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1. INTRODUCTION

Different types of real world phenomena with anomalous dynamics in the field of mathe-

matical, physical,computational, chemical and biological sciences are modeled adequately by

various types of fractional differential equations (see [17],[21] and references therein). In liter-

ature the qualitative theory of various fractional differential equations are studied by many re-

searchers with the help of different methods such as monotone technique, fixed point technique,

method of successive approximation etc and obtained existence, uniqueness results (see [1, 2],

[6]-[20],[22]-[32]).Almeida et.al. [3, 4, 5]and Samet et.al.[29] have studied fractional differen-

tial equations involving ψ-Caputo fractional derivative.In the year 2020, Derbazi et al. [9]have

proved existence and uniqueness of solution of initial value problem (IVP) for ψ- Caputo frac-

tional differential equation via monotone iterative technique.In this paper, we develop monotone

technique combined with coupled upper, lower and quasi solutions in which we construct two

monotone sequences of iterate and obtain the existence of solution of nonlinear boundary value

problem(BVP) for weakly coupled system of ψ-Caputo fractional differential equations.

The paper is organized as follows. In section 2 basic definitions, assumptions and important

lemmas are given. Upper, lower and quasi solutions of nonlinear boundary value problems for

coupled system of ψ- Caputo fractional differential equations are introduced.Section 3 is de-

voted for the development of monotone iterative scheme and monotone property. The existence

of solution of nonlinear boundary value problems for weakly coupled system of ψ- Caputo

fractional differential equations is proved.

2. DEFINITIONS AND BASIC RESULTS

In this section, we introduce some basic definitions, assumptions and important lemmas

which are useful for further discussion. Let J = [0,T ] be a finite interval on the real axis R

and α > 0. Fractional integrals and fractional derivatives of a function x(t) with respect to an-

other function ψ are defined as follows [3, 21]. We begin with the definition of left sided ψ-

Riemann - Liouville fractional integral.

Definition 2.1. The left sided ψ- Riemann - Liouville fractional integral of order α > 0 for

an integrable function x(t) : J → R with respect to another function ψ : J → R which is an
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increasing on J and ψ(t) ∈C1(J) such that ψ ′(t) 6= 0, for all t ∈ J, is defined by

Iα;ψ
0+ x(t) =

1
Γ(α)

∫ t

0
ψ
′(t)(ψ(t)−ψ(s))α−1x(s)ds,

where Γ is the Gamma function.

Definition 2.2. [3] Let n ∈ N and let ψ,x ∈ Cn(J,R) be two functions such that ψ is an in-

creasing function on J and ψ ′(t) 6= 0, for all t ∈ J. The left ψ- Riemann - Liouville fractional

derivative of a function x(t) of order α > 0 is defined by

Dα;ψ
0+ x(t) =

(
1

ψ ′(t)
d
dx

)n

In−α;ψ
0+ x(t),

=
1

Γ(n−α)

(
1

ψ ′(t)
d
dx

)n ∫ t

0
ψ
′(t)(ψ(t)−ψ(s))n−α−1x(s)ds,

where n = [α]+1.

Definition 2.3. [3] Let n ∈ N and let ψ,x ∈ Cn(J,R) be two functions such that ψ is an in-

creasing function on J and ψ ′(t) 6= 0, for all t ∈ J. The left ψ-Caputo fractional derivative of a

function x(t) of order α > 0 is defined by

(2.1) cDα;ψ
0+ x(t) = In−α;ψ

0+

(
1

ψ ′(t)
d
dx

)n

x(t),

where n = [α]+1 for α /∈ N,n = α for α ∈ N .

We denote symbolically
( 1

ψ ′(t)
d
dx

)nx(t) by x[n]ψ (t) then the left ψ-Caputo fractional derivative of

order α of x(t) can be written as

(2.2) cDα;ψ
0+ x(t) = In−α;ψ

0+ x[n]ψ (t).

From (2.1) and (2.2), we observe that the left ψ-Caputo fractional derivative of order α of a

function x(t) can be expressed as

cDα;ψ
0+ x(t) =


∫ t

0
ψ ′(t)(ψ(t)−ψ(s))n−α−1

Γ(n−α) x[n]ψ (s)ds, if α /∈ N,

x[n]ψ (s), if α ∈ N.
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Similarly, we can define right ψ-Riemann - Liouville and right ψ-Caputo fractional derivatives.

The relation between the ψ- Riemann - Liouville fractional derivative of order α and the ψ-

Caputo fractional derivative of order α of a function x(t) is expressed as

cDα;ψ
0+ x(t) = Dα;ψ

0+

[
x(t)−

n−1

∑
k=0

x[n]ψ (0)
k!

(ψ(t)−ψ(0))k
]
,

(See for details [3]).

Consider weakly coupled system of ψ-Caputo fractional differential equations

(2.3)

cDα;ψ
t u1(t) = F1(t,u1,u2),

cDα;ψ
t u2(t) = F2(t,u1,u2),

t ∈ (0,T ],

with nonlinear boundary conditions

(2.4) G1(u1(0),u1(T )) = 0 = G2(u2(0),u2(T )),

where cDα;ψ
t is the ψ- Caputo fractional derivative of order α ∈ (0,1], Fi(t,u1,u2) : [0,T ]×R×

R→ R is real valued continuous function, i = 1,2.

Definition 2.4. : A pair of functions
(
u1(t),u2(t)

)
∈ C([0,T ]) is solution of nonlinear BVP

(2.3)-(2.4) if (i)u1(t),u2(t) satisfy the nonlinear weakly coupled system of ψ- Caputo fractional

differential equations (2.3) and (ii)u1(t),u2(t) satisfy the nonlinear boundary conditions (2.4).

Now we introduce the notion of upper, lower and quasi solutions.

Definition 2.5. A pair of functions (ξ1,ξ2) ∈ C([0,T ]) is called an upper solution of weakly

coupled system of ψ- Caputo fractional differential equations (2.3) if it satisfies the differential

inequalities,
cDα;ψ

t ξ1 ≥ F1(t,ξ1,ξ2),

cDα;ψ
t ξ2 ≥ F2(t,ξ1,ξ2),

t ∈ (0,T ].

Definition 2.6. A pair of functions (η1,η2) ∈C([0,T ]) is called lower solution of weakly cou-

pled system of ψ-Caputo fractional differential equations (2.3) if it satisfies the differential

inequalities,
cDα;ψ

t η1 ≤ F1(t,η1,η2),

cDα;ψ
t η2 ≤ F2(t,η1,η2),

t ∈ (0,T ].
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Definition 2.7. Pairs of functions ũ = (ũ1, ũ2), û = (û1, û2) ∈C([0,T ]) with (ũ1, ũ2) ≥ (û1, û2)

are called ordered upper and lower solutions of the nonlinear BVP (2.3)-(2.4) if they satisfy the

system of fractional differential inequalities

cDα;ψ
t ũ1 ≥ F1(t, ũ1, ũ2),

cDα;ψ
t ũ2 ≥ F2(t, ũ1, ũ2),

cDα;ψ
t û1 ≤ F1(t, û1, û2),

cDα;ψ
t û2 ≤ F2(t, û1, û2),

t ∈ (0,T ],

and nonlinear boundary conditions,

G1(û1(0), ũ1(T ))≤0≤ G1(ũ1(0), û1(T )),

G2(û2(0), ũ2(T ))≤0≤ G2(ũ2(0), û2(T )).

In what follows, we assume the relation between upper and lower solutions such that

(2.5) (ũ1, ũ2)≥ (û1, û2), t ∈ [0,T ].

We define functional interval as follows.

Definition 2.8. Let ũ = (ũ1, ũ2) and û = (û1, û2) be any two functions with (ũ1, ũ2) ≥ (û1, û2)

then we define the (functional interval)sector

〈û, ũ〉=
{
(u1,u2) ∈C([0,T ]) : (û1, û2)≤ (u1,u2)≤ (ũ1, ũ2)

}
.

Definition 2.9. Pairs of functions v = (v1,v2) , w = (w1,w2) ∈ C([0,T ]) are called coupled

quasi solutions of the nonlinear BVP (2.3)-(2.4) if they are solutions of the nonlinear, weakly

coupled system of ψ-Caputo fractional differential equations (2.3) and

(2.6)
û1 ≤ w1 ≤ v1 ≤ ũ1, t ∈ [0,T ],

û2 ≤ w2 ≤ v2 ≤ ũ2, t ∈ [0,T ],

as well as satisfy nonlinear boundary conditions

(2.7)
G1
(
v1(0),w1(T )

)
= 0 = G1

(
w1(0),v1(T )

)
,

G2
(
v2(0),w2(T )

)
= 0 = G2

(
w2(0),v2(T )

)
,

where (ũ1, ũ2),(û1, û2) are coupled upper lower solutions of the nonlinear BVP (2.3)-(2.4).
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Suppose that the nonlinear function Fi(t,u1,u2) satisfies following assumptions:

(A1) Suppose that there exist constants c1 and c2 such that for every pair (u1,u2), (u∗1,u
∗
2) in the

sector 〈û, ũ〉, a pair of functions (F1,F2) satisfies one sided Lipschitz condition in u1,u2;

(2.8)
F1(t,u1,u2)−F1(t,u∗1,u2)≥−c1(u1−u∗1) for û1 ≤ u∗1 ≤ u1 ≤ ũ1,

F2(t,u1,u2)−F2(t,u1,u∗2)≥−c2(u2−u∗2) for û2 ≤ u∗2 ≤ u2 ≤ ũ2.

Note that in view of Lipschitz condition (2.8), the functions H1 and H2 given by

Hi(t,u1,u2) = ciui +Fi(t,u1,u2),(i = 1,2),

are monotone nonincreasing in u1 and u2 respectively for(u1,u2) ∈ 〈û, ũ〉.

(A2) A function Fi(t,u1,u2) ∈C(J×R2,R) is said to be quasimonotone nondecreasing if

(2.9) Fi(t,u1,u2)≤ Fi(t,v1,v2) for ui = vi and u j ≤ v j, i 6= j, i = j = 1,2

hold.

(A3) A function Fi(t,u1,u2) ∈C(J×R2,R) is said to be quasimonotone nonincreasing if

(2.10) Fi(t,u1,u2)≥ Fi(t,v1,v2) for ui = vi and u j ≤ v j, i 6= j, i = j = 1,2

hold.

(A4) A function Gi(x,y) satisfies following condition:

(2.11)
G1(x, .)is nonincreasing∀x ∈ R and G1(.,y) is nondecreasing∀y ∈ R,

G2(x, .)is nonincreasing∀x ∈ R and G2(.,y)is nondecreasing∀y ∈ R.

The following lemmas play an important role in further development.

Lemma 2.10. [9] The initial value problem for ψ− Caputo fractional differential equation

cDα;ψ
t x(t)+ rx(t) = h(t), t ∈ [0,T ],

x(0) = x0,
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has unique solution

x(t) = x0Eα,1(−r(ψ(t)−ψ(0))α)+∫ t

0
ψ
′(s)(ψ(t)−ψ(s))α−1Eα,α(−r(ψ(t)−ψ(0))α)h(s)ds, t ∈ [0,T ],

where Eα,β is the two-parametric Mittag-Leffler function defined in [21].

Lemma 2.11. [9](Comparison result) Suppose that x(t) ∈ ((0,T ],R) satisfies

(i) cDα;ψ
t x(t)+ rx(t)≥ 0, 0 < α ≤ 1, t ∈ [0,T ],

(ii) x(0)≥ 0,

where r ∈ R, then x(t)≥ 0 for any t ∈ [0,T ].

3. EXISTENCE RESULT

In this section,we develop monotone iterative scheme and prove the existence of solution of

the nonlinear BVP (2.3)-(2.4).

Theorem 3.1. Let assumptions (A1),(A2) and (A4) hold. Suppose that functions (ũ1, ũ2) and

(û1, û2) are coupled upper and lower solutions of the nonlinear BVP (2.3)-(2.4),such that (2.5)

holds. Then solution of the nonlinear BVP (2.3)-(2.4) exist in the sector 〈û, ũ〉.

Proof. In order to prove the result,we proceed as follows. First we find maximal solution (v1,v2)

and minimal solution (w1,w2) of the following IVP for nonlinear weakly coupled system of

fractional differential equations

(3.1)

cDα;ψ
t u1 = Fl(t,u1,u2), t ∈ (0,T ]; u1(0) = γ1,

cDα;ψ
t u2 = F2(t,u1,u2), t ∈ (0,T ]; u2(0) = γ2,

where û1(0) ≤ γ1 ≤ ũ1(0) and û2(0) ≤ γ2 ≤ ũ2(0). Further we show that maximal solution

(v1,v2) and minimal solution (w1,w2) are truly coupled quasi solutions of the nonlinear BVP

(2.3)-(2.4).Therefore,first we introduce the notion of upper lower solutions of the IVP (3.1) and

then propose the monotone iterative scheme to develop monotone technique.
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Definition 3.2. Pairs of functions ũ = (ũ1, ũ2), û = (û1, û2) ∈C([0,T ]) with (ũ1, ũ2) ≥ (û1, û2)

are called ordered upper and lower solutions of the IVP (3.1) if they satisfy the system of frac-

tional differential inequalities

cDα;ψ
t ũ1 ≥ F1(t, ũ1, ũ2),

cDα;ψ
t ũ2 ≥ F2(t, ũ1, ũ2),

cDα;ψ
t û1 ≤ F1(t, û1, û2),

cDα;ψ
t û2 ≤ F2(t, û1, û2),

t ∈ (0,T ],

and initial conditions

ũ1(0)≥ γ1 ≥ û1(0),

ũ2(0)≥ γ2 ≥ û2(0).

Further observe that the IVP (3.1) is equivalent to the following IVP

cDα;ψ
t v1 + c1v1 = c1v1 +Fl(t,v1,v2), t ∈ (0,T ]; v1(0) = γ1,

cDα;ψ
t v2 + c2v2 = c2v2 +F2(t,v1,v2), t ∈ (0,T ]; v2(0) = γ2.

Monotone Iterative Scheme: Consider the following monotone iterative scheme

(3.2)

cDα;ψ
t v(k)1 + c1v(k)1 = c1v(k−1)

1 +Fl(t,v
(k−1)
1 ,v(k−1)

2 ), t ∈ (0,T ]

v(k)1 (0) = γ1,

cDα;ψ
t v(k)2 + c2v(k)2 = c2v(k−1)

2 +F2(t,v
(k)
1 ,v(k−1)

2 ), t ∈ (0,T ]

v(k)2 (0) = γ2.

Since for each k, the above set of equations consist of two linear uncoupled fractional dif-

ferential equations with initial conditions. The existence theory of linear IVP for fractional

differential equation is studied in [9]. Therefore, existence of solution {v(k)1 ,v(k)2 } of the linear

IVP (3.2) follows immediately.Choose (v(0)1 ,v(0)2 ) as an initial iteration, we construct a sequence

{v(k)1 ,v(k)2 } from above iterative scheme (3.2). If we choose an initial iteration as an upper so-

lution (v(0)1 ,v(0)2 ) then we get upper sequence {v(k)1 ,v(k)2 } of solution.If we choose an initial

iteration as lower solution (v(0)1 ,v(0)2 ) then we get lower sequence {v(k)1 ,v(k)2 } of solution.
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Monotone Property:We claim that the sequences {v(k)1 ,v(k)2 } and {v(k)1 ,v(k)2 } possess the

monotone property

(3.3)
û1 ≤ v(k)1 ≤ v(k+1)

1 ≤ v(k+1)
1 ≤ v(k)1 ≤ ũ1,

û2 ≤ v(k)2 ≤ v(k+1)
2 ≤ v(k+1)

2 ≤ v(k)2 ≤ ũ2,
t ∈ [0,T ].

We prove our claim by applying principle of mathematical induction: Define r1 = v(1)1 − v(0)1

where v(0)1 = û1. By definition of a lower solution, iterative scheme (3.2) and condition (2.5),

we have

cDα;ψ
t r1 + c1r1 =

c Dα;ψ
t (v(1)1 − v(0)1 )+ c1(v

(1)
1 − v(0)1 ),

=c Dα;ψ
t û1−Fl(t, û1, û2)≥ 0, t ∈ (0,T ]

and r(0) = v(1)1 (0)− v(0)1 (0) = v(1)1 (0)− û1(0) = γ1− û1(0)≥ 0.

Applying Lemma 2.11, we get r1(t) ≥ 0 implies that v(1)1 ≥ û1 in [0,T]. On similar lines, we

can show that v(1)2 ≥ û2. Define r2(t) = v(0)2 − v(1)2 where v(0)2 = ũ2. By definition of an upper

solution,iterative scheme (3.2),condition (2.5), we have

cDα;ψ
t r2 + c2r2 =

c Dα;ψ
t (v(0)2 − v(1)2 )+ c2(v

(0)
2 − v(1)2 ),

=c Dα;ψ
t ũ2−F2(t, ũ1, ũ2)≥ 0,

and r2(0) = v(0)2 (0)− v(1)2 (0)≥ 0.

Applying Lemma 2.11, we get r2(t)≥ 0 implies that ũ2 ≥ v(1)2 in [0,T]. On similar lines, we can

show that ũ1 ≥ v(1)1 . Define r(1)1 = v(1)1 − v(1)1 . By iterative scheme (3.2) and condition (2.5)and

function F1 is Lipchitzian as well as quasimonotone nondecreasing, we have

cDα;ψ
t r(1)1 + c1r(1)1 =c Dα;ψ

t v(1)1 + c1v(1)1 − [cDα;ψ
t v(1)1 + c1v(1)1 ],

= c1
(
v(0)1 − v(0)1

)
+Fl(t,v

(0)
1 ,v(0)2 )−Fl

(
t,v(0)1 ,v(0)2

)
+

F1
(
t,v(0)1 ,v(0)2

)
−Fl

(
t,v(0)1 ,v(0)2

)
≥ 0, t ∈ (0,T ],

and r(1)1 (0) = v(1)1 (0)− v(1)1 (0) = 0.
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Applying Lemma 2.11, we get r(1)1 (t) ≥ 0. This implies that v(1)1 ≥ v(1)1 in [0,T]. On similar

lines, we can show that v(1)2 ≥ v(1)2 . Thus we have

u(0)1 ≤ v(1)1 ≤ v(1)1 ≤ u(0)1 , t ∈ [0,T ],

u(0)2 ≤ v(1)2 ≤ v(1)2 ≤ u(0)2 , t ∈ [0,T ].

The result is true for k = 1.Assume by induction that the result is true for k

û1 ≤ v(k)1 ≤ v(k)1 ≤ ũ1, t ∈ [0,T ],

û2 ≤ v(k)2 ≤ v(k)2 ≤ ũ2, t ∈ [0,T ].

We prove that the result is true for k+1, i.e.

v(k)1 ≤ v(k+1)
1 ≤ v(k+1)

1 ≤ v(k)1 , t ∈ [0,T ],

v(k)2 ≤ v(k+1)
2 ≤ v(k+1)

2 ≤ v(k)2 , t ∈ [0,T ].

Define r(k)1 = v(k+1)
1 − v(k)1 . By iterative scheme (3.2), condition (2.5) and function f1 is Lips-

chitzian as well as quasimonotone nondecreasing, we have

cDα;ψ
t r(k)1 + c1r(k)1 =c Dα;ψ

t v(k+1)
1 + c1v(k+1)

1 − [cDα;ψ
t v(k)1 + c1v(k)1 ],

= c1[v
(k)
1 − v(k−1)

1 ]+Fl(v
(k)
1 ,v(k)2 )−Fl(v

(k−1)
1 ,v(k)2 )+

Fl(v
(k−1)
1 ,v(k)2 )−Fl(v

(k−1)
1 ,v(k−1)

2 )≥ 0, t ∈ (0,T ].

Also r(k)1 (0) = v(k+1)
1 (0)− v(k)1 (0) = 0.

Applying Lemma 2.11, we get r(k)1 (t) ≥ 0. This implies that v(k+1)
1 ≥ v(k)1 in [0,T].On similar

lines we can show that v(k+1)
2 ≥ v(k)2 , v(k)2 ≥ v(k+1)

2 , v(k)1 ≥ v(k+1)
1 . We can show v(k+1)

1 ≤ v(k+1)
1

and v(k+1)
2 ≤ v(k+1)

2 . The monotone property (3.3)follows by induction for all k. From mono-

tone property (3.3), we conclude that the sequence {v(k)1 ,v(k)2 } is monotone nonincreasing and

bounded from below hence converges to some limit function. Also the sequence {v(k)1 ,v(k)2 }

monotone nondecreasing and bounded from above hence converges to some limit function.So

the point wise limits

lim
k→∞

v(k)1 (t) = v1(t); lim
k→∞

v(k)2 (t) = v2(t)

and

lim
k→∞

v(k)1 (t) = w1(t); lim
k→∞

v(k)2 (t) = w2(t),
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exist and these limits are denoted by (v1,v2) and (w1,w2) .They are called maximal and minimal

solutions respectively and satisfy the monotone property

û1 ≤ v(k)1 ≤ v(k+1)
1 ≤ w1 ≤ v1 ≤ v(k+1)

1 ≤ v(k)1 ≤ ũ1, t ∈ [0,T ],

û2 ≤ v(k)2 ≤ v(k+1)
2 ≤ w2 ≤ v2 ≤ v(k+1)

2 ≤ v(k)2 ≤ ũ2, t ∈ [0,T ].

Now we prove that the maximal solution (v1,v2) and minimal solution (w1,w2) are solutions of

IVP(3.1). Let v(k)1 be either v(k)1 or v(k)1 and v(k)2 be either v(k)2 or v(k)2 . The integral representation

of solution of linear problem (3.2) is

(3.4)
v(k)1 (t) = γ1Eα,1

(
− c1[ψ(t)−ψ(0)]α

)
+∫ t

0
ψ
′(s)[ψ(t)−ψ(s)]α−1Eα,α

(
− c1[ψ(t)−ψ(0)]α

)
H1(v

(k−1)
1 ,v(k−1)

2 )(s)ds,

where H1(v
(k−1)
1 ,v(k−1)

2 )(t) = c1v(k−1)
1 (t)+F1(t,v(k−1),v(k−1)

2 ).

and

(3.5)
v(k)2 (t) = γ2Eα,1

(
− c2[ψ(t)−ψ(0)]α

)
+∫ t

0
ψ
′(s)[ψ(t)−ψ(s)]α−1Eα,α

(
− c2[ψ(t)−ψ(0)]α

)
H2(v

(k−1)
1 ,v(k−1)

2 )(s)ds,

where H2(v
(k−1)
1 ,v(k−1)

2 )(t) = c2v(k−1)
1 (t)+F1(t,v(k−1),v(k−1)

2 ).

The functions H1 and H2are continuous and monotone nondecreasing in v1 and

v2 respectively. The monotone convergence of (v(k)1 ,v(k)2 ) to (v1,v2) implies that(
H1(v

(k−1)
1 ,v(k−1)

2 ),H2(v
(k)
1 ,v(k−1)

2 )
)

converges to
(
H1(v1,v2),H2(v1,v2)

)
. Taking limit as k→

∞, in the equations (3.4) and (3.5)and applying the dominated convergence theorem, we observe

that the function (v1,v2) satisfies the integral equations

v1(t) =γ1Eα,1
(
− c1[ψ(t)−ψ(0)]α

)
+∫ t

0
ψ
′(s)[ψ(t)−ψ(s)]α−1Eα,α

(
− c1[ψ(t)−ψ(0)]α

)
H1(v1,v2)(s)ds,

and
v2(t) =γ2Eα,1

(
− c2[ψ(t)−ψ(0)]α

)
+∫ t

0
ψ
′(s)[ψ(t)−ψ(s)]α−1Eα,α

(
− c2[ψ(t)−ψ(0)]α

)
H2(v1,v2)(s)ds.

We conclude that (v1,v2) ∈C([0,T ]) is the integral representation of solution of IVP (3.1)and

upper sequence {v(k)1 ,v(k)2 } converges monotonically from above to a solution (v1,v2) of IVP



12 S.K. GUDADE, S.K. PANCHAL, D.B. DHAIGUDE

(3.1) as well as lower sequence {v(k)1 ,v(k)2 } converges monotonically from below to a solution

(w1,w2) of IVP (3.1) and satisfy the relation (v1(t),v2(t))≥ (w1(t),w2(t)), t ∈ [0,T ]. Now we

prove that maximal and minimal solutions (v1,v2) and (w1,w2) satisfy the nonlinear boundary

conditions(2.7). We know that function G1(x, .) is nonincreasing in x

G1
(
v1(0),w1(T )

)
≤ G1

(
û1(0),w1(T )

)
, for û1(0)≤ v1(0),(3.6)

G1
(
v1(0),w1(T )

)
≥ G1

(
ũ1(0),w1(T )

)
, for v1(0)≤ ũ1(0).(3.7)

Also we know that function G1(.,y) is nondecreasing in y

G1
(
û1(0),w1(T )

)
≤ G1

(
û1(0), ũ1(T )

)
, for w1(T )≤ ũ1(T ),(3.8)

G1
(
ũ1(0),w1(T )

)
≥ G1

(
ũ1(0), û1(T )

)
, for û1(T )≤ w1(T ).(3.9)

From equations (3.6),(3.8) and equations (3.7), (3.9), we have

G1
(
v1(0),w1(T )

)
≤ G1

(
û1(0),w1(T )

)
≤ G1

(
û1(0), ũ1(T )

)
≤ 0,(3.10)

G1
(
v1(0),w1(T )

)
≥ G1

(
ũ1(0),w1(T )

)
≥ G1

(
ũ1(0), û1(T )

)
≥ 0.(3.11)

From inequalities (3.10) and (3.11), we get

(3.12) G1
(
v1(0),w1(T )

)
= 0.

On similar lines we prove

(3.13) G2
(
v2(0),w2(T )

)
= 0.

Now we prove

G2
(
w2(0),v2(T )

)
= 0.

We know that function G2(x, .) is nonincreasing in x

G2
(
w2(0),v2(T )

)
≤ G2

(
û2(0),v2(T )

)
, for w2(0)≥ û2(0),(3.14)

G2
(
w2(0),v2(T )

)
≥ G2

(
ũ2(0),v2(T )

)
, for w2(0)≤ ũ2(0).(3.15)
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Also we know that function G2(.,y) is nondecreasing in y

G2
(
û2(0),v2(T )

)
≤ G2

(
û2(0), ũ2(T )

)
, for v2(T )≤ ũ2(T ),(3.16)

G2
(
ũ2(0),v2(T )

)
≥ G2

(
ũ2(0), û2(T )

)
, for v2(T )≥ û2(T ).(3.17)

From equations (3.14),(3.16) and equations (3.15), (3.17), we have

G2
(
w2(0),v2(T )

)
≤ G2

(
û2(0),v2(T )

)
≤ G2

(
û2(0), ũ2(T )

)
≤ 0,(3.18)

G2
(
w2(0),v2(T )

)
≥ G2

(
ũ2(0),v2(T )

)
≥ G2

(
ũ2(0), û2(T )

)
≥ 0.(3.19)

From inequalities (3.18) and (3.19), we get

(3.20) G2
(
w2(0),v2(T )

)
= 0.

On similar lines we prove

(3.21) G1
(
w1(0),v1(T )

)
= 0.

From equations (3.12) and (3.21) we get

G1
(
v1(0),w1(T )

)
= 0 = G1

(
w1(0),v1(T )

)
.

From equations (3.13) and (3.20) we get

G2
(
v2(0),w2(T )

)
= 0 = G2

(
w2(0),v2(T )

)
.

Thus the maximal solution (v1,v2) and minimal solution (w1,w2) are coupled quasi solutions

of the nonlinear BVP (2.3)-(2.4). The proof is complete. �

Theorem 3.3. Let assumptions (A1),(A3) and (A4) hold.Suppose that the functions (ũ1, ũ2)

and (û1, û2) are coupled upper and lower solutions of the nonlinear BVP (2.3)-(2.4),such that

(2.5) holds. Then solution of the nonlinear BVP (2.3)-(2.4) exist in the sector 〈û, ũ〉.

Proof: It is similar to Theorem 3.1.
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