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Abstract: This research aims to develop a Spatio-temporal generalized linear mixed model with the h-likelihood 

estimation method for Statistical Downscaling modeling with the Tweedie compound Poisson Gamma distribution 

which can produce estimates for fixed effects, random effects, and variance components simultaneously. The results 

showed that the proposed model has a good performance characterized by the lowest root mean square error prediction 

and able to reduce the variety of random effects caused by spatial and temporal dependencies. 
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1. INTRODUCTION 

Statistical Downscaling (SD) is a technique in climatology that uses statistical modeling to 

develop functional relationships between large-scale (global) data and small-scale (local) data. SD 
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modeling involves General Circulation Model (GCM) output data in the form of precipitation used 

as an explanatory variables (global scale) and rainfall data (local scale) as the response. The GCM 

output is spatially and temporally related because the data is taken from several grids time to time 

which results in the multicollinearity problems because the GCM variables are correlated with 

each other. Multicollinearity can be overcome by dimensional reduction, variable selection, and 

shrinkage in parameter estimation such as principal component analysis methods, lasso, fused 

lasso, elasticnet and others. 

Rainfall consists of two types of data, namely discrete and continuous. If there is rain or no 

rain then the type of data is discrete. Meanwhile, if it rains then the intensity of the rain is 

continuous [1]. Rainfall modeling in SD usually uses two different distributions, separate and does 

not involve a zero value because there is no rain event. Research on SD has been carried out by [2] 

which uses the normal distribution with the fused lasso dimension reduction method but is still 

limited to the intensity of rainfall without f non-rainy events.  

[3] proposed a mixed distribution of the Tweedie family to model the two components of rain 

simultaneously. The Tweedie distribution is a family of distributions that is flexible to overcome 

non-negative data, highly right-skewed, symmetric data, and exact zero [4]. The Tweedie 

distribution is a special case of the exponential dispertion model (EDM) which has a variance 

function of the form 𝑉(𝜇) = 𝜇𝑝 which is a function of variance that is proportional to several 

power or index parameters of the mean [5]. The Tweedie distribution involves a variety of discrete, 

continuous and mixed probability spreads depending on the index p parameter that is owned. The 

discrete probability distribution consists of the Poisson distribution with 𝑝 = 1. The continuous 

distribution consists of the normal distribution with 𝑝 = 0, gamma distribution with 𝑝 = 2 and 

the inverse-gaussian distribution with 𝑝 = 3. The mixed distribution between the Tweedie family 

consisting of Poisson and gamma is called Tweedie Compound Poisson Gamma (TCPG) with 1 <

𝑝 < 2. The selection of the appropriate distribution according to the occurrence and amount of 

rain is carried out simultaneously to overcome difficulties in modeling the two components of rain 

so as not to lose information in making predictions. 
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SD will be more difficult to model if the data are taken from several locations and times from 

each location. Such a data structure will cause spatial and temporal dependencies. Thus, modeling 

must pay attention to these two dependencies, namely spatio-temporal data modeling. 

Dependencies occur because the data between adjacent locations having a greater closeness of 

relationship and data from each location being interconnected will occur if the Spatio-temporal 

data is modeled with a generalized linear model.  

Research on spatio-temporal data in SD has been carried out by [6] using the Normal 

distribution and [7] using three different distributions, namely the gamma distribution to model 

rainfall, the Bernouli distribution and the generalized Pareto distribution to select extreme rainfall. 

Both studies used the INLA parameter estimation method based on the Bayes method. However, 

these two studies have not modeled the two components of rainfall simultaneously.  

The SD study using the Tweedie distribution has been carried out by [8] comparing three 

different models to see which model is the best. The results showed that the mixed distribution of 

the Tweedie family, also known as the Tweedie compound Poisson gamma (TCPG) distribution 

with lasso regularization, had good modeling abilities, indicated by the smallest RMSEP value and 

the large correlation close to one. The model used is still limited to one location and does not 

consider the temporal dependencies.  

The modeling of Spatio-temporal data can be done using a generalized linear mixed model 

(GLMM) which can handle correlated data due to spatial and temporal dependencies. Estimation 

of GLMM parameters involves complex integration when obtaining the marginal model [9]. 

Several methods have been proposed to solve parameter estimation with integral approximation 

such as the Laplace method, Gauss Hermite Quadrature (GHQ) method. These methods cannot be 

used for data analysis with more than two random effects because the computational speed will 

decrease rapidly if more random effects are used [10]. 

Bayes method is widely used to estimate GLMM parameters with Spatio-temporal random 

effects [11]. However, the Bayes method requires knowledge of the prior distribution of each 

estimated parameter and is computationally difficult, especially to obtain the convergence of the 
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predicted parameters. Thus, GLMM requires a parameter estimation method that can handle some 

of these problems. [12] proposed a method of estimating hierarchical likelihood (h-likelihood) to 

avoid complex integration, slow or non-converging convergence, and do not require prior 

distributions for each of the estimated parameters [13][14]. 

SD research using the GLMM method has been carried out by [15] and [16] but are still limited 

to the Gaussian distribution. Research on TCPG distribution with GLMM model has been done by 

Zhang [17] in the field of insurance, but spatial and temporal dependencies have not been included 

in the model. Thus, this study aims to build a GLMM model that can overcome spatio-temporal 

dependencies with the Tweedie Compound Poisson-Gamma (TCPG) response for SD modeling 

called the STGLMM model. The estimation of regression parameters was carried out using the h-

likelihood method and multicollinearity in GCM output data was solved using the principal 

component analysis (PCA) method. Modeling with the TCPG distribution is not only able to 

predict the intensity of rain like the distribution commonly used but is also able to predict the 

probability of not raining, and the number of rain events every month.  

 

2. THE DEVELOPMENT OF SPATIO-TEMPORAL GLMM MODEL (STGLMM) WITH 

TWEEDIE COMPOUND POISSON GAMMA RESPONSE 

This study will describe the results of the development of the GLMM model with a spatially and 

temporally dependent. Tweedie compound Poisson gamma (TCPG) distribution is used as 

response with involving explanatory variables for fixed effects. The method of estimating 

parameters used is h-likelihood for estimating fixed effects, random effects, and variance 

components in the model. The steps of estimating fixed effect parameters, random effects, and 

variance components are as follows: 

1. Specification of the STGLMM model with TCPG distribution. 

2. Estimation of fixed and random effect intercept parameters use equation (5) 

3. Estimation of the spatial and temporal random variance components random range 

effects use equation (6) 
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Solutions for stapes two and three are obtained using the Newton Rapson iteration method. 

2.1. Spatio Temporal GLMM Model Spesification with TCPG Distribution 

TCPG distribution can be used for modeling in the field of meteorology, especially rainfall. The 

of characteristics rainfall data are continuous positive and exact zero. In TCPG models of rainfall, 

Y is the total monthly rainfall, N is the total number of rain events per month and 𝑌𝑖  is the 

precipitation from the i-th event which has a Poisson distribution 𝑁~Pois(λ)  mathematically 

written as: 

𝑃(𝑁 = 𝑛) = 𝑒−𝜆
𝜆𝑛

𝑛!
, ∀𝑛 ∈ 𝑁𝑡 

𝑁 =∑1[𝑡,∞)(𝑡)

𝑡≥1

 

The amount of rainfall is represented as the total amount of rain from each rain event. Suppose 

(𝑦𝑖)𝑖≥1is assumed to have gamma distribution, namely: 

𝑌 = {
∑𝑦𝑖               𝑁 = 1,2,3, …

𝑁

𝑖=1

0            𝑁 = 0,

 

𝑦𝑖  ~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛾)  is a probability density function with mean 𝛼𝛾  and variance 𝛼𝛾2 . If  

 𝑁 = 0  then  𝑌 = 0 , if  𝑁 > 0  then  𝑌 = ∑ 𝑦𝑖
𝑁𝑡
𝑖   [3][18]. For example, the spatio-temporal 

data 𝑌(𝑠, 𝑡)   is the observation data assumed to be distributed in TCPG with the 

𝑌(𝑠, 𝑡) ~ 𝑇𝑤𝑝(𝜇(𝑠, 𝑡), 𝜙) with 1 < 𝑝 < 2. (𝑠, 𝑡) is the spatio-temporal data notation observed at 

the location 𝑠 = 1,2, … . ,𝑚 and month 𝑡 = 1,2, … . , 𝑇. 

 [19] state that GLMM is a model with a hierarchical structure. Level one is given for discrete 

or continuous response variable that follow family of exponential distribution. Level two assigned 

to unobservable latent is referred to as random effects. The GLMM model for Spatio-temporal data 

can be written as a hierarchical model, namely: 

Level 1   𝑌(𝑠, 𝑡)| 𝑏(𝑠), 𝑐(𝑡)
𝑖𝑖𝑑
~
𝑓(𝑦(𝑠, 𝑡)| 𝑏(𝑠), 𝑐(𝑡)) = 𝑇𝑤𝑝(𝜇(𝑠, 𝑡) , 𝜙), 1 < 𝑝 < 2. 

Level 2 𝑏(𝑠), ~𝑁(0, 𝜎𝑏
2𝜸(𝒅))    and    𝑐(𝑡)~𝑁 (0,

𝜎𝑒𝑡
2 

1−𝜌2
𝝆𝒕,𝒕′) for |𝜌| < 1 



6 

MA’RUFAH HAYATI, AJI HAMIM WIGENA, ANIK DJURAIDAH, ANANG KURNIA 

𝑏(𝑠) is a spatial random effect, 𝑐(𝑡) is a temporal random effect following the first order of 

the autoregressive process which has the form 𝑐(𝑡) = 𝜌𝑐(𝑡 + 1) + 𝜀𝑡  , |𝜌| < 1. 𝜸(𝒅) is an 

exponential spatial correlation matrix with 𝑑 = √(𝑟𝑖 − 𝑟𝑗)2 + (𝑠𝑖 − 𝑠𝑗)2 as euclidean distance 

between locations and 𝑎 is range parameter, 
𝛒
𝐭,𝐭′

1−ρ2
  is temporal correlation matrix [20]. The TCPG 

distribution belongs to the exponential family. Thus, data modeling can use a link function that 

connects the observed data expectations with the regression equation, namely:

 (1)                                                   𝜂 = 𝑙𝑜𝑔(𝜇|𝑏, 𝑐) = 𝑿𝛽 + 𝒁𝟏𝑏 + 𝒁𝟐𝑐 

This research adopts the research results [17] and [21]. Based on [17], the regression model 

in equation (1) is transformed in the form of a relative correlation factor matrix 𝑳 and 𝚲 which 

are Cholesky decomposition matrices such that 𝚺𝒔 = 𝜎𝑏
2𝜸(𝒅) = 𝜎𝑏

2𝑳𝑳′  and 𝜮𝒕 = 𝜎𝑡
2 
𝝆
𝒕,𝒕′

1−𝜌2
 =

𝜎𝑡
2  𝜦𝜦′. This regression model change aims to adjust to the model developed by [21]. The change 

in the form of the regression equation in equation (1) becomes the regression equation with the 

relative correlation matrix 𝑳 and 𝚲 shown in the equation (2) 

(2)                                                   𝐿𝑜𝑔(𝝁| 𝒃, 𝒄) = 𝑿𝜷 + 𝒁1𝑳 𝒃 + 𝒁2 𝚲 𝒄     

Equation (2) can be written in the form: 

(3)                                                   𝜼 = 𝐿𝑜𝑔(𝝁| 𝒖, 𝒗) = 𝑿𝜷 + 𝒁𝟏
∗  𝒖 + 𝒁𝟐

∗  𝒗   

In which 𝒁𝟏
∗ = 𝒁𝟏𝑳, 𝒁𝟐

∗ = 𝒁𝟏𝚲,  𝒖~𝑁(0, 𝜎 𝑏
2𝑰) and  𝒗~𝑁(0, 𝜎𝑡

2 𝑰). 

2.2. The Estimation of Fixed and Random Effect 

The estimation of regression parameters uses the hierarchical likelihood estimation method which 

has a form as in equation (4): 

(4)              𝒉 = 𝑙𝑜𝑔(𝑓(𝒚, 𝒖, 𝒗)) = 𝑙𝑜𝑔 (𝑓𝜷,𝜙(𝒚|𝒃, 𝒄)) + 𝑙𝑜𝑔 (𝑓𝜎𝑏
2(𝒖)) + 𝑙𝑜𝑔 (𝑓𝜎𝑡2(𝒗))        

In which 

𝑓𝜷,𝜙(𝒚|𝒖, 𝒗) : The joint probability density function for conditional observational data  

𝒖 and 𝒗 

𝑓𝜎𝑏
2(𝒖)  : Density function for spatial random effects with relative covariance form 𝑳 
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𝑓𝜎 𝑡2(𝒗)  : The joint probability density function for temporal random effects with the  

form of relative covariance 𝚲. 

Based on (4), the h-likelihood function for this study is: 

𝒉 = ∑(−
𝜇2−𝑝

𝜙(2 − 𝑝)
)

𝑦=0

+ ∑ log (𝑎(𝒚,𝜙) exp(
1

𝜙
(
𝒚𝜇1−𝑝

(1 − 𝑝)
−
𝜇2−𝑝

2 − 𝑝
))

𝑚

𝑖=1.𝑦𝑖>0

   

(5)                                   −
𝑠

2
log(2𝜋) −

𝑠

2
log(𝜎 𝑏

2 ) −
𝒖′𝒖

2𝜎 𝑏
2 + −

𝑡

2
log(2𝜋) −

𝑡

2
log( 𝜎 𝑡

2) −
𝒗′𝒗

2 𝜎 𝑡
2  

The estimation of fixed effect parameters 𝜷 ,  spatial random effect 𝒖,  and temporal random 

effect 𝒗 is done by maximizing the h function in equation (5) by finding the first derivative h 

with respect to 𝜷, 𝒖 and 𝒗 by completing 
∂h

∂𝜷
= 0 ,   

𝜕ℎ

𝜕𝒖
= 0, and 

𝜕ℎ

𝜕𝒗
= 0 using the chain rule as 

in [22] and [23]. The three derivatives are difficult to obtain a closed-form. This will be difficult if 

the parameter estimation is done manually. This problem can be solved by the iteration method 

such as the Newton – Raphson method. 

2.3. The Estimation of Variance Component Parameters for Spatial and Temporal Random 

Effect Estimation of Fixed and Random Effect 

One of the concerns in random effects modeling is to develop better methods for estimating the 

component of the variance (dispersion) parameter. Estimating parameters involving random effects 

will involve complex integration using the likelihood concept. Meanwhile, the Bayes method 

requires priors in modeling and convergence is difficult to obtain. [12] developed a method of 

estimating parameter that is the maximum adjusted profile hierarchical likelihood estimator 

(MAPHLE) that is defined as follows: 

(6)                                               𝒉𝑨 = (𝒉 −
1

2
log (det (

𝑯

2π
))
𝛽0=𝜷̂𝟎,u=û,v=v̂

 

Parameter 𝜎 𝑏
2  and 𝜎 𝑡

2is estimated by maximizing the function Ah  i.e. looking for the first 

derivative 𝒉𝑨 with respect to 𝜎 𝑏
2  and 𝜎 𝑒𝑡

2 by completing the derivative 
∂𝒉𝑨

∂𝜎 𝑏
2  
= 0 dan 

𝜕𝒉𝑨

𝜕𝜎 𝑡
2 = 0. 

The estimated parameters 𝜎 𝑏
2  and 𝜎 𝑡

2are obtained by iteration method because it is difficult to 

get the closed form. The Newton-Raphson method is used to estimate 𝜎 𝑏
2  and 𝜎 𝑡

2 parameter. The 
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variance for 𝜎 𝑏
2  𝑎𝑛𝑑 𝜎 𝑡

2  is the inverse of the Hessian matrix of the MAPHLE. The H matrix has 

the following sizes: 

𝑯 =

(

 
 
 
 
 
(−
𝜕2ℎ

𝜕𝛽2
)
(𝑝+1)×(𝑝+1)

 (−
𝜕2ℎ

𝜕𝛽𝑢
)
(𝑝+1)×𝑠

(−
𝜕2ℎ

𝜕𝛽𝑣
)
(𝑝+1)×𝑡

(−
𝜕2ℎ

𝜕𝑢𝛽
)
𝒔×(𝒑+𝟏)

(−
𝜕2ℎ

𝜕𝑢2
)
𝒔×𝒔

(−
𝜕2ℎ

𝜕𝑢𝑣
)
𝑠×𝑡

(−
𝜕2ℎ

𝜕𝑣𝛽
)
𝑠×(𝑝+1)

(−
𝜕2ℎ

𝜕𝑣𝑢
)
𝒕×𝒔

(−
𝜕2ℎ

𝜕𝑣2
)
𝑡×𝑡 )

 
 
 
 
 

((𝑝+1)+𝑠+𝑡)×((𝑝+1)+𝑠+𝑡)

 

2.4. The Algorithm for Spatio-Temporal GLMM (STGLMM) Models Prediction  

nnn Prediction is done to see how close the actual data is to the predicted results and can also be used 

to predict several future time periods. The following prediction algorithm is used 

1. Call the parameters 𝜷̂ , 𝒖̂, 𝒗̂   estimation that has been obtained. 

2. Use 𝒗̂  as much time as needed especially for parameters near the end of the period. For example, 

the time used in modeling is 348. Then the parameter 𝒗̂  is a vector measuring 348 x 1. If we want 

to make predictions for the next 12 months period then use 𝒗̂  between 337 to 348.  

3. Create matrix 𝒁𝟏 and 𝒁𝟐 according to the number of locations and times to be predicted. For 

example, the locations used are 27 locations and 12 time periods, so 𝒁𝟏 is 𝑛𝑠𝑡 × 27 and 𝒁𝟐 is 

𝑛𝑠𝑡 × 12. 𝑛𝑠𝑡 is the number of observations multiplied between many locations and times. 

4. Call the location correlation matrix in the model according to the parameter range obtained from the 

actual data. The location correlation matrix is created according to the number of locations to be 

predicted. If the location is 27 and the parameter range is 151 then the size of the correlation matrix 

is 27 x 27. 

5. Create a time correlation matrix with autoregressive coefficients obtained from actual data. For 

example, if the coefficient obtained is =0.57, then the time correlation coefficient matrix is 12 × 

12. Furthermore, the time correlation matrix used is 
𝝆
𝒕,𝒕′

1−𝜌2
. 

6. Create matrix 𝑳 𝑎𝑛𝑑 𝚲 as the result of cholesky decomposition of spatial correlation matrix  𝚺𝑠 =

𝜎𝑏
2𝑳𝑳′ and temporal correlation matrix 𝚺𝒕 = 𝜎 𝑡

2𝚲𝚲′ where 𝑳𝑳′ = 𝜸(𝒅) and  𝚲𝚲′ =
𝝆
𝑡,𝑡′

1−𝜌2
 are 

cholesky decomposition matrix. 

7. Create matrix 𝒁𝟏
∗ = 𝒁𝟏𝚲 and 𝒁𝟐

∗ = 𝑍2𝑳. 
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8. The number of predictor variables used is the same as the number of principal components used in 

the modeling. The length of the predictor variable is as many as the location multiplied by the time 

to be estimated. 

9. Predictions are calculated using the following equation: 

𝒚̂ = 𝝁(𝑛𝑠𝑡×𝟏) = exp(𝜼(𝑛𝑠𝑡×𝟏)) 

(7)                  = exp(𝑿(𝑛𝑠𝑡×(𝒑+𝟏))𝜷((𝒑+𝟏)×𝟏) + 𝒁𝟏
∗
(𝑛𝑠𝑡×𝑠)

 𝒖𝑠×1 + 𝒁𝟐
∗
(𝑛𝑠𝑡×𝑡)

 𝒗𝑡×1 ) 

For example, the number of locations is 𝑆 = 27 and time is 𝑇 = 12, so the number of observations is 𝑛𝑠𝑡 =

𝑛27×12. 

 

3. APPLICATION OF STGLMM IN STATISTICAL DOWNSCALING USING TCPG RESPONSE 

3.1. Data Source 

This study uses monthly rainfall and precipitation data from the GCM with a period of January 

1981 to December 2009 as many as 348 months. Rainfall data is used as a response variable 

consisting of 27 observation stations located in latitude between 7.780 to -6.280 and longitude 

108.40o to 107.87o which was obtained from the Meteorological and Geophysical Agency. GCM 

data as explanatory variables are obtained from The National Centers for Environmental Prediction 

(NCEP) in the form of a Climate Forecast System Reanalysis (CSFR) model which can be 

downloaded on the website https://rda.ncar.edu/. The grid domain used in this study is 2.50 × 2.50 

with a size of 8 × 5 which is equivalent to 40 explanatory variables. 

3.2. Rainfall Prediction using STGLMM in Statistical Downscaling 

This study aims to build an GLMM model that has a spatio-temporal dependence with a Tweedie 

Compound Poisson-Gamma response which can be called a model STGLMM. This study uses 3 

models to be compared, namely the spatio-temporal GLMM (STGLMM) method with location 

assumed to be exponentially correlated and time assumed to follow a first-order autoregressive 

process, spatial GLMM (SGLMM) with location assumed to be exponentially correlated and time 

assumed to be independent, Temporal GLMM (TGLMM) with location assumed to be independent 
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and time is assumed to follow a first-order autoregressive process. The three models were compared 

to see which model was better and the effect of random effects on the GLMM model gradually.  

Modeling using the TCPG distribution needs to consider the scale of the data used.  Large-scale 

data need to be divided by a certain value so that modeling can be done. Large-scale data make 

modeling difficult, such as singular Hessian matrices, inconsistent results, and predictive results are 

not obtained because they are infinite. Some of the STGLMM model parameters that will be estimated 

include: fixed effect parameters, region and time random effects, spatial and time random effects 

variance components. The goodness of the model is measured by using the root mean square error 

prediction (RMSEP), and the correlation between the actual data and the prediction. The data 

exploration is shown in Figure 1. 

 

FIGURE 1. (a) Plot of rainfall density, (b) Rainfall histogram, (c) Box-plot of rainfall for all 

Rain stations from January-December 1981-2009 

Figure 1 shows the Box-plot rainfall data for all stations from January – December 1981-2009. 

The box plots have the form of a monsoon pattern where the rainfall follows the pattern of the letter 

U. The lowest rainfall is between June and September. The histogram plot of the observation data 

contains a value of zero and the data has positive continuous and exact zero characteristics, so it is 

suspected that the data follows the TCPG distribution. The next step is to estimate the index parameter 

as a determinant of the TCPG distribution if the estimated index parameter has a value between   

1 < 𝑝 < 2. Some of the important parameters that are suspected for modeling are listed in Table 1. 
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TABLE 1. The estimated parameters 𝑝, dispersion (𝜙), range (𝛼), autoregressive 

coefficient (𝜌) and number of principal components 

Value of parameter estimate Estimation  

𝒑 1.5 

𝝓 17 

𝜶 1 

Range 151 

Autoregresive (𝝆) 0.58 

PCA 6 

Table 1 provides information that the index parameter value𝑝  is around1 < 𝑝 < 2 , the 

dispersion parameter 𝜙  =17 and 𝛼  =1. While the parameter of variance for the spatial 

component is 151 and the autoregressive parameter is 0.58. The GCM output has a problem, 

namely between variables that are correlated with each other so that it is handled by PCA which is 

determined by selecting the root of the trait with a value of more than one.  

 

FIGURE 2. Profile Likelihood plot for the index parameter (𝑝) 

The index parameter estimates (𝑝) are selected based on the smallest  profile likelihood value. 

Figure 2 shows that the index parameter with the smallest profile likelihood is 1.5 which is then 

used in modeling. Table 2 is the parameter estimates for the fixed effects, and the variance 

components for STGLMM model. 
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TABLE 2. Fixed effect and Variance Component Estimator 

   

STGLMM 

Estimation Confidence 

Interval 

P-Value 

𝜷̂ 

 

 

 

 

 

 

𝝈̂𝒃
𝟐 

𝝈̂𝒕
𝟐 

0.94 

1.14 

0.78 

0.92 

0.78 

0.66 

0.98 

0.18 

2.30 

(0.87 ; 0.99) 

(1.13 ; 1.15) 

(0.75 ; 0.81) 

(0.87 ; 0.96) 

(0.68 ; 0.89) 

(0.34 ; 0.67) 

(0.85 ; 1.11)  

 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

 

There are seven parameters of fixed effect obtained including intercept and five of them 

are significant with indicated confidence interval and p-value obtained is less than 0.05.  Variance 

component for location random effect is 0.18 and variance component for time random effect is 

2.03. 

Table 3 shows that the STGLMM method has the smallest RMSEP value compared to the 

SGLMM and TGLMM models. The highest correlation value between observation and prediction 

data is owned by the TGLMM model, followed by the SGLMM and SGLMM models. This shows 

that the three models are equally good at modeling rainfall data with spatial and temporal 

dependencies. However, the SGLMM model produces a model that is able to reduce the variability 

due to spatial and temporal dependencies and has the smallest RMSE value compared to the 

SGLMM and TGLMM models. The modeling results show that the STGLMM model has a good 

ability to predict two components of rainfall simultaneously.  

TABLE 3. Comparison of RMSEP and Correlation Methods of SGLMM, TGLMM, and 

SGLMM 

 

Models 

  Goodness of Fit 

RMSEP Correlation 

SGLMM     71.94  0.67 

TGLMM 71.13 0.68 

STGLMM 65.19 0.64                              
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Predictions regarding the following year are shown in Figure 3. Based on the plot in Figures 3(a) 

to 3(i) show that the plots of the three models have almost the same and close patterns, but the 

STGLMM method is close to the actual data. The nine rain stations from each image have the same 

predictive pattern, namely the monsoon pattern. The monsoon pattern is a type of rainfall that is 

unimodial, namely one peak of the rainy season between December-January-February and the dry 

season between June-July-August. 

 

FIGURE 3. (a) – (i) rainfall prediction plot from SGLMM model (      ), TGLMM model 

(      ) and STGLMM model (     ) with actual data (     ) for Malabar – 

Bugis rain station 

TCPG distribution is good to use in rainfall modeling because it can model two rain 

components simultaneously in one distribution. Some information about the components of rain 

can be obtained such as the intensity of rain, the average number of rain events per month 𝜆, the 

average rainfall per incident 𝛼𝛾 , the probability of no rain events per month  𝜋 = exp (−𝜆), many 

events no rain (𝑁𝜋). Predicted rainfall characteristics are described in Table 4 for the Malabar rain 

station.  
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TABLE 4. Estimated Parameters 𝜆̂,  𝛼̂𝛾,  𝜋 = 𝑒𝑥𝑝(𝜆̂) for Malabar  Station 

Month Actual Prediction 

(𝜇) 

𝜆 𝛼𝛾 𝜋 𝑁𝜋 

1 348 314 2.1 151 0.21 1.49 

2 415 333 2.1 155 0.12 1.40 

3 284 290 2.0 144 0.13 1.61 

4 228 207 1.7 122 0.18 2.20 

5 222 182 1.6 114 0.20 2.44 

6 151 119 1.3 93 0.27 3.31 

7 86 95 1.1 83 0.31 3.80 

8 0 84 1.1 78 0.34 4.07 

9 39 97 1.2 84 0.31 3.75 

10 150 156 1.5 106 0.22 2.75 

11 426 246 1.8 133 0.15 1.89 

12 211 334 2.2 155 0.11 1.39 

To make it easier to see the predicted pattern of rainfall characteristics for other regions, 

the plot of the estimated parameters for γ, αγ, π, Nπ of the three models for several regions can be 

seen in Figures 4(a) to 4(l). 

 

FIGURE 4. (a) – (i) are Plots of Estimated Parameters for λ,αγ,π, Nπ rainfall prediction plot 

from SGLMM model (     ), TGLMM model (      ) and STGLMM model 

(     ) with actual data (     ) for Malabar, Sukawana and Bantar Dewa  rain 

station 
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Table 4 can be interpreted that the average daily rainfall events per month (λ) in January are 

twice, the average daily rainfall events per month (αγ) in January are 151, the probability of no 

rain events per month (π) for January is 0.21, the number of events without rain (Nπ) January is 

once. 

4. CONCLUSIONS 

Based on the description above, it can be concluded that The Spatio–Temporal Generalized Linear 

Mixed Model (STGLMM) is good for rainfall modeling which can be seen from the RMSEP value 

obtained, which is the smallest compared to the SGLMM and TGLMM models. The TCPG 

distribution is not only able to predict the intensity of rainfall but is also able to predict the number 

of rain events, and the probability will not rain in a certain month. 
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