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Abstract. In this note, we introduce and discuss the notion of weakly prime ideals in Γ−nearrings. We also

provide few of their characterizations.

Keywords: Γ−nearrings; prime ideals of Γ−nearrings; weakly prime ideals of Γ−nearrings.

2010 AMS Subject Classification: 17D20, 16Y60.

1. INTRODUCTION

In N. Nobusawa [5] define Γ-ring which is more general structure than a ring. In this chapter

we present basic definition and relations of Γ-near ring that will be helpful in our work. Gamma

near ring was introduced by B. Satyanarayana in [6]. In Γ-near ring Γ is a subset of M where M

is a group under addition (need not be abelian and is a non-empty set). Γ-near R is of the from

M×Γ×M→M (a triple mapping) which satisfying the condition two condition (i) (a+b)αc=

aαc+bαc, (ii) (aαb)βc = aα(bβc) where a,b,c ∈M and α,β ∈ Γ. For every three elements

a1,b1,c1 ∈ M and α1,β1 ∈ Γ. B. Satyanarayana also define I in Γ-near R. Ideal of Γ-near

ring is also possess the properties of a subgroup (Normal) of Γ-near ring that satisfying some

condition that will be define in chapter three and also discussed some example of ideal in Γ-near
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ring. Prime ideals in gamma near ring introduce by Clay and J. R. [2]. Further Eduard Domi

introduced Bi-Prime ideal in Γ-near ring. He also discussed Maximal ideal and prime ideal in

Γ-near ring. In [3] Eduard Domi defines relation between prime, bi-prime and maximal ideal in

gamma near ring. He proved that if V is a Γ-near (R,+) and γ ∈V such that γ is unit then every

maximal ideal is prime ideal in Γ-near ring.

2. PRELIMINARIES

In this section, we present useful definitions which would help us in understanding the forth-

coming section.

Definition 2.1. [5] Suppose that M be any group a,b,c, ... are any element of M and Γ be any

other additive group such that α,β ,γ are elements of Γ. Let aγb be defined as element of M

and γaβ is defined to be an element of Γ. If the product satisfy the following condition,

(1) (l1 + l2)γk = l1γk+ l2γk,

(2) l(γ1 + γ2)k = lγ1k+ lγ2k,

(3) lγ(k1 + k2) = lγk1 + lγk2

(4) (lγk)βm = lγ(kβm) = l(γkβ )m

(5) If lγk = 0 for any l,k ∈M and γ = 0, then M is called Γ-ring.

Definition 2.2. [6] A Γ-near R is a triple (N,+,Γ), here

(1) (N,+) is a (not necessarily abelian) group

(2) Γ is a non-empty set of binary operations on N So each γ ∈ Γ, (N,+,γ) is a right near

−R&

(3) (lγk)µm = lγ(kµm) for all l,k,m ∈ N and γ,µ ∈ Γ.

Definition 2.3. [6] An ideal P of Γ-near-R M is said prime provided that for every two ideals

I,J of M such that IΓJ ⊆ P leads that I ⊆ P or J ⊆ P.

Definition 2.4. [6] An ideal I of Γ-near-R M is called prime if {0} and I is the only ideal of I.

Or there is no ideal of I other than I or {0}. Or there is no proper ideal of I exist.

Definition 2.5. [6] A Γ-near R is said to be B-simple if there is no bi-ideal different from {0}

and M.
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Definition 2.6. [6] If B is an I of Γ-near R than B is called minimal if it is different from zero

and it doesn’t contain any bi-ideal different from {0} or from B itself.

For further concepts about Γ−nearrings, we refer [1, 6, 4].

3. MAIN RESULTS AND DISCUSSIONS

In this Section, we introduces weakly prime ideals in gamma near rings. We begin with the

following definition.

Definition 3.1. A proper ideal P of a Γ-nearring R is said to be a weakly prime if 0 6= aγb ∈ P,

where γ ∈ Γ implies a ∈ P or b ∈ P.

Equivalently, weakly prime ideal in Γ-near ring can be defined as.

Definition 3.2. A proper ideal P of a Γ-near ring R is a weakly prime provided that 0 6=AΓB⊆P,

where A and B are the ideals of R implies B⊆ P or A⊆ P.

Proposition 3.3. Every prime ideal of a Γ-nearring R is weakly prime.

Theorem 3.4. Let N be a Γ-nearring R and P be a weakly prime ideal of N such that P is not a

prime ideal then PΓP = 0.

Proof. Assume PΓP 6= 0. Now we prove that P is the prime. Suppose A and B are two ideals of

a nearring N such that AΓB ⊆ P and let AΓB 6= 0, then B ⊆ P or A ⊆ P. However, if AΓB = 0

and PΓP = 0, there might be l ∈ A and k ∈ B, p′o ∈< po >and q′oε < qo > such that (l +

p′o)Γ(k+ q′o) 6∈ P. Which implies that lγ(k+ q′o) 6∈ P, but lγ(k+ q′o) = lγ(k+ q′o)− lγk ∈ P.

Hence AΓB = 0, a contradiction. Thus (A+ p′o)Γ(B+q′o) ⊆ P, which shows that either B ⊆ P

or A⊆ P. �

Corollary 3.5. Let P be a weakly prime ideal of a nearring N. Then, if P⊂ PN then P is not a

prime. However, if PN ⊂ P holds then P is prime.

Corollary 3.6. Suppose N is a gamma near-R&P be an ideal of the N. let PΓP 6= 0, this shows

that P is prime iff P is a weakly prime.
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Proposition 3.7. Let N be a Γ-nearring and P be an ideal of N. Then the following conditions

are hold true.

(1) For all j, l,k ∈ N with M 6= j(< l >+< k >)⊂ P, j ∈ P or l and k in P.

(2) For a ∈ N \P, (P :< a >+< b >) = P∪ [(0 :< a >+< b >)], for all b ∈ N.

(3) For any a∈N \P, (P :< a>+< b>)=P or (P :< a>+< b>)= (0 :< a>+< b>).

(4) P is weakly prime.

Proof. (1)⇒ (2) Suppose t ∈ (P :< a > + < b >), for all a ∈ P and b ∈ N. Then tΓ(< a >

+ < b >)P such that tΓ(< a > + < b >) = 0. Which implies t ∈ (0 :< a > + < b >). So,

0 6= tΓ(< a >+< b >)P, t ∈ P by assumption.

(2) ⇒ (3) It means that the ideal may be the combination of two ideals. It implies equality

between any one of them.

(3)⇒ (4) Suppose A and B are two ideals of the N with AΓB⊆ P. Let A is not a subset of P so

there are l ∈ A and k ∈ B with l,k 6∈ P. Which implies that AΓB = 0.

(4)⇒ (1) Suppose x1 ∈ B, AΓ(< x > + < x1 >)P implies AΓ(P :< x > + < x1 >). Since we

supposed AΓ(< x > + < x1 >) = 0 which gives AΓx1 = 0. Thus AΓB = 0&. Hence P is a

weakly prime ideal of N.
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