1€S 0£meS 0#£1€S0#meS

If / +m 1s odd then the above expression is 0. But by Lemma 4.2, / +m is even iff / = m. Thus,

if [ +m is even then so is — (I +m).
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Therefore,
_1 -1 2
VHO L Qi(z )}{o}z"esz nz(Z)H
= Y 7Y {G@) )}
O;«éleS
(4.4) = Y 7@y i)}
0£1€S

=) 2 "En(2?), so forany 0 #£ 1 € S, we have

mesS
TGP =CR) - Y 7o)
ol
= §(2) =4 - Y "o,
5
Hence,
(4.5) {2} =7{d¢R)})
Similarly,
(4.6) {m@E)}=7{Zn@k)}.

Combining equations (4.1) - (4.6), we get

V()= O+ Y IO dn).
leS
140

5. SLANT HANKEL OPERATOR OF LEVEL 7 ON THE BERGMAN SPACE

Let D be the open unit disk in the complex plane C and let v be the Lebesgue volume measure
on D", normalized so that v(D") = 1. For 0 < p < oo, the Bergman space A”(D") consists of
analytic functions f in LP(ID"). For simplicity, we consider the case of p = 2, which is a Banach
space of analytic functions in L?(ID"). Let ¢y, be the linear fractional transformation on D" given

by u(w) = @, (W1) ... o, (Wn) where @y (w) = 1“_%, pandw € D", The reproducing kernel in
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n

A%(D") is given by K,,(z) = —
=15,

The orthogonal projection of P of A%(ID") onto L*(ID") is given by

s and f(z) = (f,K:) for all f € A*(D"), z, w € D",

1 1
P =tk = [ @] (7=

dv(z)

for g € L>(D") and w € D", For a function f € L*(ID") and g € A>(D"), the Hankel operator of
level n is defined as
Hi(8) = U=P)f) = [ 110~ @O ] =
" j=1 j2j)
The operator W on A?(D") is defined by

em if mis even;
2
We,=

0  otherwise.
If ¢ € L=(D") and 57 is the Hankel operator of level n on A>(D") then the slant Hankel operator
of level n on A>(D") is defined as .% = W .. For related results on Bergman space we refer

the readers to [8, 9, 15, 17]

Lemma 5.1. W is a bounded linear operator, and |W |2 = /2.

Theorem 5.2. The operator W* on A>(D") has the property W*(e,,) = 2 G o Where m € 7y

m+€j
and || fll2 < [W*fll2 < 2| f]2.

Proof. Let f(z) = Y, aw?" € AX(D"). Then,

/
m' € 7!

<W*em(Z)>f(Z)>:<Zm’W( L a’"/zm/>>

m €7}
/
= <z'"7 Y aw?" >

/
m' € 7!,

— 52m<zm’zm>

. arm
m—l—Sj.
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Also,

2m—|—8j . 2m—|—£j o !
< m+8j eZm(Z)vf(Z)> = m+8j <Z > Z aw'Z

m €7}

_2m+8j— 2m _2m

= agm(z",27")
m+8j
o arm
m—i—Sj.

2m+¢g;
Hence, W*(e,) = = e L eom. Now,

W =w* Y an?”|l3
meZ”

_H Z @ 2m+ g 2

L, e, I

mezn |m+8j|2
1
> |am|2
mez‘i’jr |m—|—8j|
(5.1) = |I£15.

2m-+€; 2m-+€;
W rQR= ¥ |am|2< i, fz2m>

mean m~|—8j m+8j
2
-y 2| 2m+€; (2m 2
m ez m+8j
- m
mezn m+ €2
2m+ €]
4 > | _|am &l
mez‘i"| m| |2m+28 |2
<4 |am|* ———
mezi" " 2m —|—8J|
<4 la |
b e -y
(5.2) =4/ £15.

Combining equations (5.1) and (5.2), we get || f|l2 < [|[W*fll2 <2||f]l2-
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Definition 5.3. The Berezin transform of a bounded linear operator % on A%(ID") is defined
to be the function Z defined on D" by B(w) = (Bk,y, k), where k,, is the normalized repro-
ducing kernel for w € D". The kernel property of K, implies HK 13 = (K, Ky) = Ky(w) =

n 1 n 2
— vl Hl—]w]]2 Z (m+ )W} for z,w € D",

L Ths, k(o) =
=7 " ,Hlu et
n

Therefore, B(w) = [[(1— |w;[*){ZK.Ky) Vw € D".

j=1
2 S =n 2n __ 1‘|‘Z§2 n : 2 oo (T
LetJ2(¢) = Y (2n+1)Z'¢ =z Vz,6 € D" Itis clear that J>(g) € H*(D").
n=0 —<
Theorem 5.4. Wk(¢) =[] (1 -1z, )Jg (zj) and W() =TT (1 -1z 22 2 (zj)Vz,6 €D,
j=1 j=1

Proof. We have,

Also,

T <1—|z,-|2)2<féj<z,->, i<m+1>z¢g¢>

m=0

N

= [T —1z;1?)? Z(Z”H'] m<g],m—i—1z] )

m=0
=10 =1z»? Y, @m+1)z3"27
m=0
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Theorem 5.5. Let ¢ € L=(ID") be a bounded linear operator on A>(D"), then the slant Hankel
operator of level n, %y has the property ||.Zs | < V2[|¢ |0

Proof. We have, ||.75 || = W 74| < [IW|[[| 7] < V2/|9 |- B

Lemma 5.6. [9] Let f and g be in L*(D"), if there is a positive constant € such that sup || f o
wer
Ow —P(fodw)l2+ellgo dw — P(go dw)ll2+e < oo, then the product ;7 is bounded.

Theorem 5.7. Let f and g be in L>(D)", if there is a positive constant € such that sup ||f o
we”
Ow —P(fodu)l2+ellgo dw —P(go dw)llate < oo, then the product S5.7y is bounded.

Proof. We have,
|5 | = [[WAG(W o) || = |W o 7 W |
< [[Wl[lo#772 | [|W™]]

< oo [by Lemma 5.1, Lemma 5.6 and Theorem 5.2}
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