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Abstract. In this paper, we introduce the notion of g—atomic submodule for an adjointable operator and resolution
of the identity operator on Hilbert C*—modules, also we give some properties. Finally, we study the concept of
frame operator for a pair of g—fusion Bessel sequences.
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1. INTRODUCTION

Basis is one of the most important concepts in Vector Spaces study. However, Frames gen-
eralise orthonormal bases and were introduced by Duffin and Schaefer [6] in 1952 to analyse
some deep problems in nonharmonic Fourier series by abstracting the fundamental notion of
Gabor [9] for signal processing. In 2000, Frank-larson [8] introduced the concept of frames in
Hilbet C* —modules as a generalization of frames in Hilbert spaces. The basic idea was to con-
sider modules over C*—algebras of linear spaces and to allow the inner product to take values
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in the C*—algebras [12]. Many generalizations of the concept of frame have been defined in
Hilbert C*-modules [11, 13, 14, 15, 16, 17, 18].

The paper is organized as follows, we continue this introductory section we briefly recall
the definitions and basic properties of C*—algebra and Hilbert C* —modules. In section 2, we
introduce the concept of g—fusion frame and K — g—fusion frame. In section 3, we introduce the
concept of resolution of the identity operator on Hilbert C* —modules and gives some properties.
In section 4, we introduce the concept of g—atomic submodule for an adjointable operator, also
prove some results. Finally in section 5 we study the concept of frame operator for a pair of
g—fusion bessel sequences.

Throughout this paper, H is considered to be a countably generated Hilbert .o/ —module. Let
{H;}ic1 are the collection of Hilbert .«7 —module and {W;};c; is a collection of closed orthogo-
nally complemented submodules of H, where I be finite or countable index set. End},(H,H;)
is the set of all adjointable operator from H to H;. In particular End’,(H) denote the set of all
adjointable operators on H. Py, denote the orthogonal projection onto the closed submodule

orthogonally complemented W; of H. Define the module

12({Hi}iel) = {{xi}ier 1 xi € Hy, || Z<xi;xi>|| < oo}
icl
with ./ —valued inner product (x,y) = ¥ ;c;(xi,yi), where x = {x;}ic; and y = {yi}ier, clearly
12({H;}c1) is a Hilbert .o —module.
In the following we briefly recall the definitions and basic properties of C*-algebra, Hilbert
/-modules. Our reference for C*-algebras is [5, 4]. For a C*-algebra o7 if a € 7 is positive

we write @ > 0 and ./ denotes the set of positive elements of .«7.

Definition 1.1. [4]. If </ is a Banach algebra, an involution is a map a — a* of .7 into itself

such that for all @ and b in .o/ and all scalars « the following conditions hold:
() (a*)" =a.
(2) (ab)* =b*a*.
(3) (xa+b)* = aa* + b*.
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Definition 1.2. [4]. A C*-algebra <7 is a Banach algebra with involution such that :
la*al| = |all?
for every a in 7.

Example 1.3. % = B(H) the algebra of bounded operators on a Hilbert space, is a C*-algebra,

where for each operator A, A* is the adjoint of A.

Definition 1.4. [10]. Let </ be a unital C*-algebra and H be a left </-module, such that the
linear structures of .7 and U are compatible. H is a pre-Hilbert .<7-module if H is equipped
with an .o7-valued inner product (.,.) : H x H — 7, such that is sesquilinear, positive definite
and respects the module action. In the other words,
(i) (x,x) >0 forall x € H and (x,x) = 0 if and only if x = 0.
(i) (ax+y,z) = a(x,z) + (y,z) foralla € &7 and x,y,z € H.
(iii) (x,y) = (y,x)* for all x,y € H.

For x € H, we define ||x|| = |]<x,x>||% If H is complete with ||.||, it is called a Hilbert <7 -
module or a Hilbert C*-module over </. For every a in C*-algebra <, we have |a| = (a*a)%

and the o7 -valued norm on H is defined by |x| = (x,xﬁ forxe H.

Lemma 1.5. [2]. Let H and K two Hilbert o/ -modules and T € End’;,(H,K). Then the follow-

ing statements are equivalent:

(1) T is surjective.
(ii) T* is bounded below with respect to norm, i.e., there is m > 0 such that ||T*x|| > m||x||
forall x e K.
(iii) T* is bounded below with respect to the inner product, i.e., there is m' > 0 such that

(T*x,T*x) > m'(x,x) for all x € K.

Lemma 1.6. [1]. Let U and H two Hilbert </ -modules and T € End},(U,H). Then:

(1) If T is injective and T has closed range, then the adjointable map T*T is invertible and

-1 -1 2
(T T)~" |7 <T°T <||IT".
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(i) If T is surjective, then the adjointable map TT* is invertible and
7 j D
I(rr*) ="t <TT < |7

Lemma 1.7. (2] Let H be a Hilbert <7 -module over a C*-algebra <7, and T € End’,(H) such

that T* = T. The following statements are equivalent:

(1) T is surjective.

(it) There are m,M > 0 such that m||x|| < ||Tx|| < M||x

,forall x € H.

(iii) There are m',M’ > 0 such that m’ (x,x) < (Tx,Tx) < M'(x,x) for all x € H.

Lemma 1.8. [7] Let &/ be a C*—algebra, U, H and L be Hilbert o/ —modules. Let T €
End},(U,L) and = End},(H,L) be such that Z(T*) is orthogonally complemented. Then
the following statements are equivalent:

(D T/(T/)* < UTT* for some > 0;

(2) There exists 1 > 0 such that ||(T")*z|| < u||T*z||, for any z € L;

(3) There exists a solution X € End’,(H,U) of the so-called Douglas equation T =TX;

(3) Z(T') € R(T).

2. K — g—FUSION FRAME IN HILBERT C*—~MODULES

Definition 2.1. Let {W;},c; be a sequence of closed orthogonally complemented submodules
of H, {v;}ics be a familly of positive weights in <7, i.e., each v; is a positive invertible element
from the center of the C*—algebra ./ and A; € End},(H,H;) for all i € I. We say that A =
{W;,A;,vi}icr is a g—fusion frame for H if and only if there exists two constants 0 < A < B < oo
such that
(2.1) Ax,x) < Zvlz (AiPwx, AiPw,x) < B(x,x), Vx e H.
il

The constants A and B are called the lower and upper bounds of g—fusion frame, respectively.
If A = B then A is called tight g-fusion frame and if A = B = 1 then we say A is a Parseval
g—fusion frame. If A satisfies the inequality

ZViZ (AiPwx, AiPwx) < B(x,x), VxcH.

icl

then it is called a g—fusion bessel sequence with bound B in H.
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Lemma 2.2. let A = {W;,A;,vi}ic; be a g—fusion bessel sequence for H with bound B. Then

for each sequence {x;}ic; € I>({H;}icr), the series ¥ ic;viPy.Ajx; is converge unconditionally.
Proof. let J be a finite subset of /, then

1Y izl = sup [[(XviBAfx )|

ieJ Iv[I=1 ies

1 1

<Y Grixdll? sup |1} v7 (AiPwy, AiPw )l |2
icJ Ibll=1 ieJ
1
< VB fxia)2.
ieJ
And it follows that } ;v jPWjA;‘. f;j 1s unconditionally convergent in H. 0J

Now, we can define the synthesis operator by lemma 2.2

Definition 2.3. let A = {W;, A;,v; }ic; be a g—fusion bessel sequence for H. Then the operator
Ty : 1>({H;}icr) — H defined by

Ta({xiticr) = ) viPwAixi, V{x;}ier € P({Hi}ier).
il
Is called synthesis operator. We say the adjoint 7y of the synthesis operator the analysis operator

and it is defined by T} : 7 — I*({H,}ics) such that
T;\F (x) = {ViAiPWi (x)},-el, VxeH.
The operator Sp : H — H defined by

Sax=Tp\Txx =Y viPyAfAPy(x),  Vx€H.
Jel
Is called g—fusion frame operator. It can be easily verify that
(2.2) (Spax,x) = Zv,z (AiPw, (%), AiPw,(x)), VxeH.
icl

Furthermore, if A is a g—fusion frame with bounds A and B, then

Ax,x) < (Spax,x) < B(x,x), VxcH.
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It easy to see that the operator S, is bounded, self-adjoint, positive, now we proof the inversibil-

ity of Sp. Let x € H we have

TR o)1 = [[{vimifis () ier | = || Y v (AiBw, (), AdP, ()]

iel

Since A is g—fusion frame then
1
VA (x,x)||2 < || Txx]]-
Then
VA|lx[| < || T3]
Frome lemma 1.5, T} is surjective and by lemma 1.6, TAT = S is invertible. We now, Aly <

SA < Bly and this gives B Iy < SXl <A Iy

Theorem 2.4. Let H be a Hilbert of —module over C*—algebra. Then A = {W;,A;,v;}icr is a
g—fusion frame for H if and only if there exist two constants 0 < A < B < o such that for all

xeH
Al || < 1Y Vi (AiPwx, AiPwx) || < B[ (x,x)]].

icl

Proof. Suppose A is g—fusion frame for H, since there is (x,x) > 0 then for all x € H,

All e < 1Y vi (AiPwx, AiPw) || < B[ (x,x)]|

icl

Conversely, for each x € H we have

1) v (AiPwx, AiPwx) || = 1) (viiBx, viliPw) |
i€l i€l
= [[{({vidiPwx}ier, {vitiPwxYien)| |
= ||{viriPwx}ier .
We define the operator L : 57 — I?({H;}ic;) by L(x) = {viA;Pw,x}ics, then
[LE)I[P = [[(vidhiPwx)ier | < B[,

L is o/ —linear bounded operator, then there exist C > 0 sutch that

(L(x),L(x)) < C{x,x), Vx e .



8152 FAKHR-DINE NHARI, MOHAMED ROSSAFI
So
Z’v,2 (AiPw.x, AiPyx) < C(x,x), VxeH.
icl
Therefore A is a g—fusion bessel sequence for 7. Now we cant define the g—fusion frame

operator Sy on 7. So

Y v AiPwx, AiPx) = (Spx,x), VxeH.
icl
Since S is positive, self-adjoint, then
11
(S3x,83x) = (Sax,x),  VxeH.
That implies

1 1
All¢x 0[] < [[(Sax, Sp0ll < Bl[(x,0)[l,  VxeH.

Frome lemma 1.7 there exist two canstants A/,Bl > 0 such that

/ 1 1 /
A (x,x) < (S3x,Sxx) < B (x,x), VfeH.

So
A (x,x) < Zvlz (AiPwx, AiPwx) < B (x,x), VxcH.
il
Hence A is a g—fusion frame for H. 0

Definition 2.5. Let K € End’;,(H), {W;}icr be a sequence of closed orthogonally complemented
submodules of H, {v;}ic; be a familly of positive weights in o7, i.e., each v; is a positive
invertible element from the center of the C*—algebra ./ and A; € End’,(H,H;) for all i € I.
We say that A = {W;,A;,v;}ics is a K — g—fusion frame for H if and only if there exists two
constants 0 < A < B < oo such that
(2.3) A(K*x,K*x) < Zv?(AiPWix, AiPy.x) < B(x,x), Vx € H.

il

The constants A and B are called a lower and upper bounds of K — g—fusion frame, respectively.

Proposition 2.6. Let K € End},(H) and A = {W;,A;,v;}icr be a g—fusion bessel sequence for
H. Then A is K — g—fusion frame for H if and only if there exist a constant A > 0 such that

AKK* < S\, where Sy is the frame operator for A.
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Proof. We have for each x € H,
Z V2 (AiPw.x, AiPwx) = (Spx,x).
iel

Suppose that A is a K — g—fusion frame for H, then there exist A > 0 such that,
A(K*x,K*x) < (Spx,x),

S0,

AKK* < S).

Assume that there exist A > 0 such that AKK™ < §,, then
A(K*x,K*x) < (Spx,x) = Zvlz (AiPwx, AiPy.x),
i€l

since, A is g—fusion bessel sequence for H, therefore A is a K — g—fusion frame for H. 0

3. RESOLUTION OF THE IDENTITY OPERATOR IN g—FUSION FRAME

The resolution of the identity operator it was introduced in [3] to study frames of subspaces,
similarly we define the resolution of the identity operator for adjointable operators on Hilbert

C*—modules.

Definition 3.1. A family of adjointable operators {7;};c; on H is called a resolution of identity
operator on H if for all x € H we have x = )} ;; Tix, provided the series converges uncondition-

ally forall x € H.

Theorem 3.2. Let A = {W;,A;,v;}ic; be a g—fusion frame for H with frame bounds C,D and
SA be its associated g—fusion frame operator. Then the familly {vl-ZPm.A;-kY}},-el is a resolution
of the identity operator on H, where T; = A,-PW[SXI, foralli e I. Furthermore, for each x € H,

we have

C
—(x,x) < Y VT, Tix) <

(x,x).
D2 icl

RIS

Proof. Since A is a g—fusion frame for H, then for all x € H,

x= ZV%BMA?‘AiPWiS*Ix = Zvl-zPWiA?]}x,

icl icl

50, {v?Py.A;T;} e is a resolution of the identity operator on H.
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And we have for each x € H,

Zviz (Tix, Tix) = Zvlz <AiPWl.SX1x, AiPWl.SXIx>

iel i€l
< D(S,"x, 8, 'x)

—1y2
< D557 x.x)

| o

(3.1 < 5 {xx).

)

On the other hand, for each x € H,

(x,x) = (SAS X, S8 ) < [ISAll*(Sx x84 x),

then,
Y V(AP Sy X, AP Sy x) > C(Sy xS %)
iel
> C|ISall 7% x,x)
(3.2) > §<x,x>.

From inequality (3.1) and (3.2), we have for each x € H,

C _ _
ﬁ<x7x> < Zvl'z<AiP‘4/iSA1xaAiP‘4/}SA1x> <
il

(x,x).

RIS

Theorem 3.3. Let A = {W;,A;,v;}ic; be a g—fusion frame for H with frame bounds C,D and
SA be its associated g—fusion frame operator and let T; : H — H; be a adjointable operator

such that {vlzPWlAle} ic1 Is a resolution of the identity operator on H. Then,

1
I LA Tl < [ v (T, T |, V€ H.
i€l i€l
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Proof. Asume J C I with |[J| < eo,letx € H and sety =Y ¢, vizPWiAj T:x. Then,

ylI* = 1) I

= | (v, Y viPw A Ton) ||

icJ

= || Y (viiPwy, viTin)||*

ieJ

< 'Y v ARy AiBwy) | < || Y v Tix, Ton) |

icJ icJ

< D|y[I? x 1Y vi (Tix, Ten)
ieJ

S0,

1
S < | VT i)
icJ

then,

1
1Y ViR A Tix| 2 < || Y v (Tix, T |

ic icJ

Since the inequality holds for any finite subset J C I, we have

1 2 2 2
Bl 2 vi B AT Txl|* < || vi (T, Tix)
icl icl

8155

O

Theorem 3.4. Let A = {W;,A;,v;}icr be a g—fusion frame for H with frame bounds C,D and let

T; : H — H; be a adjointable operator such that {V%H/Vi/\;-kTi},'e] is a resolution of the operator

on H. If T APy, = T,, then
1
L2 < | LT )| < DEN%, Waed,
iel

where E = sup;¢; || T;||* < oo

Proof. We have for each x € H, x = ¥, v} Py Al Tix.
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Let x € H, we get by theorem 3.3
L2 2
o XIE < 1 vi (T, Ton) |
icl

< | Y VITP (AiPwx, AiPw) |

icl

< |EY v (AiPwx, AiPx) |

icl
< ED||x||?

O

Theorem 3.5. Let {W;}ics be a collection of closed orthogonally complemented submodules of
H and {v;}ici be a collection of bounded weights and A; € End’,(H,H;) for each i € I. Then
A ={W;,A;,vi}ier is a g—fusion frame for H if the following conditions are hold:

(1) Forall x € H, there exists A > 0 such that
1
1Y (AP AiPw) | < [l
iel A

(2) {viPw,AfAiPw,}icr is a resolution of the identity operator on H.

Proof. We have for each x € H, x = Y ;c;viPw,A; A;Pw,x, then
4 2
[l = 1] €, )

= [|(x, ) viPw Af AP ||°

icl
< || Y (AiPwx, AiPw) || || Y V7 (AiPwx, AiPyx) |
iel icl
1
< I LY AR, AiP)
iel
SO,
Allx]| < || Y vi (AiPwx, AiPwx) |.
icl
On the other hand,
1Y 7 (AiPwx, AiPwx) || < BI|'Y (AiPw,x, AiPw,x) |
icl icl

< 1,

| o
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where B = sup;;{v?}.

We conclude that A is a g—fusion frame for H. O

4. g—ATOMIC SUBMODULE

We begin this section with the following lemma

Lemma 4.1. Let {W;}ic; be a sequence of orthogonally complemented closed submodules of
H and T € End;,(H) invertible, if T*TW; C W, for each i € I, then {TW;}ic; is a sequence of

orthogonally complemented closed submodules and Py, T* = Py, T* Pry,.

Proof. Firstly for eachi € I, T : W; — TW; is invertible, so each TW; is a closed submodule of
H. We show that H = TW; & T(W;"). Since H = TH, then for each x € H, there exists y € H
sutch that x = Ty. On the other hand y = u+v, for some u € W; and v € Wﬁ. Hencex=Tu+Tv,
where Tu € TW; and Tv € T (W), plainly TW; N T (W;-) = (0), therefore H = TW; ® T (W/-).
Hence forevery y e W;, z € Wl-L we have T*Ty € W; and therefore (T'y,Tz) = (T*Ty,z) =0, so
T(W:) C (TW;)* and consequently T(W/-) = (TW;)* witch implies that TW; is orthogonally
complemented.

Let x € H we have x = Pry,x+ Y, for some y € (TW;)*, then T*x = T*Prwx+T*y. Letv e W,
then (T*y,v) = (y,Tv) = 0 then T*y € W;- and we have Py, T*x = Py, T*Prw.x + Py, T*y, then
Py, T*x = Py, T* Prw,x thus implies that for each i € I we have Py, T* = Py, T™ Pry,. O

Definition 4.2. Let K € End’,(H) and {W;},c; be a collection of closed submodules orthogo-
nally complemented of H, let {v;};c; be a collection of positive weights in <7, i.e., each v; is
a positive invertible element from the center of the C*—algebra .« and A; € End},(H,H;) for
each i € I. Then the family A = {W;, A;,v;}ics is said to be a g—atomic submodule of H with

respect to K if the following statements hold:

(1) Ais a g—fusion bessel sequence in H.
(2) For every x € H there exists {x;}ic; € I>({H;}ics) such that
K(x) =Y viPwAixi and  |[{xi}ier| < Cllx|
icl

for some C > 0.
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Theorem 4.3. Let K € End’,(H) and {W;}ic1 be a collection of closed submodules orthogo-
nally complemented of H, let {v;}ici be a collection of positive weights, A; € End’,(H,H;) for
each i € I and suppose that the operator L : H — I>({H;}ic) define by L(x) = {viNiPyx}icr

such that % (L) is orthogonally commplemented, then the following statements are equivalent:

(1) A=A{W;,A;,vi}ier is a g—atomic submodules of H with respect to K.
(2) Ais a K — g—fusion frame for H.

Proof. (1) = (2) We have A is a g—fusion bessel sequence. Now let x € H,
* * * 112
(K", K" x) || = [| K" ]|

= sup |[(K™x, )|l
yl=1

= sup ||[(x,K(y))|-
yll=1

Since y € H there exits {x;}ic; € I>({H;}ies) such that

K(y) =Y viPwAjyi and  |[{yi}ier] <Cllyl|
icl

for some C > 0. So, foreachx € H,

IK*x[|* = sup || {x, Y viPw ALy |
b=t i

= sup ||} (viAiPw,yi) |I?

Iyl=1 il

< sup || Y v (AiPwx, APwa) || Y i) |

vl=1 el icl

< | X v (AByx, AP

i€l
hence,

L
a2 K < v (AP, AiP)
iel
therefore, A is a K — g—fusion frame for H.

(2) = (1) Suppose that A is a K — g—fusion frame for H, then A is a g—fusion bessel se-

quence for H. Letx € H, we have

A(K*x,K*x) < (Lx,Lx),



G-ATOMIC SUBMODULES FOR OPERATORS IN HILBERT C*—~MODULES 8159
S0,
AKK* < L*L,
then by lemma 1.8 there exists G € End*,(H,I*({H;}ier)) define by Gx = {x;}ies such that
K = L*G, hence foreachx e H

K(x)=L"Gx
= L"({xi}ier)
- ZViPVV,'A;'kxl‘;
i€l
and
I{xi}ie]| = (|G| < Cll],
for some C > 0. We conclude that A is a g—atomic submodule of H with respect to K. U

Theorem 4.4. Let A = {W;,A;,v}icr be a g—fusion frame for H. Then A is a g—atomic sub-

module of H with respect to its g—fusion frame operator S.

Proof. We have A is a g—fusion bessel sequence for H, and we have for each x € H,
Sax=Y v P A APy x
iel

=) Vi A} (viAiPyx),

i€l
now we put x; = v;A;Py.x, for each i € I, hence,
[{xi}ierl| = [{viriPwx e
1
= | Y vi (AiPwx, AiPwx) ||

icl

< VBJ|x].
Therefore, A is a g—atomic submodule of H with respect to its g—fusion frame operator Sp. [

Theorem 4.5. Let A = {W;,A;,vi}ticy and T = {W;, A;,vi}icr be two g—atomic submodules of
H with respect to K € End;,(H). If U,V € End,(H) such that U +V is invertible operator
on H with K(U +V) = (U +V)K, suppose that the operator L : H — I>({H;}ic;) define by
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L(x) = {vi(Ai + Ti)Pw;(U +V)*Pyyvywx tier such that Z(L) is orthogonally complemented,

then
{(U+V)Wi, (A +T)Pw,(U+ V)" vitier

is a g—atomic submodule of H with respect to K.

Proof. By theorem 4.3, A and I' are K — g—fusion frame for H, so for each x € H there exist

positive constants (A1,B;) and (A2, B;) such that

ALK x? < | Y v (AiPwx, AiPw) || < Ballx]?,
icl

and

Ao||K*x||* < || Y v (TiPwx, TiPw,x) || < B x|

iel
Since U +V is invertible, then
(K*x,K*x) = (((U+V)*)_](U+V)*K*x, ((U+V)*)_1(U—|—V)*K*x>

< (U +V) P2 (U + V) K*x, (U + V) K*x).
Now, for each x € H we have

* % 1
I vid(Ai +T0) B (U + V) Py vy (A +Ti) By, (U + V) Py syyw0) |12

= [[{vi(Ai +T2)Pw,(U + V) Py vywxtiel |
= [{vihiPw,(U + V)" Py pvywx tier + {viliPw,(U + V) Py svywX el |
< | {vidiBw, (U + V) ahica| + | (0P (U + V) e |
< VBI[{U+V)x, (U +V) 0|2 +VBl[((U +V)'x, (U +V) ') 2
< (VB + VB [{(U +V)'x, (U + V)02
< (VB + VB (U + V)l (x.)12

@D =B+ VB)(U V)|l
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On the other hand

* * 1

I vid(Ai +T0) B (U + V) Py vy (A +Ti) By, (U +V ) Py syyw ) |12

i€l

= |{viriPw,(U + V) Py ovywicr + viliPw, (U + V) Py ovywxtieil|

> [[{viriPw,(U + V) x}ie ||

> /AU +V)K)x, (U +V)K) 3|2

4.2) zmwu+vrw*WKwwa%

From (4.1) and (4.2), we conclude that {(U + V)W, (A; +Ti)Pw,(U +V)*,vi}icr is a K —

g—fusion frame for H, therefore A is a g—atomic submodule of H with respect to K. 0

Theorem 4.6. Let A = {W;,A;,vi}ie is a g—atomic submodule for K € End’,(H) and Sy be
the frame operator of A. if U € End},(H) is a positive and invertible operator on H, suppose
that the operator L : H — I*({H;}ic;) define by L(x) = {viA;Py,(Iy + U)* Py, +uywXtier such
that Z(L) is orthogonally complemented, then 8 = {(Iy 4+ U)Wi, AiPw,(Iy +U)*,v;Yies is a
g—atomic submodule of H with respect to K. Moreover, for any natural number n, 0’ = {(Ig +

UMW, AiPw,(Ig +U"™)*,vi}ier is a g—atomic submodule of H with respect to K.
Proof. We have for each x € H,
Y Vi (AP (I + U)* Py (0), AiPw, (I + U ) Py, 0wy (%))

iel

=Y Vi (AP, (T +U)* (x), AiPw, (I + U)* (x))

i€l
< B((lu +U)*(x), (I +U)*(x))

< B“(IH + U)||2<x7x>7
Thus, 0 is a g—bessel sequence in H, Also, for each x € H we have

Y Puy+vyw, NPT +U)*) AiPw, (I +U) Py 0y, (%)

icl

=Y viPu,vyw (T + U)PwAf APy, (T + U ) Py vy, (%)
iel
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= ZViZ(PWi (I +U) Py soyw,) N AiPw, (I +U ) P, oyw, (%)
icl

= Y Vi (P (T + U)*) A AiBy (I +U)" ()

icl

=Y Vi (I + U) Py, A AP, (I + U )* (x)

iel

= (Iy + U) Y By At APy (I + U)* (x)

iel

= (In +U)SA(Iy +U)" (x).

This shows that the frame operator of 0 is (Iy +U)SA(Iy +U)*. Since U and S, are positive,

we have

(In +U)SA(In +U)" > Sa > AKK",

Then by proposition 2.6, we can conclude that 6 is a K — g—fusion frame for H, so by theorem
4.3, 0 is a g—atomic submodule of H with respect to K. According to the preceding procedure,
for any natural number n, the frame operator of 6’ is (I +U")Sx(Iy +U")* and similary, it can

be shown that 6’ is a g—atomic submodule of H with respect to K. 0

5. FRAME OPERATOR FOR A PAIR OF g—FUSION BESSEL SEQUENCES

Definition 5.1. Let A = {W;, A;,v; }ic; and I' = {V;,T';, w; } ;s be two g—fusion bessel sequences
in H with bounds B and B;. Then the operator Sty : H — H, defined by

Sra(x) = Y viwiPy T AiPy,(x), Vx€H,

iel

is called the frame operator for the pair of g—fusion bessel sequences A and I

Theorem 5.2. The frame operator Sty for the pair of g—fusion bessel sequences A and I is

bounded and S}-\ = SAr.
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Proof. We have for each x € H,

ISeaxl| = sup [[(Y viwiPy,T7 AiPi (x),)

Iyll=1 iel
= sup || Y viwi(AiPwx, TiPyy) |
Ivll=1 ier

1 1
< sup || Yo vH(APwx, AiPwx) |2 | Y wi (TiPyy, TiPyy) |2

Ivll=1 ier icl

< VB By||x]],

then Sy is a bounded with ||Spa || < +/B1Ba.

Also, for each x,y € H we have

(Srax,y) = (Y viwiPy,T; AiPw,(x),y)

il
=Y viwilx, By, A TPy (y))
icl
= (x, ) PwATiPy,(y)) = (x,Sary)
icl

8163

O

Theorem 5.3. Let Stp be the frame operator for a pair of g—fusion bessel sequences A and

I" with bounds B\ and By, respectively. And % (Sra) is orthogonally complemented. Then the

following statements are equivalent:

(1) Sta is bounded below.

(2) there exists K € End’,(H) such that {T;}ic is a resolution of the identity operator on

H, where T; = viw, KPyI'7AiPy, i € .

If one of the given conditions holds, then A is a g—fusion frame.

Proof. (1) = (2) Suppose that Srs is bounded below. Then for each x € H there exists A > 0

such that

Allxl] < [ISax],

hence,

Al 0[] < [{SraSrax, 0],



8164 FAKHR-DINE NHARI, MOHAMED ROSSAFI

then,
* 1 *
Igly < ZSrASFm

so, by lemma 1.8, there exists K € End;{ (H) such that Iy = KSr, therefore for each x € H we

have

X = KSFAX

= KZ ViW,'H/iF;FA,'PWix

icl

=Y viwiK Py} AiPy,x

iel

=Y T,

icl
thus {7;}cs is a resolution of the identity operator on H, where T; = v;w;KPyI'f A;Py,.
(2) = (1) we have for each x € H,
Ix]| = 1) viwiK P Ty AP x|
iel

= K} viwiP I} AiPwx|

icl
= || KSrax|
< [[K[Ix [[Srax],
then,
KN~ ]| < [[Srax].

Hence, Sty is bounded below.
Last part: Suppose that Sty is bounded below. Then for all x € H there exists A > 0 such that

Al|x]] < ||Srax]|| and this implies that

Allx]l < sup [[(Srax, ») |

[[y[l=1
= sup [[()_viwiPy I AiPwx,y) ||
Iyll=1 ier

= sup || Y viwi(AiPwx,TiPyx) |

=1 ier
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1 1
< sup || Y vi(AiPwx, AiPwx) |12 | Y wiTiPyx, TiPyx) |2

Iyl=1 icr i€l
1
< By || Y vi (AiPwx, AiPx) |12,
i€l

hence,

A? 2 2

7, ™ = 1Y vi (AiPwx, AiPywx) .

2 il

So, A is a g—fusion frame for H. O

Theorem 5.4. Let Sar be the frame operator for a pair of g—fusion bessel sequences A and

I" with bounds By and By, respectively. Suppose A; < 1, Ay > —1 such that each x € H, ||x —
Srax|| < A1l|x]| + A2||Srax||- Then A is a g—fusion frame for H.
Proof. We have for each x € H,
[Ixll = lISrall < {lx = Seax]l < Arlxl[ + A2 | Sraxl],
then,
1-4
— <||S
(15 )l < sl
1
< VBl Y vi(AiPwx, AiPyx) |12,
iel
Hence,
6.0 (R 1 < I s anl
. —_— X V; iLw,X, N LWX) || -
By \1+1 el l
2
Thus, A is a g—fusion frame for H with bounds Biz (L—Lﬁ;) and B;. O

Theorem 5.5. Let Stp be the frame operator for a pair of g—fusion bessel sequences A and I’

of bounds By and By, repectively. Assume A € |0, 1) such that
b= Seax] < Allll, Ve H.

Then A and 1" are g—fusion frames for H.
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Proof. We put A; = A and A, = 01in (5.1), then

1—-21)2
B2 < Y 2 AP, A

By i€l

therefore, A is a g—fusion frame for H. Now for each x € H, we have

[lx = Stall = [[(I — Sra)" ]|
< || — Srall ||

< Al

then,

[lell = [ISrax]l < AJlxl],

hence,

(1 =2)[lx]| < l[Sraxll

= sup [[(Spax, )
Iyl=1

= sup || (viwiPw AITiPyx,y)||
Iyll=1

= sup ||} (wiliPyx,viAiPwy)||

Iyll=1 icI
1 1
< || Y wi (TP TiPyx) |21 Y v (AiPwy, AiPwy)| |12
el el
1
< VBi| Y wi({TiPyx, TiPyx) |2,
icl
SO,
(1—-2)2
x| < Y wiH(TiPyx, TiPyx) |-

By i€l

We conclude that I" is a g—fusion frame for H with bounds % and B;.

Definition 5.6. Let H and X be two Hilbert C* —modules. Define

HaeX={(x,y):x€H,yeX}.
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Then H & X forms a Hilbert C*—module with respect to point-wise operations and inner

o/ —valued defined by
<(x,y),(xl,y/)> = <x,xl>H+ (y,y/)x ‘v’x,xl €H and Vy,yl €X.
Now, if U € End’,(H,Z),V € End?,(X,Y), then for all x € H, y € X we define
UV €End',(HOX,ZBY) by (UdV)(xy)=(Ux,Vy),

and (U@V)* =U"®V*, where Z,Y are Hilbert C*—modules and also we define Pyan(x,y) =
(Pyx,Pyy), where Py, Py and Pyqn are orthogonal projections onto the closed orthogonally
complemented submodules M C H,N C X and M &N C H ® X, respectively.

From here we assume that for each i € I, W; @ V; are the closed orthogonally comple-
mented submodules of H ® X and I'; € End’,(X,X;), where {X;},c; is the collection of Hilbert
C*—modules and A; ®I'; € End,(H DX ,H; ®X;).

Theorem 5.7. Let A = {W;,A;,vi}ici be a g—fusion frame for H with frame bounds A,B and
[, = {Vi,I;,vi}ier be a g—fusion frame for X with frame bounds C,D. Then A®T = {W; ®
Vi, Ai ®T,vi}icr is a g—fusion frame for H® X. Furthermore, if S, St and Spyar are g—fusion

frame operators for A, I and A@ 1, respectively, then we have Sy = Sp @ St
Proof. Letx € H and y € X, we have
Y V(A e TPy (x,), (A & T) Ay, (x, )

icl

=Y V(A BT (P, Pry), (A @ 1) (Pwx, Pry))

icl

=Y Vi {(AiPwx, TiPyy), (AiPwx, TiPyy))

iel

= Y Vi {(AiPwx, AiPwx) i + Y vi(TiPyy, TiPyy)x

i€l el
< B{x,x)g +D{y,y)x
< max(B,D)({(x,x)u + (y,y)x)

(5.2) = max(B, D)((x,y), (x,))
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Simalary, it can be shown that

(53)  min(A,C){(x,), (x,y)) < Y vi{(Ai @) Pyev,(x.y), (A ©T0) Py, (x,))-

From inequality (5.2) and (5.3), we conclude that A@ I is a g—fusion frame for H & X.

FAKHR-DINE NHARI, MOHAMED ROSSAFI

icl

Furthermore, for (x,y) € H® X we have

Saer(x,y) = Y viPwev, (A @ T1) (A @ T) Byav, (x,)

Therefore, Saqr = Sa @ St-

i€l

=Y viPwav, (A )" (AiPwx,TiPy,y)

iel

_ 2 * *

=Y viPwav(A; &) (AiPyx, TiPyy)
iel

= Zviz(PWiA?AiPWix?PViF;kFiPViy)
iel

- (Zv%PW,-A;-*Aiﬂv,-x,ZPv,-F?an,y)

iel iel
= (SAx, STy)

= (SA®Sr)(x,y).

O

Theorem 5.8. Let AGT = {W;®V;,A; ®Ti,vi}icr be a g—fusion frame for H ® X with frame

operator Sygr. Then

1 1
a={S\:r(Wi® Vi), (Ai OTi)PwiaviSair Vitier

is a Parseval g—fusion frame for H ® X.

_1 _1
Proof. Since Spgr is a positive invertible, then S AérS AGTS Aér = Iyax, hence

1

1

(X,y) = SX%FSA@FSXQ%F ()C,y)

_1 _1
=Y VS, 2rPwev (A O T (A © L) Pyavi Sy 2 (x,y),

iel
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S0,

((x,3), (x,y)) = <ZV?SX§;rHM@v,- (Aol) (Ao Fi)m@mSXér(x,y), (x,3))

icl

_1 _1
=Y V(A BT PuavSair(x,y), (A @) Prey,S 2 r(x,y))

icl
5 1 _1
=Y vi{ANNOT)PyavS AP _ x,y), A @) PyavSparP - X,¥)).
; (A i) Pwov; AGT SAér(Wf@Vi)( ), (A i) Pwov; AT S,\ér("ViEBVi)( )
This shows that « is a Parseval g—fusion frame for H & X. 0

Theorem 5.9. Let AGT = {W; @ V;,A; ®T;,vi}icr be a g—fusion frame for H & X with frame

bounds A,B and Saqr be the corresponding frame operator. Then
o = {S\Lr(W; & V), (A & T) Pvav,SamrsVitier

is a g—fusion frame for H ® X with frame operator SXelal“'

Proof. For each x € H and y € X we have

(xay) = SAGBFSXngr‘(x?y)
=Y Vi Py, (A ) (A ©T) Py, Saar(x,y).

icl

We have for each (x,y) € H® X,

1Y vi((Aie Fi)PVW@WSXérPSXJDF(M@W) (,3), Y Vi (A ) Pavi Sy Pyt o) 5]

icl icl A

= || L vi (A ©T) Ay Sxar(x.y), (A ©T) PravSyer(x,y)|
icl

~1 2 2
< B|[Sparll Il (e y)[I7-
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On the other hand for each (x,y) € H & X we have

1) I* = 1{Cx ), (o) 2

= || <iEZIV?PW,~@v,~ (A BT (A © ) ProvSyar(x.y), () |I?
= || ;V?«Ai@rz‘)ﬂmwﬁér(&wv (Ai BT3Py, (x, ) |1?
< I LA @ TR Saor(x:9), (i T oS yor ()|
x || ;V?(Ai O Pvev,(x,), (Ai © i) P, (x,)) |
< Bl (e P Y vi (A @ T) P Sa s (6,9), (A © To) P Sy b (6, 9))

iel

then,

B p)IIP < I Y vi (A @ T) PwawiSpr (6,3); (A 1) PrieviS e (6, )) |-
icl
Therefore, a is a g—fusion frame for H & X. Let S, be the g—fusion frame for o and take

G; = A; ®T;. Now, for each (x,y) € H® X.

- 1
=Y viPs Syl c(WiaV) (GiPwavSaer)’ (GiP‘%@WSAGBF)PSXQI)F(M@%)(x’y)

iel

_ * *G —1
—ZIV PW@VSA@F S’ (W@V)) G '(HM@WSA®FPSXér(M@W))(xay)
AS

=Y v} (PwovSxar) G Gi(Pwav,Sair) (x.y)

icl

=Y VIS i Py (A ©T)* (A & T) (Prav,Saar) (x,5)

icl

= Sxer (Z v Pav, (A © ) (A © Fi)PM@v,»SAelar(W)>

el
= St rSaer(Syar(x,y))

= SXQIBF(xvy)

Therefore, S¢, = SXér' O
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