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1. INTRODUCTION  

Fractional calculus, as a generalization of integer order calculus, has aided scientists in 

understanding and modeling a wide range of phenomena in physics and engineering branches [1–

3]. In the works of literature, there are some common methods used to obtain analytical or 

approximate solutions of nonlinear-fractional ordinary and partial differential equations. For 

instance, variational iteration method (VIM) [4] for space- and time-fractional Burgers equations, 

differential transformation method (DTM) [5] for fractional Fornberg-Whitham equation, 

combination of DTM and generalized Taylor’s formula [6] for nonlinear fractional partial 

differential equations, Adomian decomposition method (ADM) [7] for the fractional nonlinear 

Schrödinger equation, radial basis functions (RBFs) [8] for fractional partial differential equations, 

homotopy analysis method (HAM) [9] for nonlinear fractional differential equations.  

The fractional derivative of order α > 0 has been defined in a variety of ways. The Riemann-

Liouville, Caputo, Riesz, and Grunwald–Letnikov definitions are the most widely utilized [1–3]. 

The fractional integral is used to define these definitions, which are commonly used in non-integer 

calculus literature. As a result, fractional derivative operators behave as non-local operators and 

do not satisfy classical properties of normal (integer) derivatives such as product, chain, and 

quotient rules, which allow us to obtain analytical solutions in standard calculus. Algebraic 

operations in non-integer calculus involve many challenges and inconvenience in mathematical 

handling because these basic rules cannot be used. R. Khalil et al. [10] have presented a new 

definition, namely "conformable fractional derivative", which obeys basic classical properties and 

allows us to solve fractional differential equations analytically. This definition is more simple than 

other fractional definitions because it has received a lot of attention, many phenomena and 

applications can be modeled based on the conformable sense [10–15], and it has a lot of interesting 

advantages such as generalizes all concepts of standard calculus and can be solved numerous 

fractional differential equations in all cases. 

In recent years, several studies have been made further studies and explanations on the 

physical applications and physical meaning of the Burgers equation. The modified Burgers 
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equations, which is a different form of the Burgers' equation, are discussed in this paper and can 

be applied to a wide range of scientific fields, including optical fibers, solid-state physics, biology, 

plasma physics, fluid dynamics,  number theory, chemical kinetics, turbulence theory, heat 

conduction,  gas dynamics, etc. [16–19]. In this article, the collocation method with cubic non-

polynomial spline functions is used to obtain approximate solutions of the time-fractional modified 

Burgers’ equation 

𝜕α𝑢

𝜕𝑡α
− 𝜈

𝜕2𝑢

𝜕𝑥2
+ 𝑢p 𝜕𝑢

𝜕𝑥
= 0, 𝑡 > 0, 0 < α ≤ 1, (1) 

subject to the conditions 

𝑢(𝑎, 𝑡) = Φ1(𝑡), 𝑢(𝑏, 𝑡) = Φ2(𝑡), 𝑡 > 0, (2) 

and 

𝑢(𝑥, 𝑡0) = 𝑟(𝑥), a ≤ 𝑥 ≤ b, (3) 

where 𝜈, p are parameters and, α is the parameter describing the order of the fractional time 

derivatives. The fractional derivatives are considered in the conformable sense. 

Definition 1.1. The Riemann-Liouville fractional derivative of order α is defined as [1–3]: 

            𝐷𝑎
α(𝐹)(𝑡) =

1

Г(𝑛−α)

𝑑𝑛

𝑑𝑡𝑛 ∫
𝐹(𝑥)

(𝑡−𝑥)α−𝑛+1

𝑡

𝑎
𝑑𝑥, 

for 𝑛 ∈ ℕ and α ∈ [𝑛 − 1, 𝑛). 

Definition 1.2. The Caputo fractional derivative of order α is defined as [1–3]: 

            𝐷𝑎
α(𝐹)(𝑡) =

1

Г(𝑛−α)
∫

𝐹(n)(𝑥)

(𝑡−𝑥)α−𝑛+1

𝑡

𝑎
𝑑𝑥, 

for 𝑛 ∈ ℕ and α ∈ [𝑛 − 1, 𝑛). 

Definition 1.3. Let 𝐹: [0,∞) → ℝ and 𝑡 > 0. Then the “conformable fractional derivative” of 

𝐹 of order α is defined by [10]: 

            𝑇α(𝐹)(𝑡) = lim
𝜀→0

𝐹(𝑡 + 𝜀 𝑡1−α) − 𝐹(𝑡)

𝜀
 for all 𝛼 ∈ (0,1)  

The properties of “conformable fractional derivative” are given in the following theorem [10] 

Theorem 2.1. Let 𝐹, 𝐺 are α - differentiable functions at a point 𝑡 > 0, and α ∈ (0,1]. Then 

(1) 𝑇α(𝑚𝐹 + 𝑛𝐺) = 𝑚𝑇α(𝐹) + 𝑛𝑇α(𝐺) for all 𝑚 , 𝑛 ∈ ℝ 

(2) 𝑇α( 𝑡
𝑞) = 𝑞 𝑡𝑞−α for all 𝑞 ∈ ℝ 
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(3) 𝑇α(𝑐) = 0, for all constant function 𝐹(𝑡) = 𝑐. 

(4) 𝑇α(𝐹𝐺) = 𝐹𝑇α(𝐺) + 𝐺𝑇α(𝐹) 

(5) 𝑇α (
𝐹

𝐺
) =

𝐺𝑇α(𝐹)−𝐹𝑇α(𝐺)

𝐺2
. 

(6) In addition, if 𝐹 is differentiable, then 𝑇α(𝐹)(𝑡) =  𝑡1−α 𝑑𝐹(𝑡)

𝑑𝑡
. 

This paper is organized as follows. In Section 2, a presented method that depends on the use 

of cubic non-polynomial spline functions is derived. In Section 3, the local truncation error is 

studied. In Section 4, stability analysis of the method is discussed by using the Von Neumann 

method. In Section 5, we illustrate two numerical examples that are introduced to present the 

efficiency and accuracy of the presented method. Finally, Section 6 contains the conclusion. 

 

2. DERIVATION OF THE METHOD 

Let the region 𝑅 = [𝑎, 𝑏] × [0, ∞] be discretized by a set of points (𝑥𝑖, 𝑡𝑗) where 𝑥𝑖 =

𝑎 + 𝑖ℎ, with ℎ =
𝑏−𝑎

𝑁
 for 𝑖 = 0, 1, …, 𝑁 and 𝑡𝑗 = 𝑗𝑘, 𝑘 = ∆𝑡 for each 𝑗 = 0, 1, …. 

Let 𝑊𝑖
𝑗+1/2

 be an approximation to 𝑢(𝑥𝑖, 𝑡𝑗+1/2) obtained by the segment 𝑃𝑖(𝑥𝑖, 𝑡𝑗+1/2) of 

the spline function passing through the points (𝑥𝑖, 𝑊𝑖
𝑗+1/2

) and (𝑥𝑖+1, 𝑊𝑖
𝑗+1/2

). Each segment 

has the form [20,21]: 

𝑃𝑖 (𝑥, 𝑡
𝑗+

1

2

) = 𝑎𝑖 (𝑡𝑗+1

2

) + 𝑏𝑖 (𝑡𝑗+1

2

) (𝑥 − 𝑥𝑖) + 𝑐𝑖 (𝑡𝑗+1

2

) sin 𝜇(𝑥 − 𝑥𝑖) + 𝑑𝑖 (𝑡𝑗+1

2

) cos 𝜇(𝑥 − 𝑥𝑖), (4) 

for each 𝑖 = 0, 1, …, 𝑁 − 1. The four coefficients in (4) need to be obtained in terms of 𝑆𝑖
𝑗+1/2

, 

𝑆𝑖+1
𝑗+1/2

, 𝑊𝑖
𝑗+1/2

and 𝑊𝑖+1
𝑗+1/2

, we first define 

𝑃𝑖(𝑥𝑖, 𝑡𝑗+1/2) = 𝑊𝑖
𝑗+1/2

, 

 (5) 

𝑃𝑖(𝑥𝑖+1, 𝑡𝑗+1/2) = 𝑊𝑖+1
𝑗+1/2

, 

𝑃𝑖
(2)

(𝑥𝑖, 𝑡𝑗+1/2) =
𝜕2

𝜕𝑥2
𝑃𝑖(𝑥𝑖, 𝑡𝑗+1/2) = 𝑆𝑖

𝑗+1/2
, 

𝑃𝑖
(2)

(𝑥𝑖+1, 𝑡𝑗+1/2) =
𝜕2

𝜕𝑥2
𝑃𝑖(𝑥𝑖+1, 𝑡𝑗+1/2) = 𝑆𝑖+1

𝑗+1/2
, 
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By using (4), and (5), we get 

𝑎𝑖 + 𝑑𝑖 = 𝑊𝑖
𝑗+1/2

, 

 (6) 

𝑎𝑖 + 𝑏𝑖ℎ + 𝑐𝑖 sin𝜔 + 𝑑𝑖 cos𝜔 = 𝑊𝑖+1
𝑗+1/2

, 

− 𝜇2𝑑𝑖 = 𝑆𝑖
𝑗+1/2

, 

−𝑐𝑖 𝜇
2 sin𝜔 − 𝑑𝑖  𝜇

2 cos𝜔 = 𝑆𝑖+1
𝑗+1/2

 , 

where 𝜔 = 𝜇ℎ , 𝑑𝑖 ≡ 𝑑𝑖(𝑡𝑗+1/2) , 𝑐𝑖 ≡ 𝑐𝑖(𝑡𝑗+1/2) , 𝑏𝑖 ≡ 𝑏𝑖(𝑡𝑗+1/2)  and 𝑎𝑖 ≡ 𝑎𝑖(𝑡𝑗+1/2) . We 

solve the last four equations in (6), to get the following expressions  

𝑎𝑖 =
 ℎ2

 𝜔2 𝑆𝑖
𝑗+1/2

+ 𝑊𝑖
𝑗+1/2

, 

 (7) 
𝑏𝑖 =

𝑊𝑖+1
𝑗+1/2

−𝑊𝑖
𝑗+1/2

ℎ
+

ℎ(𝑆𝑖+1
𝑗+1/2

−𝑆𝑖
𝑗+1/2

)

 𝜔2 
, 

𝑐𝑖 =
 ℎ2(cos𝜔 𝑆𝑖

𝑗+1/2
−𝑆𝑖+1

𝑗+1/2
)

 𝜔2  sin𝜔
, 

𝑑𝑖 =
− ℎ2

 𝜔2
𝑆𝑖

𝑗+1/2
. 

Now from the continuity condition of the first derivative at 𝑥 = 𝑥𝑖, that is 𝑃𝑖
(1)

(𝑥𝑖, 𝑡𝑗+1/2) =

𝑃𝑖−1
(1)

(𝑥𝑖, 𝑡𝑗+1/2), we obtain 

𝑏𝑖 + 𝑐𝑖𝜇 = 𝑏𝑖−1 + 𝜇𝑐𝑖−1 cos𝜔 − 𝜇𝑑𝑖 sin𝜔. (8) 

Using expressions (7) in (8) becomes  

𝑊
𝑖+1

𝑗+
1

2 − 2𝑊
𝑖

𝑗+
1

2 + 𝑊
𝑖−1

𝑗+
1

2 = (
− ℎ2

 𝜔2 +
 ℎ2

𝜔 sin𝜔
) 𝑆

𝑖+1

𝑗+
1

2 + (
− 2ℎ2 cos𝜔

𝜔 sin𝜔
+

2 ℎ2

 𝜔2 ) 𝑆
𝑖

𝑗+
1

2 +

(
 ℎ2 sin𝜔

𝜔
+

 ℎ2  cos2 𝜔

𝜔 sin𝜔
−

 ℎ2

 𝜔2) 𝑆𝑖−1
𝑗+1/2

. 

(9) 

After slight rearrangements, the last equation becomes  

𝑊𝑖+1
𝑗+1/2

− 2𝑊𝑖
𝑗+1/2

+ 𝑊𝑖−1
𝑗+1/2

= 𝜌𝑆𝑖−1
𝑗+1/2

+ 𝜎𝑆𝑖
𝑗+1/2

+ 𝜌𝑆𝑖+1
𝑗+1/2

, 𝑖 = 0,1,… ,𝑁 − 1, (10) 

where 𝜌 =
− ℎ2

 𝜔2
+

 ℎ2

𝜔 sin𝜔
 and 𝜎 = −

 2ℎ2 cos𝜔

𝜔 sin𝜔
+

2 ℎ2

 𝜔2
. 

Using the collocation method, 𝑊𝑖
𝑗
 and its derivatives satisfy (1) at collocating knots 

𝜕α𝑊𝑖
𝑗+1/2

𝜕𝑡α
− 𝜈

𝜕2𝑊𝑖
𝑗+1/2

𝜕𝑥2
+ (𝑊𝑖

𝑗+1/2
)

p 𝜕𝑊𝑖
𝑗+1/2

𝜕𝑥
= 0. (11) 



6 

ADEL R. HADHOUD, FAISAL E. ABD ALAAL, AYMAN A. ABDELAZIZ 

Eq. (11) can be rewritten in the form 

𝑆𝑖
𝑗+1/2

=
𝜕2𝑊𝑖

𝑗+1/2

𝜕𝑥2
=

1

𝜈
(
𝜕α𝑊𝑖

𝑗+1/2

𝜕𝑡α
+ 𝛿𝑖

𝑗+1/2 𝜕𝑊𝑖
𝑗+1/2

𝜕𝑥
), (12) 

where 𝛿𝑖
𝑗+1/2

= (𝑊𝑖
𝑗+1/2

)
p
. Using the conformable derivative properties, Eq. (12) becomes  

𝑆𝑖
𝑗+1/2

=
1

𝜈
(𝑡𝑗+1/2

1-α 𝜕𝑊𝑖
𝑗+1/2

𝜕𝑡
+ 𝛿𝑖

𝑗+1/2 𝜕𝑊𝑖
𝑗+1/2

𝜕𝑥
). (13) 

Eq. (13) can be discretized 

𝑆𝑖−1
𝑗+1/2

=
𝑡𝑗+1/2

1-α

𝜈𝑘
(𝑊𝑖−1

𝑗+1
− 𝑊𝑖−1

𝑗
) +

𝛿𝑖−1
𝑗+1/2

𝜈

𝜕𝑊𝑖−1
𝑗+1/2

𝜕𝑥
, 

𝑆𝑖
𝑗+1/2

=
𝑡𝑗+1/2

1-α

𝜈𝑘
(𝑊𝑖

𝑗+1
− 𝑊𝑖

𝑗
) +

𝛿𝑖
𝑗+1/2

𝜈

𝜕𝑊𝑖
𝑗+1/2

𝜕𝑥
, 

𝑆𝑖+1
𝑗+1/2

=
𝑡𝑗+1/2

1-α

𝜈𝑘
(𝑊𝑖+1

𝑗+1
− 𝑊𝑖+1

𝑗
) +

𝛿𝑖+1
𝑗+1/2

𝜈

𝜕𝑊𝑖+1
𝑗+1/2

𝜕𝑥
. 

(14) 

Using the finite difference method in (14), we obtain 

𝑆𝑖−1
𝑗+1/2

=
𝑡𝑗+1/2

1-α

𝜈𝑘
(𝑊𝑖−1

𝑗+1
− 𝑊𝑖−1

𝑗
) +

𝛿𝑖−1
𝑗+1/2

𝜈ℎ
(𝑊𝑖

𝑗+1/2
− 𝑊𝑖−1

𝑗+1/2
), 

𝑆𝑖
𝑗+1/2

=
𝑡𝑗+1/2

1-α

𝜈𝑘
(𝑊𝑖

𝑗+1
− 𝑊𝑖

𝑗
) +

𝛿𝑖
𝑗+1/2

2𝜈ℎ
(𝑊𝑖+1

𝑗+1/2
− 𝑊𝑖−1

𝑗+1/2
), 

𝑆𝑖+1
𝑗+1/2

=
𝑡𝑗+1/2

1-α

𝜈𝑘
(𝑊𝑖+1

𝑗+1
− 𝑊𝑖+1

𝑗
) +

𝛿𝑖+1
𝑗+1/2

𝜈ℎ
(𝑊𝑖+1

𝑗+1/2
− 𝑊𝑖

𝑗+1/2
). 

(15) 

Substituting (15) into (10) gives us the following 

 (1 +
𝛿𝑖−1

𝑗+1/2
 𝜌

𝜈ℎ
+

𝛿𝑖
𝑗+1/2

 𝜎

2𝜈ℎ
)𝑊𝑖−1

𝑗+1/2
+ (−2 −

𝛿𝑖−1
𝑗+1/2

 𝜌

𝜈ℎ
+

𝛿𝑖+1
𝑗+1/2

 𝜌

𝜈ℎ
)𝑊𝑖

𝑗+1/2
+

(1 −
𝛿𝑖+1

𝑗+1/2
 𝜌

𝜈ℎ
−

𝛿𝑖
𝑗+1/2

 𝜎

2𝜈ℎ
)𝑊𝑖+1

𝑗+1/2
=

𝑡𝑗+1/2
1-α  𝜌

𝜈𝑘
(𝑊𝑖−1

𝑗+1
+ 𝑊𝑖+1

𝑗+1
− 𝑊𝑖−1

𝑗
− 𝑊𝑖+1

𝑗
) +

𝑡𝑗+1/2
1-α  𝜎

𝜈𝑘
(𝑊𝑖

𝑗+1
− 𝑊𝑖

𝑗
). 

(16) 

Suppose that 𝑊𝑖
𝑗+1/2

 is linearly interpolated between time levels 𝑗 + 1 and 𝑗 as 

𝑊𝑖
𝑗+1/2

≈
𝑊𝑖

𝑗+1
+ 𝑊𝑖

𝑗

2
. (17) 

Substituting (17) into (16) gives the following system: 

𝐴𝑖
∗𝑊𝑖−1

𝑗+1
+ 𝐵𝑖

∗𝑊𝑖
𝑗+1

+ 𝐶𝑖
∗𝑊𝑖+1

𝑗+1
= 𝐴𝑖𝑊𝑖−1

𝑗
+ 𝐵𝑖𝑊𝑖

𝑗
+ 𝐶𝑖𝑊𝑖+1

𝑗
 𝑖 = 0,1,… ,𝑁 − 1,   𝑗 = 0, 1, …,  (18) 

where  

𝐴𝑖
∗ = (1 +

𝛿𝑖−1
𝑗+1/2

 𝜌

𝜈ℎ
+

𝛿𝑖
𝑗+1/2

 𝜎

2𝜈ℎ
−

2𝑡𝑗+1/2
1-α  𝜌

𝜈𝑘
),  𝐴𝑖 = (−1 −

𝛿𝑖−1
𝑗+1/2

 𝜌

𝜈ℎ
−

𝛿𝑖
𝑗+1/2

 𝜎

2𝜈ℎ
−

2𝑡𝑗+1/2
1-α  𝜌

𝜈𝑘
), 
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𝐵𝑖
∗ = (−2 −

𝛿𝑖−1
𝑗+1/2

 𝜌

𝜈ℎ
+

𝛿𝑖+1
𝑗+1/2

 𝜌

𝜈ℎ
−

2𝑡𝑗+1/2
1-α  𝜎

𝜈𝑘
),  𝐵𝑖 = (2 +

𝛿𝑖−1
𝑗+1/2

 𝜌

𝜈ℎ
−

𝛿𝑖+1
𝑗+1/2

 𝜌

𝜈ℎ
−

2𝑡𝑗+1/2
1-α  𝜎

𝜈𝑘
), 

𝐶𝑖
∗ = (1 −

𝛿𝑖+1
𝑗+1/2

 𝜌

𝜈ℎ
−

𝛿𝑖
𝑗+1/2

 𝜎

2𝜈ℎ
−

2𝑡𝑗+1/2
1-α  𝜌

𝜈𝑘
),  𝐶𝑖 = (−1 +

𝛿𝑖+1
𝑗+1/2

 𝜌

𝜈ℎ
+

𝛿𝑖
𝑗+1/2

 𝜎

2𝜈ℎ
−

2𝑡𝑗+1/2
1-α  𝜌

𝜈𝑘
). 

 

System (18) consists of 𝑁 − 1 equations in the unknowns 𝑊𝑖 , 𝑖 = 0, 1, …, 𝑁 . To find a 

solution of this system, we need two additional equations. These equations are obtained from 

boundary conditions in (2) which can be written as 

𝑊0
𝑗+1

= Φ1(𝑡𝑗+1), 𝑊𝑁
𝑗+1

= Φ2(𝑡𝑗+1), 𝑗 = 0, 1, …. (19) 

Writing (18) and (19) in matrix form gives 

∅*𝑊 j+1 = ∅𝑊 j+𝑟j+1 (20) 

where 

𝑊𝑗+1 = (𝑊0
𝑗+1

,  𝑊1
𝑗+1

,  𝑊2
𝑗+1

, ⋯ , 𝑊𝑁−1
𝑗+1

,  𝑊𝑁
𝑗+1

)
𝑇
, 

∅* =

[
 
 
 
 
 
1 0 0 0 ⋯ 0 0 0
𝐴1

∗ 𝐵1
∗ 𝐶1

∗ 0 ⋯ 0 0 0

0 𝐴2
∗ 𝐵2

∗ 𝐶2
∗ ⋯ 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 𝐴𝑁−1

∗ 𝐵𝑁−1
∗ 𝐶𝑁−1

∗

0 0 0 0 ⋯ 0 0 1 ]
 
 
 
 
 

, 

∅ =

[
 
 
 
 
 
0 0 0 0 ⋯ 0 0 0
𝐴1 𝐵1 𝐶1 0 ⋯ 0 0 0
0 𝐴2 𝐵2 𝐶2 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 𝐴𝑁−1 𝐵𝑁−1 𝐶𝑁−1

0 0 0 0 ⋯ 0 0 0 ]
 
 
 
 
 

, 

and  𝑟j+1 = (Φ1(𝑡𝑗+1), 0, 0,⋯ , 0, Φ2(𝑡𝑗+1))
𝑇

, 

where ∅*  and ∅  are (𝑁 + 1) × (𝑁 + 1)  matrices, and 𝑊𝑗+1  and 𝑟j+1  are (𝑁 + 1) 

dimensional vectors. 

The initial condition 𝑢(𝑥, 𝑡0) = 𝑟(𝑥), for a ≤ 𝑥 ≤ b implies that  𝑊𝑖
0 = 𝑟(𝑥), for each 

𝑖 = 0, 1, …, 𝑁. These values can be used in (20) to calculate the value of 𝑊𝑖
1, for each 𝑖 = 0, 

1, …, 𝑁. If the procedure is reapplied once all the approximations 𝑊𝑖
1 are known, the values of 

𝑊𝑖
2, 𝑊𝑖

3 , ... can be calculated in a similar manner. 
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Remark 1. The following steps are used to linearize the nonlinear term in the system (20) 

I. At 𝑗 = 0 , we approximate 𝛿𝑖
1/2

 by 𝛿𝑖
1/2∗

 computed from 𝑊𝑖
0  and get a first 

approximation to 𝑊𝑖
1, then we compute 𝛿𝑖

1/2
 from 

𝑊𝑖
1+𝑊𝑖

0

2
 to refine the approximation to 

𝑊𝑖
1. 

II. At 𝑗 = 𝑛 , we approximate 𝛿𝑖
𝑛+1/2

 by 𝛿𝑖
𝑛+1/2∗

 computed from 𝑊𝑖
𝑛  and get a first 

approximation to 𝑊𝑖
𝑛+1 , then we compute 𝛿𝑖

𝑛+1/2
 from 

𝑊𝑖
𝑛+1+𝑊𝑖

𝑛

2
 to refine the 

approximation to 𝑊𝑖
𝑛+1. 

 

3. TRUNCATION ERROR 

We can obtain the local truncation error 𝑇𝑖
∗𝑗+1/2

 associated with Eq. (10) by rewriting (10) in the 

form 

(𝑢𝑖−1
𝑗+1/2

+ 𝑢𝑖+1
𝑗+1/2

)−2𝑢𝑖
𝑗+1/2

= 𝜌(𝐷𝑥
2 𝑢𝑖−1

𝑗+1/2
+ 𝐷𝑥

2𝑢𝑖+1
𝑗+1/2

) + 𝜎𝐷𝑥
2𝑢𝑖

𝑗+1/2
+ 𝑇𝑖

∗𝑗+1/2
, (21) 

where 𝐷𝑥
n ≡

𝜕n

𝜕𝑥n and 𝑢𝑖
𝑗
≡ (𝑥𝑖, 𝑡𝑗). 

After expanding 𝑢𝑖
𝑗+1/2

 , 𝑢𝑖−1
𝑗+1/2

 , 𝑢𝑖+1
𝑗+1/2

 , 𝐷𝑥
2𝑢𝑖

𝑗+1/2
 , 𝐷𝑥

2 𝑢𝑖−1
𝑗+1/2

  and 𝐷𝑥
2𝑢𝑖+1

𝑗+1/2
  around the 

point (𝑥𝑖, 𝑡𝑗+1/2) using Taylor’s series gives us the following important expression for 𝑇𝑖
∗𝑗+1/2

 

𝑇𝑖
∗𝑗+1/2

= (ℎ2 − (𝜎 + 2𝜌))𝐷𝑥
2𝑢𝑖

𝑗+1/2
+ ℎ2 (

ℎ2

12
− 𝜌)𝐷𝑥

4𝑢𝑖
𝑗+1/2

+ ℎ4 (
ℎ2

360
−

𝜌

12
)𝐷𝑥

6𝑢𝑖
𝑗+1/2

+ ⋯ . (22) 

Remark 2. From the last expression of the local truncation error: 

I. For 𝜎 + 2𝜌 = ℎ2 our scheme is of 𝑂(ℎ2), but for 𝜎 + 2𝜌 = ℎ2 and  𝜌 = ℎ2/12 our 

scheme is of 𝑂(ℎ4). 

II. As 𝜇 → 0, that is 𝜔(𝜇) → 0, then (𝜌, 𝜎) → (
ℎ2

6
, 

4ℎ2

6
) and 𝜎 + 2𝜌 = ℎ2 and system (10) 

reduces to ordinary cubic spline  

𝑊𝑖+1
𝑗+1/2

− 2𝑊𝑖
𝑗+1/2

+ 𝑊𝑖−1
𝑗+1/2

=
ℎ2

6
(𝑆𝑖−1

𝑗+1/2
+ 4𝑆𝑖

𝑗+1/2
+ 𝑆𝑖+1

𝑗+1/2
). 
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4. STABILITY ANALYSIS 

The Von Neumann technique will be used to investigate the stability of our system (18). To do this, 

we must linearize the nonlinear term 𝑢p  of Burgers’ equation, Eq. (1), by assuming that the 

corresponding quantities 𝛿𝑖−1
𝑗+1/2

, 𝛿𝑖
𝑗+1/2

 and 𝛿𝑖+1
𝑗+1/2

 are equal to a local constant 𝛾∗ in (18). 

Assuming a solution of the form [22, 23]: 

𝑊𝑖
𝑗
= 𝜉𝑗exp (ϕ𝐼𝑖ℎ) (23) 

where 𝐼2 = −1, ℎ is the element size, ϕ is the mode number, and 𝜉𝑗 is the amplification factor 

at time level 𝑗. As 𝑗 increases, more time steps are computed. Inserting the latter expression for 

𝑊𝑖
𝑗
 in the system (18) gives 

𝜉𝑗+1( 𝐴𝑖
∗exp(ϕ𝐼(𝑖 − 1)ℎ) + 𝐵𝑖

∗exp(ϕ𝐼𝑖ℎ) + 𝐶𝑖
∗exp(ϕ𝐼(𝑖 + 1)ℎ))  

= 𝜉𝑗(𝐴𝑖exp(ϕ𝐼(𝑖 − 1)ℎ) + 𝐵𝑖exp(ϕ𝐼𝑖ℎ) + 𝐶𝑖exp(ϕ𝐼(𝑖 + 1)ℎ)) 

(24) 

where 

𝐴𝑖
∗ = (1 +

𝛾∗ 𝜌

𝜈ℎ
+

𝛾∗ 𝜎

2𝜈ℎ
−

2𝑡𝑗+1/2
1-α  𝜌

𝜈𝑘
),  𝐴𝑖 = (−1 −

𝛾∗ 𝜌

𝜈ℎ
−

𝛾∗ 𝜎

2𝜈ℎ
−

2𝑡𝑗+1/2
1-α  𝜌

𝜈𝑘
), 

𝐵𝑖
∗ = (−2 −

2𝑡𝑗+1/2
1-α  𝜎

𝜈𝑘
),  𝐵𝑖 = (2 −

2𝑡𝑗+1/2
1-α  𝜎

𝜈𝑘
), 

𝐶𝑖
∗ = (1 −

𝛾∗ 𝜌

𝜈ℎ
−

𝛾∗ 𝜎

2𝜈ℎ
−

2𝑡𝑗+1/2
1-α  𝜌

𝜈𝑘
),  𝐶𝑖 = (−1 +

𝛾∗ 𝜌

𝜈ℎ
+

𝛾∗ 𝜎

2𝜈ℎ
−

2𝑡𝑗+1/2
1-α  𝜌

𝜈𝑘
). 

After utilizing some manipulations, Eq. (24) becomes 

𝜉 =
𝐴𝑖exp(−𝐼𝜑) + 𝐵𝑖 + 𝐶𝑖exp(𝐼𝜑)

𝐴𝑖
∗exp(−𝐼𝜑) + 𝐵𝑖

∗ + 𝐶𝑖
∗exp(𝐼𝜑)

  (25) 

where 𝜑 = ϕℎ. After using Euler's formula exp(𝐼𝜑) = cos𝜑 +𝐼 sin𝜑, the last equation (25) can 

be written as 

𝜉 =
(𝐴𝑖 + 𝐶𝑖) cos 𝜑 + 𝐵𝑖 + 𝐼(𝐶𝑖 − 𝐴𝑖) sin𝜑

(𝐴𝑖
∗ + 𝐶𝑖

∗) cos 𝜑 + 𝐵𝑖
∗ + 𝐼(𝐶𝑖

∗ − 𝐴𝑖
∗) sin𝜑

 

or 

𝜉 =

(−2 −
4𝜌 𝑡𝑗+1/2

1-α  

𝜈𝑘
) cos𝜑 + (2 −

2𝜎 𝑡𝑗+1/2
1-α  

𝜈𝑘
) +

𝐼𝛾∗

𝜈ℎ
(2 𝜌 +  𝜎) sin𝜑

(2 −
4𝜌 𝑡𝑗+1/2

1-α  

𝜈𝑘
) cos𝜑 + (−2 −

2𝜎 𝑡𝑗+1/2
1-α  

𝜈𝑘
) −

𝐼𝛾∗

𝜈ℎ
(2 𝜌 +  𝜎) sin𝜑
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After slight rearrangement  

𝜉 =
𝑎 − 𝑏 + 𝐼𝑐

−𝑎 − 𝑏 − 𝐼𝑐
 

where 𝑎 = 2𝜈ℎ(1 − cos𝜑), 𝑏 =
2ℎ 𝑡𝑗+1/2

1-α  

𝑘
(2𝜌 cos𝜑 + 𝜎), and 𝑐 = 𝛾∗(2 𝜌 +  𝜎) sin𝜑. Then 

|𝜉| = √
(𝑎 − 𝑏)2 + 𝑐2

(𝑎 + 𝑏)2 + 𝑐2
 

The quantity (1 − cos𝜑)  is equal to zero or positive, 2𝜌 cos𝜑 + 𝜎  is surely positive if we 

choose 𝜌 > 0 and 𝜎 > 0 such that 𝜎 > 2𝜌. Then 𝑎 ≥ 0, 𝑏 > 0 and (𝑎 + 𝑏)2 ≥ (𝑎 − 𝑏)2. 

For stability, we must have |𝜉| ≤ 1, otherwise 𝜉𝑗 in (23) would expand in an unbounded 

manner. This condition is valid for 𝜌 > 0 and 𝜎 > 0 such that 𝜎 > 2𝜌. Finally, we can say that 

the proposed method is conditionally stable for 𝜌 > 0 and 𝜎 > 0 such that 𝜎 > 2𝜌. 

 

5. NUMERICAL RESULTS 

In this section, we obtain numerical solutions of fractional modified Burgers’ equation for two test 

problems. The accuracy of our presented numerical method is measured by computing the 

difference between the numerical and analytical solutions at each mesh point and use these to 

compute 𝑙2 and 𝑙∞ error norms. Error norms are defined as 

𝑙2 = ‖𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑊𝑎𝑝𝑝𝑟𝑜𝑥‖2
≃ √ℎ ∑ |(𝑢𝑖)𝑒𝑥𝑎𝑐𝑡 − (𝑊𝑖)𝑎𝑝𝑝𝑟𝑜𝑥|

2𝑁
𝑖=0 , 

and 

𝑙∞ = ‖𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑊𝑎𝑝𝑝𝑟𝑜𝑥‖∞
≃ max

0≤𝑖≤𝑁
|(𝑢𝑖)𝑒𝑥𝑎𝑐𝑡 − (𝑊𝑖)𝑎𝑝𝑝𝑟𝑜𝑥|. 

 

Example 1 

Consider the following fractional Burgers’ equation [17, 19]: 

𝜕α𝑢

𝜕𝑡α − 𝜈
𝜕2𝑢

𝜕𝑥2 + 𝑢
𝜕𝑢

𝜕𝑥
= 0, 0 < α < 1, (26) 

BCs: 

𝑢(−1, 𝑡) = 𝑐 − √2𝑏𝜈 + 𝑐2Tanh (
√2𝑏𝜈+𝑐2(−1−

𝑐𝑡α

α
−2𝛾𝜈)

2𝜈
), 
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𝑢(1, 𝑡) = 𝑐 − √2𝑏𝜈 + 𝑐2Tanh(
√2𝑏𝜈+𝑐2(1−

𝑐𝑡α

α
−2𝛾𝜈)

2𝜈
), 𝑡 > 0,  

IC: 

𝑢(𝑥, 0) = 𝑐 − √2𝑏𝜈 + 𝑐2Tanh (
√2𝑏𝜈+𝑐2(𝑥−2𝛾𝜈)

2𝜈
), −1 ≤ 𝑥 ≤ 1. 

The exact solution to this problem is 

𝑢(𝑥, 𝑡) = 𝑐 − √2𝑏𝜈 + 𝑐2Tanh (
√2𝑏𝜈+𝑐2

2𝜈
(𝑥 −

𝑐𝑡α

α
− 2𝜈𝛾)). 

The approximate 𝑊(𝑥, 𝑡), exact solutions, and absolute errors are presented in Tables 1-3, for 

different values of  𝛼  with  𝑘 = 0.01 , ℎ = 0.01 , 𝑐 = 0.1 , 𝑏 = 0.9 , 𝜈 = 1.5  and 𝛾 = 1.5 . 

Tables 1-3 show a very close agreement between the approximate and exact solutions. In Table 4, 

the error norms have been shown for α = 0.7. The surface plots of the approximate solutions are 

shown in Fig. 1, for 𝛼 = 0.5, 𝛼 = 0.7 and 𝛼 = 0.9. The exact and approximate solutions of (26) 

are graphically depicted in Fig. 2, for 𝛼 = 0.5, 𝛼 = 0.7 and 𝛼 = 0.9. 

(a) 

 

(b) 

 

(c) 

 

Figure 1: Three-dimensional view of numerical results of Example 1 for  𝑘 = 0.01, ℎ = 0.01, 

𝑐 = 0.1, 𝑏 = 0.9, 𝜈 = 1.5, 𝛾 = 1.5, and for (a) 𝛼 = 0.5, (b) 𝛼 = 0.7 and (c) 𝛼 = 0.9. 
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(a) 

 

(b) 

 

(c) 

 

Figure 1: The profile of approximate and exact solutions for  𝑘 = 0.01, ℎ = 0.01, 𝑐 = 0.1, 

𝑏 = 0.9, 𝜈 = 1.5 , 𝛾 = 1.5, and for (a) 𝛼 = 0.5, (b) 𝛼 = 0.7 and (c) 𝛼 = 0.9. 

 

x Proposed method Exact Abs. error 

0.0 1.727376 1.727376 7.9187 × 10−8 

0.1 1.725205 1.725205 8.56727 × 10−8 

0.2 1.722787 1.722787 9.05121 × 10−8 

0.3 1.720091 1.720092 9.3251 × 10−8 

0.4 1.717089 1.717089 9.33889 × 10−8 

0.5 1.713745 1.713745 9.0364 × 10−8 

0.6 1.710021 1.710021 8.35308 × 10−8 

0.7 1.705874 1.705875 7.2126 × 10−8 

0.8 1.701260 1.701260 5.51523 × 10−8 

0.9 1.696126 1.696126 3.08054 × 10−8 

1.0 1.6904152 1.6904152 0.000000 

Table 1: The comparison between the approximate 𝑊(𝑥, 𝑡) and exact 

solutions of Example 1 with absolute errors for 𝑡 = 1.0 and α = 0.5. 

 

 

 

 

Numerical

Exact

1.0 0.5 0.0 0.5 1.0

1.69

1.70
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u
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,1
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x

u
x
,1
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x Proposed method Exact Abs. error 

0.0 1.726164 1.726165 7.3342 × 10−8 

0.1 1.723855 1.723855 7.99689 × 10−8 

0.2 1.721282 1.721282 8.51791 × 10−8 

0.3 1.718416 1.718416 8.85191 × 10−8 

0.4 1.715222 1.715222 8.94707 × 10−8 

0.5 1.711666 1.711666 8.74291 × 10−8 

0.6 1.707706 1.707706 8.16716 × 10−8 

0.7 1.703298 1.703298 7.1313 × 10−8 

0.8 1.698393 1.698393 5.52391 × 10−8 

0.9 1.692937 1.692937 3.1989 × 10−8 

1.0 1.686869 1.686869 0.000000 

Table 2:The comparison between the approximate 𝑊 (𝑥 , 𝑡) and exact 

solutions of Example 1 with absolute errors for 𝑡 = 1.0 and α = 0.7. 

x Proposed method Exact Abs. error 

0.0 1.725458 1.725458 7.84028 × 10−9 

0.1 1.723069 1.723069 1.16324 × 10−8 

0.2 1.720406 1.720406 1.57152 × 10−8 

0.3 1.717439 1.717439 1.9872 × 10−8 

0.4 1.714134 1.714134 2.37854 × 10−8 

0.5 1.710454 1.710454 2.70013 × 10−8 

0.6 1.706357 1.706357 2.88823 × 10−8 

0.7 1.701797 1.701797 2.85472 × 10−8 

0.8 1.696723 1.696723 2.47937 × 10−8 

0.9 1.691080 1.691080 1.60132 × 10−8 

1.0 1.684804 1.684804 0.000000 

Table 3:The comparison between the approximate 𝑊 (𝑥 , 𝑡) and exact 

solutions of Example 1 with absolute errors for 𝑡 = 1.0 and α = 0.9. 
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N t = 𝟏. 𝟎 t = 𝟐. 𝟎 

𝒍𝟐 Error Norm Max. Abs. Error 𝒍𝟐 Error Norm Max. Abs. Error 

20 1.23961 × 10−5 1.26126 × 10−5 4.28434 × 10−5 2.19661 × 10−5 

40 2.93732 × 10−6 2.98975 × 10−6 2.79757 × 10−6 2.84818 × 10−6 

80 5.76341 × 10−7 5.84464 × 10−7 6.38573 × 10−7 6.48584 × 10−7 

160 1.54773 × 10−8 1.83971 × 10−8 9.94056 × 10−8 9.98317 × 10−8 

Table 4: Error norms for 𝑘 = 0.01, 𝑐 = 0.1, 𝑏 = 0.9, 𝜈 = 1.5 and α = 0.7 for 

Example 1. 

 

Example 2 

Consider the following fractional modified Burgers’ equation [17, 19]: 

𝜕α𝑢

𝜕𝑡α − 𝜈
𝜕2𝑢

𝜕𝑥2 + 𝑢2 𝜕𝑢

𝜕𝑥
= 0, 0 < α < 1, (27) 

BCs: 

𝑢(−11, 𝑡) = −√3𝑐/

√1 − Cosh (
2c

𝜈
(−11 −

𝑐𝑡α

α
+ 3𝜈𝑟)) − Sinh (

2c

𝜈
(−11 −

𝑐𝑡α

α
+ 3𝜈𝑟)), 

𝑢(−1, 𝑡) = −√3𝑐/

√1 − Cosh (
2c

𝜈
(−1 −

𝑐𝑡α

α
+ 3𝜈𝑟)) − Sinh (

2c

𝜈
(−1 −

𝑐𝑡α

α
+ 3𝜈𝑟)),  𝑡 > 0, 

IC: 

𝑢(𝑥, 0) = −√3𝑐/√1 − Cosh (
2c

𝜈
(𝑥 + 3𝜈𝑟)) − Sinh (

2c

𝜈
(𝑥 + 3𝜈𝑟)), −11 ≤

𝑥 ≤ −1. 

The exact solution to this problem is 

𝑢(𝑥, 𝑡) = −√3𝑐/√1 − Cosh (
2c

𝜈
(𝑥 −

𝑐𝑡α

α
+ 3𝜈𝑟)) − Sinh (

2c

𝜈
(𝑥 −

𝑐𝑡α

α
+ 3𝜈𝑟)). 

The approximate 𝑊(𝑥, 𝑡), exact solutions, and absolute errors are presented in Tables 5-7, for 

different values of  𝛼  with 𝑡 = 0.01 , ℎ = 1/45 , 𝑐 = 0.1 , 𝜈 = 1  and 𝑟 = 1.5 . Tables 5-7 
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show a very close agreement between the approximate and exact solutions. In Table 8, the error 

norms have been shown for α = 0.7. The 3D-Graphs of the approximate solutions are shown in 

Fig. 3, for 𝛼 = 0.5 , 𝛼 = 0.7  and 𝛼 = 0.9 . The exact and approximate solutions of (27) are 

graphically depicted in Fig. 4, for 𝛼 = 0.5, 𝛼 = 0.7 and 𝛼 = 0.9. 

(a)

 

(b)

 

(c)

 

Figure 3: Three-dimensional view of numerical results of Example 2 for 𝑘 = 0.01, ℎ = 1/45, 

𝑐 = 0.1, 𝜈 = 1 and 𝑟 = 1.5, and for (a) 𝛼 = 0.5, (b) 𝛼 = 0.7 and (c) 𝛼 = 0.9. 

 

(a)

 

(b)

 

(c)

 

Figure 4: The profile of approximate and exact solutions for 𝑘 = 0.01, ℎ = 1/45, 𝑐 = 0.1, 

𝜈 = 1, 𝑟 = 1.5, and for (a) 𝛼 = 0.5, (b) 𝛼 = 0.7 and (c) 𝛼 = 0.9. 
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x Proposed method Exact Abs. error 

-11.0 −0.579640 −0.579640 0.000000 

-10.0 −0.587517 −0.587494 2.33164 × 10−5 

-9.0 −0.597584 −0.597533 5.05194 × 10−5 

-8.0 −0.610603 −0.610523 7.98113 × 10−5 

-7.0 −0.627713 −0.627601 1.12327 × 10−4 

-6.0 −0.650693 −0.650543 1.50851 × 10−4 

-5.0 −0.682497 −0.682302 1.94985 × 10−4 

-4.0 −0.728467 −0.728233 2.33284 × 10−4 

-3.0 −0.799568 −0.799331 2.37026 × 10−4 

-2.0 −0.923238 −0.923071 1.67036 × 10−4 

-1.0 −1.199122 −1.199122 0.000000 

Table 5: The comparison between the approximate 𝑊(𝑥, 𝑡) and exact 

solutions of Example 2 with absolute errors for 𝑡 = 1.0 and α = 0.5. 

 

x Proposed method Exact Abs. error 

-11.0 −0.580040 −0.580040 0.000000 

-10.0 −0.588006 −0.588002 3.56791 × 10−6 

-9.0 −0.598195 −0.598187 7.48208 × 10−6 

-8.0 −0.611387 −0.611376 1.13829 × 10−5 

-7.0 −0.628748 −0.628733 1.55904 × 10−5 

-6.0 −0.652104 −0.652083 2.06986 × 10−5 

-5.0 −0.684502 −0.684476 2.66876 × 10−5 

-4.0 −0.731499 −0.731468 3.11716 × 10−5 

-3.0 −0.804599 −0.804572 2.71837 × 10−5 

-2.0 −0.932997 −0.932990 6.32454 × 10−6 

-1.0 −1.226149 −1.226149 0.000000 

Table 6: The comparison between the approximate 𝑊(𝑥, 𝑡) and exact 

solutions of Example 2 with absolute errors for 𝑡 = 1.0 and α = 0.7. 
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x Proposed method Exact Abs. Error 

-11.0 −0.580265 −0.580265 0.000000 

-10.0 −0.588289 −0.588288 2.74142 × 10−7 

-9.0 −0.598555 −0.598555 5.54152 × 10−7 

-8.0 −0.611856 −0.611855 7.8279 × 10−7 

-7.0 −0.629371 −0.629370 9.58215 × 10−7 

-6.0 −0.652953 −0.652952 1.02611 × 10−6 

-5.0 −0.685704 −0.685703 6.48945 × 10−7 

-4.0 −0.733299 −0.733300 1.39269 × 10−6 

-3.0 −0.807547 −0.807555 8.07072 × 10−6 

-2.0 −0.9386713 −0.938692 2.16472 × 10−5 

-1.0 −1.242120 −1.242120 0.000000 

Table 7: The comparison between the approximate 𝑊(𝑥, 𝑡) and exact 

solutions of Example 2 with absolute errors for 𝑡 = 1.0 and α = 0.9. 

 

N t = 𝟏. 𝟎 t = 𝟐. 𝟎 

𝒍𝟐 Error Norm Max. Abs. Error 𝒍𝟐 Error Norm Max. Abs. Error 

50 3.20717" × 10−4 3.01521 × 10−4 3.27737 × 10−4 2.78368 × 10−4 

100 8.26284 × 10−5 7.74564 × 10−5 8.13397 × 10−5 7.29719 × 10−5 

200 5.51329 × 10−5 2.86132 × 10−5 4.14158 × 10−5 2.24487 × 10−5 

400 5.78373 × 10−5 3.11596 × 10−5 4.18175 × 10−5 2.13544 × 10−5 

Table 8: Error norms for 𝑘 = 0.01, 𝑐 = 0.1, 𝜈 = 1, 𝑟 = 1.5 and α = 0.7 for 

Example 2. 

 

6. CONCLUSION 

In this study, a numerical treatment for the nonlinear fractional modified Burgers’ equation is 

proposed using a collocation method with cubic non-polynomial spline functions. Applying the 

Von Neumann stability analysis, the proposed method is shown to be conditionally stable. In 

comparison to exact solutions, the derived approximate solutions have good accuracy. Therefore, 
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we can conclude that the proposed method is a very effective and dependable tool for fractional 

differential equations that arise in a variety of physics and engineering fields. 

 

CONFLICT OF INTERESTS 

The author(s) declare that there is no conflict of interests. 

 

REFERENCES 

[1] B. Ross, K.S. Miller, An Introduction to the Fractional Calculus and Fractional Differential Equations, John-

Wily and Sons, New York, 1993.  

[2] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. 

[3] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach, London, 

1993. 

[4] M. Inc, The approximate and exact solutions of the space and time-fractional Burgers equations with initial 

conditions by variational iteration method, J. Math. Anal. Appl. 345 (2008), 476–484. 

[5] M. Merdan, A. Gökdoǧan, A. Yildirim, S.T. Mohyud-Din, Numerical simulation of fractional Fornberg-

Whitham equation by differential transformation method, Abstr. Appl. Anal. 2012 (2012). 

[6] S. Momani, Z. Odibat, A novel method for nonlinear fractional partial differential equations: Combination of 

DTM and generalized Taylor’s formula, J. Comput. Appl. Math. 220 (2008), 85–95. 

[7] S.Z. Rida, H.M. El-Sherbiny, A.A.M. Arafa, On the solution of the fractional nonlinear Schrödinger equation, 

Phys. Lett. Sect. A Gen. At. Solid State Phys. 372 (2008), 553–558. 

[8] S.K. Vanani, A. Aminataei, On the numerical solution of the fractional partial differential equations, Math. 

Comput. Appl. 16 (2011), 702–711. 

[9] Z. Odibat, S. Momani, H. Xu, A reliable algorithm of homotopy analysis method for solving nonlinear fractional 

differential equations, Appl. Math. Model. 34 (2010), 593–600. 

[10] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. 

Math. 264 (2014), 65–70.  

[11] M.M. Hammad, On the conformable fractional E(5) critical point symmetry, Nucl. Phys. A. 1011 (2021), 122203.  



19 

NON-POLYNOMIAL SPLINE METHOD 

[12] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015), 57–66.  

[13] A. El-Ajou, Z. Al-Zhour, M. Oqielat, S. Momani, T. Hayat, Series solutions of nonlinear conformable fractional 

KdV-Burgers equation with some applications, Eur. Phys. J. Plus. 134 (2019). 

[14] Z. Al-Zhour, N. Al-Mutairi, F. Alrawajeh, R. Alkhasawneh, Series solutions for the Laguerre and Lane-Emden 

fractional differential equations in the sense of conformable fractional derivative, Alexandria Eng. J. 58 (2019), 

1413–1420. 

[15] A. El-Ajou, M.N. Oqielat, Z. Al-Zhour, S. Kumar, S. Momani, Solitary solutions for time-fractional nonlinear 

dispersive PDEs in the sense of conformable fractional derivative, Chaos. 29 (2019). 

[16] A. Kurt, O. Tasbozan, Approximate Analytical Solutions to Conformable Modified Burgers Equation Using 

Homotopy Analysis Method, Ann. Math. Silesianae. 33 (2019), 159–167. 

[17] M. Senol, O. Tasbozan, A. Kurt, Numerical Solutions of Fractional Burgers’ Type Equations with Conformable 

Derivative, Chinese J. Phys. 58 (2019), 75–84. 

[18] A. Kurt, Y. Çenesiz, O. Tasbozan, On the Solution of Burgers’ Equation with the New Fractional Derivative, 

Open Phys. 13 (2015), 355–360. 

[19] Y. Çenesiz, D. Baleanu, A. Kurt, O. Tasbozan, New exact solutions of Burgers’ type equations with conformable 

derivative, Waves in Random and Complex Media. 27 (2017), 103–116. 

[20] T.S. El-Danaf, M.A. Ramadan, F.E.I. Abd Alaal, Numerical studies of the cubic non-linear Schrodinger equation, 

Nonlinear Dyn. 67 (2012), 619–627. 

[21] M.A. Ramadan, I.F. Lashien, W.K. Zahra, Polynomial and nonpolynomial spline approaches to the numerical 

solution of second order boundary value problems, Appl. Math. Comput. 184 (2007), 476–484. 

[22] M.A. Ramadan, T.S. El-Danaf, F.E.I.A. Alaal, A numerical solution of the Burgers’ equation using septic B-

splines, Chaos, Solitons, and Fractals. 26 (2005), 1249–1258. 

[23] T.S. El-Danaf, A.R. Hadhoud, Parametric spline functions for the solution of the one-time fractional Burgers’ 

equation, Appl. Math. Model. 36 (2012), 4557–4564. 

 

 

 


