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Abstract. In this paper, we will analyses the square mean almost pseudo automorphic mild solution for fractional

order equation,

0DY[X(7) = D(y, X(7)] = [AR(Y) + ¢ (v, X(V)|dy+ @(v, X (7))d (B) (7)

+w(y,X(7))dB(y),Y€R

ey

where A(y) : 2(A(y)) C £5(F) — £4(F) is densely closed linear operator and the functions D, ¢, ¢ and v :
£2(F) — £(F) are jointly continuous. We drive square mean almost pseudo automorphic mild solution for
fractional order neutral stochastic evolution equations driven by G-Brownian motion is obtain by using evolution
operator theorem and fixed point theorem. Moreover, we prove that this mild solution of equation (1) is unique.
Keywords: fractional derivative and integral; existence and uniqueness; almost pseudo automorphic; G-Brownian
motion; fixed point.
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1. INTRODUCTION

Some results on of existence and uniqueness of the square-mean almost pseudo almost auto-

morphic mild solutions for fractional differential equation have been discussed by some authors
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which can be found in [1, 2, 3, 4, 5, 6]. The aims of this article is to discussed the square mean
almost pseudo automorphic mild solution for neutral stochastic evolution equations of fractional
order driven by G-Brownian motion(G-NSEEF for short), which is given by equation (1). Now
we will recall following definitions of fractional derivative,

Riemann-Liouville definition [5, 6]: For a € [n— 1,n) the o - derivative of f is

DEf() = O / ’ O—de

C(n—a) di" x)@-ntl

Caputo definition[5, 6]:For @ € (n— 1,n) the a - derivative of f is

o 1 t fn
D) = F(Oz—n)/a (z—r)éf—)nﬂdf

2. PRELIMINARIES

Lemma[10] If 0 < T < oo, then

(VE || J5md(B) () 1] o 2E|J5 | ny | dy|. for any my € .20, %))
Ve 2 T 2 2

@) E | (f nydB(®) } =E [ [5 03 (B) (7)] , for any n, € .#(0,%).

GVE|(J5 I ny 1P dy)| < J5" [E] ny 7] dy, for any ny € 2([0,%]),p > 1.
Definition An .7, progressively measurable process { X ()} yer 18 called a mild solution of the

(1), if

(2)
o™ (r, X (r
R ()~ DO R(7) = B R(6) ~ Dl X))+ g [ LT,
1 YOy, r) o™ (r, X (r 1 YOy, )y (r, X (r
+F(—O€—n)/s %,2?)—(5&1—2 )>d<B> (r)+r(—a—n) ’ (zly_)vr/)—o(url—g ))dB(r)

forany y> sand s € R.
For our convenience and further use we consider the following assumptions.
(H1) 3Q > 0and p > 0 such that the evolution family (7, s) generated by A(y) is exponen-

tially stable,

| B(y,s) [|< Qe M=) y >,
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(H2) The coefficients D(7,x), ¢ (7,x), ¢(v,x) and y(¥,x) : R x LL(.F) — £2(F ) are functions
of SPAA(R x £%(F), L% (F)). Furthermore, 3 £p, £y, £¢, Ly > 0 such that

ID(y.x) =D(v,y) IP< Lo | x =y |71l 9 (v,2) = ¢ (r.3) [IP< Lo | x—y |I?

and
| @(7v.x) = @(1,) IIP< Lo | x—y |15 [l w(1,x) — w(1,y) IP< Ly | x—y|I?

forx,y € £2(F) and y € R.

(H3) D = Dy + Dy € SPAA(R x £4(F),£%(F)), where D € SAA(R x £4(F),LL(F)),
D3 € SBCy(R x £2(F),L5(F)). ¢ = ¢1 + ¢ € SPAA(R x £4(F),L5(F)), where ¢ €
SAA(R x L2(F),L%(F)), ¢ € SBC)(R x L2(F),L%(F)). @ = @1 + ¢ € SPAA(R x
LE(F), L5(F)), where @1 € SAA(R x L£5(F),£5(F)), @2 € SBCO(R x £5(F), L5(F)).
W =y + ¥ € SPAA(R x LE(F),L£%(F)), where y; € SAA(R x £2(F),L%(F)), v €
SBCo(R x £2(F), £5(F)).

3. MAIN RESULT

Theorem If the hypothesis (H1) — (H3) are satisfied, and

4078, N 4674Q% L, N 4672Q%8,,

48+
TR w2 u

< 1.

then, the system (1) has a unique mild solution X € SPAA(R, £Z(.%)) and this solution can be
expressed as
3)

X (y) =D(r,X(1)) +

1 Y U(y,r) 9" (r, X (r))
l“(—oc—n)/oo (y—r)-atl-mn dr

L7 O(0)e (s X () L SR ()
F(—Ot—n) /oo ('}/_r)—OH—I—n d<B> (l”)—l— F(—(X—n) /0o (fy_r)—OH-]—n dB(r)‘

+

Proof Firstly we will discuss the Existence of the square mean almost pseudo automorphic mild
solution for of equation ( 1).

Claim: For all ¥ > s and at each s € R, we will show that X(y) defined by (3) satisfies the
equation (2) and hence X (7) will be a mild solution of (1).

For any X € SPAA(R, £%(.7)), we define the operator (P X)(y) as follows,
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“4)

P o (r, R (r
@RI =D W)+ g [ e ar

1 7 U(y,r)e" (r, X (r)) 1 v Uy, (R (r))
) L G B0 ma s [ e

dB(r),
which is well defined and satisfies (2). From (H3), we have

&)

r (I’l) I, r
@) = (DR )+ gy [ DO gy

L 78" (R0 L7 Bnw X))
+F(—0‘—n)/w (y—r)-otimn d<B>()+F(—oc—n)/oo (y—r)—o+1-n dB( ))

r (n) T, r r (n) T, r
+ (Dalr ¥ ) + gy [ e gy [T 2EDE s )

| /v O, (r, R (1)

M v My e e dB(r)).

= (@1 X)() + (P2X) ().

Now we will show that (@1 X)(y) € SAA(R, £2(.F)) and (P2 X)(t) € SBCy(R, £5(F)). We
will illustrate the facts through following three steps.
Step 1. Sub Claim - I: (®; X)(y) is continuous.
By the definition of (®; X)(y), we have

(6)

E || (®18)(y+5) = (@1X)(Y) [>=E || Di(y+s, X (y+5)) — D1 (¥, X (7))

ey [ AT, [ SRR,
i Y T
e [N gy L [ OO gy

As D (y,x) € SAA(R x £2(.F),£%(.F)), then we conclude that,

() limE || Dy (y+s, X(y+5)) = Di(v. X (1) |[*=0.
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By means of the properties of evolution family U(7, r) and elementary inequality, we get

e =t G(Zyis;?qi&rﬁir))dr “rea ) G(W Wl;n)iH g
e (O(r+s. 72;_”?(3;??5")“ X(n)
e

o b [ S

Sy S
By the dominated convergence theorem, we conclude that,
@)

B ey A <l K VA
By using the properties of evolution family $3(7, ) and Lemma 2, we conclude that,
ey [ OB R O gy ) [ OEDATEROD
8 i [ B O R )

Fra ) o

S s = e L

s s (n) 7 r
28 | g [ SO T a ) ()

v (O s,7)—1)O(y,r (n)r,Nr 2
cnoa( [ SN D)

Ll [T B+ o (R N2
220 w( [0 e
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And

| 5 By 450w (1, X X(r) I 7 By, (X (1))
>/ = - / 1

I'—a—n)J) - (y+s—r +1- dB(r) [(—a—n)/-w (y_r)fomfn

)
I / (B(r+5,7) = D1, " (r, X (1)
T(—a—n) (y—r)-orin

)
L B G RD) o
F(—oc—n)/y (y+s—r)-oti-n dB(r) ||

Y A Y A

(n) 2

Y+s

p20 [ DTESPEIW R OIP
y N T(=a=n)(y+s—r)-ati-n|?2

E|

=E|

_|_

szr

Hence, it follows

| (15)(7+5) — (@1) (1) =

dB(r) |

Step 2. As D(7,x),9(7,x),9(y,x) and y(t,x) are the functions of SAA(R x £%,£2(.F)),

therefore, 3 a subsequence {r,} of {r},},cy, for some stochastic process D1,¢1,¢; and v :

R x £2, £%(F), such that

Tim B || Dy (y+ra, X (7+72)) =D (1, X (1)) [P=0and Jim B | Dy (y—ra, X (7= 1)) = D1 (1, X (7)) =

1 E | 64 (-7, X (7+7)) = 91 (7, X (1)) [P=0and T E | ¢4y~ 1, X (v 1)) = 611, X (1)) |P=

T B {| @1 (y+ 7o, R(y+ra)) = @1(7, R (7)) I°=
and

HmE || @1 (y—ra, X(y—10) — @17, R (7)) [IP=

T B [} Ay (v, R(Y+72)) —I (7, X(¥)) [P=0and Tim B (| 91 (y—ra, X (y=ra) = v (7, X (7)) =
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Vy€eRand X(y) € £2(F).
To prove that (P X)(7y) is a square mean almost automorphic process, we consider the follow-

ing operator (P; X)(7),
9

(@1X)(y) =D (7. X(y)) +

L r 5(r,10" (1, X (1))
Mam) e (yr et

L S0 (R 0) y gy ! [ O(r.nw" (r. X (r))

TCamm e (e Mo fo (y=parn 250
And hence we have,
E || (@1 %)(y+7ra) — (@1X)(7) |2
_ I T4 By 1y )9y (1, X (1))
=E | iy KO )+ g | (e gy

1 T4 By 4 ry )0 (1, X (1) 1 vem Oy + ra, ) (R X (1))
+F(—Oc—n)/_oc (}/+rn—r§*°‘“*" <B>(r)+F(—OC—n)/_oo (Y—i—rn—rl)*‘”l*” dB(r)
s 1 v Oy, 1) 0" (r, X (1)) 1 vz;(y,r)@(r,x(r)) )
Dir X(1) r(—a—n)/_w (y—ryerin ¢ F(—a—n)/_oo (e 4B

L 0w (X ()
F(—a—n)/w (}/_r3foc+l—n dB(r) |*

(10)

dr

. 1 Y+ 5 o, (n) X
S4B D17+ X 4) = Dur R0 [P 4B | g [ )

1 7 Oy, (n X (1)) 1 0 By + s ) @ (1, X (1))
r(—a—n)/_m (y_rl)faﬂfn dr || +4E | F(_a_n)/_w (Hrn_rl)faﬂfn d(B)(r)

o Y Oy (X (r) 2 1 v By + ) 9" (1, X (1))
I(—o—n) /,W (y—r)-a+in d(B)(r) ||~ +4E || TCan) [W e dB(r)

LSRG

" I(—a—n) [w (y—r)-oti-n aB(r) [I”

By using the Cauchy-Schwarz inequality, we obtain,

. /v Oy rmn)o" (X)) 1 /Y 5(r.ne" (nX(r) 2

IN—o—n) /- (Y+ry,—r)"otl—n [(—o—n) ) (y—r)—tlmn

o p——— O.n8" (rtrw X(rtr) I O X)) o

[(—o—n) /- (Y+ry—r)-%Fl=n I[(—o—n)J)-—w (y—r)—tl-mn
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4 4 n n d
(11) < /_wU(}/,r)dr/_wU(y,r).]E I ¢1( )(V‘F”m X (r+r4)) _(Pl( )(r, X (r)) HZ é_:’

For shake of simplicity, we consider, I'(—a — n)(y — ) %*1"" = & and || T'(—a — n)(y —

r)~0+1=n | =|| & ||= &*, where the last estimate converges to zero as n — co.

Note that, for any y € R, (B)(y) the difference (B) (y+ r,) — (B) (r,) has the same distribution
with (B) (77) and by using the Cauchy-Schwarz inequality again, we have

o Fuy 1)@ (1, R (r ! el (r X (r
ST Y LA T LT Py N e 2T K L YR

Fon e (rnry et Moo e (i

=cE| /LU()/, e (r+ 1w, X (r+1,)) - ;1(7)(?, R(r)]d (B) (1) |

<B| " 50 X0+ - 0 (X ())arg P

) dr

Y Y
(12 <o [ Bnar [ O] ot X)) o) (X ()

Therefor, we have
, 1 e B(y+ 1) 9\ (1, R (1))
hmEHT/ et
n—e ' IN(—a—n) ) o (Y+rn—r)

—

I /V Sy, r) e (r, X (r)

Fa—n) ) (y=—r e

d(B)(r)

d(B)(r) |>=0.

Let B(y) = B(y+r,) — B(r,) for each y € R, then B(y) is also a G-Brownian motion with the

same distribution as B(7y), we obtain

1 /W" O(r+ra )y, (1 X (1)) 1 /y sty ) gpiry 2

Sl v e S e S LA e ) S A e

=B [ B X 0) — 0 (X )NB) g |

) dr

4 n n
13 <o [ O [E Nt X)) - 0) |
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where the last estimate converges to zero as n — oo.

Therefore, we can conclude that
lim E || (@1 X)(y+r2) — (®1%)(7) [P=0.
By the same arguments as above, we obtain,

lim E || (%) (y— 1) — (@1 %)(7) |>=0.

n—yoo
From the Steps 1 and 2, we conclude that, (®; X)(y) € SAA(R, £2(.F)).
Step 3. Sub Claim - II: (P, X)(y) is stochastically continuous process.
According to the functions D5, F», G, and Hy € SBCy(R x i%(ﬁ’ ), 326(35 )), then it follows that

(P, X)(7y) is stochastically bounded. Now we aim to prove that

2 _
lim 25/ E|| (@:%)(7) | dy=0.

T—roo

From the definition of (P, X)(y), we have

T
= [ Bl @) P

e 2 LT L one (X)) o
<4z [ BIDr R Part gz [ Bl ggs [ S0 i 2 P dy
LT L7 O ey (R () .
=) EH F(—oc—n)/_ (y—r)=otl-n d(B)(r)|"d
e 1 S (R X () )
Tar ) EH F(—oc—n)/oo (y—r)-otl-n 4B(r) | y}
<aloe [ BIarx) Par+ o [ 1[ stnar [ 60 |60 I arlay
—1—6*41 1

1 stenar [T s o 0 |2 arlay

oo [ B R P Gy

T
<als [ BIarx ) Par+ o [ 1[ stnar [T 60 |60 |2 arlay
sortol [ st [T S | o () I arlay
oo [ B R Py
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1 /® 5 Q> 1 [T v 1
—u(y=r) () 2
<43z [ BN Dar. X () P dy+ . <o [ e R o () | drg:ldy
Q¢4 1 [T v 1
2 —u(y-r) (n) 2 5.0
e [ R 9w 0) | drglay

Q2 1 [T v, n 1
g [ MR R 0) 1P gdray

As to the second part of the last inequality, it follows

1 T Y 1
— —u(y=r) (n) 2 ., 1
e [y [ e o ) P ar
1 [* Y 1 |
e —u(y-r) (n) 2 4. 5 / —u(y 2, L
e [ [ R o) P+ g [y [T ek m o) P ar

1 T 1 1 1
_ —u(y-r) (n) 2 gy o / / —u(y=r) (n) 2
sz [ [ TR R0 Pyt g [y [ eH IR 6 () P g

11 /% n I 1
a9 <[ E16x0) r|2dr§+—2231@u 0, (r %)) |20
as ¥ — oo,

Similarly, we have

1 /% g 1
i —p(y-r) (n) 2 g

and

limﬁ/ / BOIE [yl (1, % () |\2§drdt:o.

T—ro0

Thus, we conclude that, (®2X)(y) € SBCy(R,£%(.7)). According to the above three steps,
finally we could demonstrate (X )(y) € SPAA(R, £4(F)).
Uniqueness: For a unique fixed point, suppose that X(y) and Y (7) are the solutions of (1).

Now consider,
E || (@X)(y) = (@Y)(y) |I?

1 Y B(y,r)9" (r, R (1)) 1 v Oy e (r
ey B e = aUAS vl M v

1 Oy, )y (r, X () 1 7 U(y,r)¢"
+F(—Oc—n)/_ (t—r)-otl= dB(r)_D(%Y(Y))_F(—OC—”)/— (y=r)~

1 Y U(’}/yr)(P("( ( )) 1 Y U(y,’”)l[/(n)(}", (I"))
“Tamw | G B0 | B ) |

)
XD g8y

DY)

+1—n

=E[| D@, R (y))+
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By using the assumption (H2), we get

(15) I (y) =E || D(y, X (7)) = D(1,Y (¥)) |I’< QD?};E]E | X(y)=Y(7)|*.

By using Cauchy-Schwarz inequality, hypothesis (H1) and (H2), we conclude that,

=& [ Snlo® (s R ()~ 0 ()l |
< /Y U(%i’)dr/y Oy, r)E || ¢ (r, % (r)) — W (r,Y (r)) ||2dré

2
<5 [T B R ()Y () P drg,

Q¢
(16) <= sup || X(y)—Y(n) .

Now by using Lemma 2, Cauchy-Schwarz inequality, hypothesis (H1) and (H2), we have,

o402
<—sup || X(p)-Y() |*.
u YER

7)
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From Lemma 2, (H1) and (H2), we can easily verify

™ (Y (B L
IEII/ O(v,r) R(r))—hy (,1’())]0’3()€II2

= E/ 15N (] (r) =y ™ (Y ()] | d (B) @%
< G_zgzﬁw/ie_zﬂ(y_”)E || N(l”) —Y(I’) H2 d}’%

o 20%¢
<——Fsup | X(y)-Y(p)|*-

(18) <
2u yeR

Now by using equation (15) in (18), we deduce

(19)
402¢, o0 Q2¢, 20°202¢
E || (@X)(y) — (PY)(y) |I*< [4£D+ 3 ? 4+ 3 ®+ "’}sup | X(y)—Y(y)|?
u u YER
So,
(20)

40°8, oL, 207°Q%¢
E [ (@X)(0) = (@)1 o< [480+ = 50+ = 52 =

Consequently, P has a unique fixed pointin SPAA(R, £2(.%)), which shows that (1) has unique

| 1% =Y () 1Bpan -

square mean pseudo almost automorphic mild solution.

4. CONCLUSION

In this paper, we analysed square mean almost pseudo automorphic mild solution for frac-
tional order neutral stochastic evolution equations driven by G-Brownian motion is obtain by
using evolution operator theorem and fixed point theorem. Moreover, we proved this mild so-

lution of equation (1) is unique.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.



A.P.A. SOL. FOR FRACTIONAL N.S.E.E. DRIVEN BY G-BROWNIAN MOTION 13

REFERENCES

[1] Z. Chen, W. Lin, Square mean pseudo almost automorphic process and its application to stochastic evolution
equations. J. Funct. Anal. 261(2011), 69-89.

[2] X. Feng, G. Zong, Pseudo almost automorphic solution to stochastic differential equation driven by L “evy
process, Front. Math. China, 13(4) (2018), 779-796.

[3] F. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-
Brownian motion, Stoch. Proc. Appl. 119(2009), 3356-3382.

[4] X. Bai, Y. Lin, On the existence and uniqueness of solutions to stochastic differential equations driven by
G-Brownian motion with integral-Lipschitz coefficients. Acta. Math. Appl. Sin Engl Ser. 30(2014), 589-610.

[5] P. Duan, Stabilization of stochastic differential equations driven by G-Brownian motion with aperiodically
intermittent control, Mathematics. 9 (2021), 988.

[6] Y. Gu, Y. Ren, R. Sakthivel, Square mean pseudo almost automorphic mild solutions for stochastic evolution
equations driven by G-Brownian motion, Stoch. Anal. Appl. 34(3) (2016), 528-545.

[7] A.D.Nagargoje, V.C. Borkar, R.A. Muneshwar, Existence and uniqueness of solution of fractional differential
equation for the ocean flow in arctic gyres and mild solution of fractional voltera integrodifferential equations,
Noviy Mir Res. J. 6(6) (2021), 44-56.

[8] I. Podlubny, Fractional Differential equations, Academic Press USA, (1999).

[9] A.D. Nagargoje, V.C. Borkar, R.A. Muneshwar, Existence and uniqueness of solutions for neutral stochastic
fractional integro-differential equations with impulses by a rosenblatt process, Noviy Mir Res. J. 6(6) (2021),
88-97.

[10] F. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-

Brownian motion, Stoch. Proc. Appl. 119 (2009), 3356-3382.



	1. Introduction
	2. Preliminaries
	3. Main Result
	4. Conclusion
	Conflict of Interests
	References

