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1. INTRODUCTION

As a generalization of fuzzy set interval valued fuzzy set was conceptualized by Zadeh in

1975[19]. This concept is not only used in mathematics and logic but also in medical sci-

ence [5], image processing [3] and decision making method [22] etc. In 1994, Biswas [4]

used the ideal of interval valued fuzzy sets to interval valued subgroups. In 2006, Narayanan

and Manikantan [14] were studied interval valued fuzzy subsemigroups and types interval val-

ued fuzzy ideals in semigroups. In 2014, Aslam et al. [2], gave the concept interval valued
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(α,β )-fuzzy ideals of LA-semigroups where α,β ∈ {ε,ε,∨q} and he characterized regular

LA-semigroups by using interval valued (α,β )-fuzzy ideals. In 2017, Murugads et al. [12]

studied interval valued Q-fuzzy subsemigroup of ordered semigroup.

In the same year Abdullah et al. [1] gave the definition of (α,β )-interval valued fuzzy sub-

semigroups where α ≺ β , which are generalization of interval valued fuzzy subsemigroups and

they characterized regular semigroups in terms of (α,β )-interval valued fuzzy subsemigroups.

In 2019, Murugads and Arikrishnan [13] gave concept of interval valued Q-fuzzy ideal with

thresholds (α,β ) where α ≺ β and characterized regular semigroups in terms of interval val-

ued Q-fuzzy ideal with thresholds (α,β ).

In this article, we provide relationship between interval valued Q-fuzzy interior ideals with

thresholds (α,β ) and interval valued Q-fuzzy ideals with thresholds (α,β ). In the goal results,

we proceed to characterize the simisimple semigroup by using interval valued Q-fuzzy interior

ideals with thresholds (α,β ).

2. PRELIMINARIES

In this topic, we give some basic definitions which will be helpful in next topic.

By a subsemigroup of a semigroup S we mean a non-empty subset K of S such that K2 ⊆ K.

A non-empty subset K of a semigroup S is called a left (right) ideal of S if SK ⊆ K (KS ⊆ K).

By an ideal K of a semigroup S we mean a left ideal and a right ideal of S. A subsemigroup K

of a semigroup S is called an interior ideal of S if SKS⊆ K. A semigroup S is called left (right)

regular if for each u ∈ S, there exists a ∈ S such that u = au2 (u = u2a). A semigroup S is said

to be intra-regular if for each u ∈ S, there exist a,b ∈ S such that u = au2b. A semigroup S is

called semisimple if every ideal of S is an idempotent. It is evident that S is semisimple if and

only if u ∈ (SuS)(SuS) for every u ∈ S, that is there exist w,y,z ∈ S such that u = wuyuz.

For any mi ∈ [0,1], i ∈A , define

∨
i∈A

mi := sup
i∈A
{mi} and ∧

i∈A
mi := inf

i∈A
{mi}.

We see that for any m,n ∈ [0,1], we have

m∨n = max{m,n} and m∧n = min{m,n}.
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We use C to denote the set of all closed subintervals in [0,1], i.e.,

C = {m := [m−,m+] | 0≤ m− ≤ m+ ≤ 1}.

We note that [m,m] = {m} for all m ∈ [0,1]. For m = 0 or 1 we shall denote 0 = [0,0] = {0}

and 1 = [1,1] = {1}.

For any two interval numbers m and n in C , define the operations “�”, “=”, “f” “g” as

follows:

(1) m� n if and only if m− ≤ n− and m+ ≤ n+

(2) m = n if and only if m− = n− and m+ = n+

(3) mfn = [(m−∧n−),(m+∧n+)]

(4) mgn = [(m−∨n−),(m+∨n+)].

If m� n, we mean n� m.

The following proposition is a tool used to prove the section 4 and 5.

Proposition 2.1. [6] For any elements m,n and p in C , the following properties are true:

(1) mfm = m and mgm = m,

(2) mfn = nfm and mgn = ngm,

(3) (mfn)f p = mf (nf p) and (mgn)g p = mg (ng p),

(4) (mfn)g p = (mg p)f (ng p) and (mgn)f p = (mf p)g (nf p),

(5) If m� n, then mf p� nf p and mg p� ng p.

For each interval {mi := [m−i ,m
+
i ] | i∈A } be a family of closed subintervals of [0,1]. Define

f
i∈A

mi = [ ∧
i∈A

m−i , ∧i∈A m+
i ] and g

i∈A
mi = [ ∨

i∈A
m−i , ∨i∈A m+

i ].

Definition 2.1. Let S be a semigroup and Q be a non-empty set. A Q-fuzzy subset (Q-fuzzy set) of a set

T is a function f : S×Q→ [0,1]

Definition 2.2. [17] Let T be a non-empty set. An interval valued fuzzy subset (shortly, IVF subset) of

T is a function f : T → C

Definition 2.3. [12] Let S be a semigroup and Q be a non-empty set. An interval valued Q-fuzzy subset

(shortly, IVQF subset) of T is a function f : S×Q→ C
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Definition 2.4. [12] Let K be a non-empty subset of a semigroup S and Q be a non-empty set . An

interval valued characteristic function λ K of K is defined to be a function λ K : S×Q→ C by

λ K(u,q) =


1 if u ∈ K

0 if u /∈ K

for all u ∈ T .

For two IVQF subsets f and g of a semigroups S, define

(1) f v g⇔ f (u,q)� g(u,q) for all u ∈ S and q ∈ Q,

(2) f = g⇔ f v g and gv f ,

(3) ( f ug)(u,q) = f (u,q)fg(u,q) for all u ∈ S and q ∈ Q.

For two IVQF subsets f and g of a semigroup S. Then the product f ◦ g is defined as follows for all

u ∈ S and q ∈ Q,

( f ◦g)(u,q) =


g

(y,z)∈Fu

{ f (y,q)fg(z,q)} if Fu 6= /0,

0 if Fu = /0,

where Fu := {(y,z) ∈ S×S | u = yz}.

Next, we shall give definitions of various types of IVQF subsemigroup of a semigroups.

Definition 2.5. [13] An IVF subset f of a semigroup S is said to be

(1) an IVQF subsemigroup of S if f (uv,q)� f (u,q)f f (v,q) for all u,v ∈ S and q ∈ Q,

(2) an IVQF left (right) ideal of S if f (uv,q)� f (v,q) ( f (uv,q)� f (u,q)) for all u,v ∈ S and q ∈Q. An

IVQF ideal of S if it is both an IVQF left ideal and an IVQF right ideal of S,

(3) an IVQF generalized bi-ideal of S if f (uvw,q)� f (u,q)f f (w,q) for all u,v,w ∈ S and q ∈ Q,

(4) an IVQF bi-ideal of S if f is an IVQF subsemigroup of S and f (uvw,q) � f (u,q)f f (w,q) for all

u,v,w ∈ S and q ∈ Q,

(5) an IVQF interior ideal of S if if f is an IVQF subsemigroup of S and f (uav,q) � f (a,q) for all

a,u,v ∈ S and q ∈ Q,

(6) an IVQF quasi-ideal of S if f (u,q)� (S ◦ f )(u,q)f ( f ◦S )(u,q), for all u ∈ S and q ∈Q where S

is an IVQF subset of S mapping every element of S on 1.

The thought of an IVQF subsemigroup with thresholds (α,β ) where α ≺ β as follows:

Definition 2.6. [13] An IVF subset f of a semigroup S and α ≺ β and α,β ∈ C is said to be
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(1) an IVQF subsemigroup with thresholds (α,β ) of S if f (uv,q)gα � f (u,q)f f (v,q)f β for all

u,v ∈ S and q ∈ Q,

(2) an IVQF left (right) ideal with thresholds (α,β ) of S if f (uv,q)gα �

f (v,q)fβ ( f (uv,q)gα � f (u,q)fβ ) for all u,v ∈ S and q ∈ Q. An IVQF ideal with thresholds

(α,β ) of S if it is both an IVF left ideal and an IVF right ideal of S,

(3) an IVQF generalized bi-ideal with thresholds (α,β ) of S if f (uvw,q)gα � f (u,q)f f (w,q)fβ for

all u,v,w ∈ S and q ∈ Q,

(4) an IVQF bi-ideal with thresholds (α,β ) of S if f is an IVQF subsemigroup with thresholds (α,β )

of S and f (uvw,q)gα � f (u,q)f f (w,q)fβ for all u,v,w ∈ S and q ∈ Q,

(5) an IVQF interior ideal with thresholds (α,β ) of S if f is an IVQF subsemigroup with thresholds

(α,β ) of S and f (uav,q)gα � f (a,q)fβ for all a,u,v ∈ S and q ∈ Q,

(6) an IVQF quasi-ideal with thresholds (α,β ) of S if f (u,q)gα � (S ◦ f )(u,q)f ( f ◦S )(u,q)fβ ,

for all u ∈ S and q ∈ Q.

Remark 2.2. [13] It is clear to see that every IVQF bi-ideal with thresholds (α,β ) is an IVQF gener-

alized bi-ideal with thresholds (α,β ) of S, every IVQF ideal with thresholds (α,β ) is an IVQF interior

ideal with thresholds (α,β ) of S and IVQF quasi-ideal with thresholds (α,β ) is an IVQF bi-ideal with

thresholds (α,β ) of S.

In this ensuing theorem is present relationship between types ideals of a semigroup S and the interval

valued characteristic function.

Theorem 2.3. [13] If K is a left ideal (right ideal generalized bi-ideal, bi-ideal, interior ideal, quasi-ideal)

of S, then characteristic function χK is an IVQF left ideal (right ideal, generalized bi-ideal, bi-ideal,

interior ideal, quasi-ideal) with thresholds (α,β ) of S for all α ≺ β and α,β ∈ C .

The following theorem is easy to prove.

Theorem 2.4. [13] Every IVQF ideal with thresholds (α,β ) of a semigroup S is an IVQF interior ideal

with thresholds (α,β ) of S.
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Example 2.1. Consider a semigroup S = {0,a,b,c} and Q be any non-empty set

· 0 a b c

0 0 0 0 0

a 0 0 0 0

b 0 0 0 a

c 0 0 a b

Let f be an IVQF subset of S such that f (0,q) = [0.7,0.8], f (a,q) = [0.4,0.5], f (b,q) = [0.6,0.7]

f (c,q) = 0 and let α = [0.3,0.3], β = [0.5,0.5]. Then f is not an IVQF interior ideal with (α,β ) of

S . But the λ is an IVQF ideal with (α,β ) of S, because f (bc,q)gα = f (a,q)gα = [0.4,0.5] �

[0.5,0.5] = f (b,q)fβ . Thus f is not an IVQF right ideal subsemigroup with (α,β ) of S.

The following theorem show that the IVQF interior ideals with thresholds (α,β ) and IVQF ideals with

thresholds (α,β ) coincide for some types of semigroups. The proof of this theorem is straightforward

and simple.

Lemma 2.5. Let S be a semigroup. If S is left (right) regular, then every IVQF interior ideals with

thresholds (α,β ) of S is thresholds (α,β )-IVF ideal of S.

Proof. Suppose that f is an IVQF interior ideals with thresholds (α,β ) of S and let u,v ∈ S and q ∈ Q.

Since S is left regular, there exists k ∈ S such that u = ku2. Thus, f (uv,q)gα = f ((ku2)v,q)gα =

f (kuuv,q)gα = f ((ku)uv,q)gα � f (u,q)f β . Hence f is an IVQF right ideals with (α,β ) of S.

Similarly, we can show that f is an IVQF left ideals with (α,β ) of S. Thus f is an IVQF ideals with

(α,β ) of S. �

Lemma 2.6. Let S be a semigroup. If S is intra-regular, then every IVQF interior ideals with (α,β ) of S

is an IVQF ideal thresholds (α,β ) of S.

Proof. Suppose that f is an IVQF interior ideals with (α,β ) of semigroup S and let u,v ∈ S and q ∈ Q.

Since S is intra-regular, there exist x,y ∈ S such that u = xu2y. Thus, f (uv,q)gα = f ((xu2y)v,q)gα =

f ((xuuy)v,q)gα = f ((xu)u(yv),q)gα � f (u,q)fβ . Hence f is an IVQF right ideals with (α,β ) of

S. Similarly, we can show that f is an IVQF left ideals with (α,β ) of S. Thus f is an IVQF ideals with

(α,β ) of S. �

Lemma 2.7. Let S be a semigroup. If S is semisimple, then every IVQF interior ideals with (α,β ) of S

is is an IVQF ideal thresholds (α,β ) of S.
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Proof. Suppose that f is an IVQF interior ideals with (α,β ) of S and let u,v ∈ S and q ∈ Q. Since

S is semisimple, there exist x,y,z ∈ S such that u = xuyuz. Thus, f (uv,q)gα = f ((xuyuz)v,q)gα =

f ((xuy)u(zv),q)gα � f (u,q)fβ . Hence f is an IVQF right ideals with (α,β ) ideal of S. Similarly, we

can show that f is an IVQF left ideals with (α,β ) of S. Thus f is an IVQF ideals with (α,β ) of S. �

By Lemma 2.5, 2.6 and 2.7 we have Theorem 2.8.

Theorem 2.8. In left (right) regular, intra-regular and semisimple semigroup, the IVQF interior ideals

with (α,β ) and the is an IVQF ideal thresholds (α,β ) coincide.

3. CHARACTERIZE SEMSIMIPLE SEMIGROUPS IN TERMS IVQF INTERIOR IDEAL WITH

THRESHOLDS (α,β ) AND IVQF IDEALS WITH THRESHOLDS (α,β ).

In this topic, we will characterize a semsimiple semigroup in terms of IVQF interior ideals with

thresholds (α,β ) and IVQF ideals with thresholds (α,β ).

In 2019, [13] Murugads and Arikrishnan propose symbols of IVQF ideals with thresholds (α,β ) for

use characterizes a semigroup in terms IVQF ideals with thresholds (α,β ) of semigroup.

For any IVQF subset f of a semigroup S with α ≺ β and α,β ∈ C ., define

f (α,β )(u,q) = ( f (u,q)fα)gβ

for all u ∈ S and q ∈ Q.

For any IVQF subsets f and g of a semigroup S with α ≺ β and α,β ∈ C , define the operation “fα

β
”

as follows:

( f fα

β
g)(u,q) = ( f (u,q)fg(u,q)fα)gβ

for all u ∈ S and q ∈ Q. And define the product f ◦α

β
g as follows: for all u ∈ S and q ∈ Q,

( f ◦α

β
g)(u,q) = (( f ◦g)(u,q)fα)gβ

where

( f ◦g)(u,q) =


g

(x,y)∈Fu

{ f (x,q)fg(y,q)} if Fu 6= /0,

0 if Fu = /0,

where Fu := {(x,y) ∈ S×S | u = xy}.
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Remark 3.1. Since χ is an interval valued characteristic, we have

λ (α,β )(u,q) :=


β if u ∈ K,

α if u /∈ K.

Lemma 3.2. [13] Let K and L be non-empty subsets of a semigroup S with α ≺ β and α,β ∈ C . Then

the following assertions hold:

(1) (λ K)fα

β
(λ L) = (λ K∩L)(α,β ).

(2) (λ K)◦α

β
(λ L) = (λ KL)(α,β ).

On the basis of Lemma 3.3, we can prove Theorem 3.5.

Lemma 3.3. [13] Let S be a semigroup. If f is a (α,β )-IVQF right ideal and g is a (α,β )-IVQF left

ideal of S, then f ◦
(β ,α)

gv f fα

β
g.

Lemma 3.4. [11] For a semigroup S, the following statements are equivalent.

(1) S is semisimple,

(2) Every interior ideal K of S is idempotent,

(3) Every ideal K of S is idempotent,

(4) For any ideals K and L of S, K∩L = KL

(5) For any ideal K and any interior ideal L of S, K∩L = KL

(6) For any interior K and any ideal L of S, K∩L = KL

(7) For any interior ideals K and L of S, K∩L = KL.

The following Theorem show an equivalent conditional statement for a semisimple semigroup.

Theorem 3.5. Let S be a semigroup. Then the following are equivalent:

(1) S is semisimple,

(2) f ◦α

β
f = f , for every IVQF interior ideals with thresholds (α,β ) f of S,

(3) f ◦α

β
f = f , for every IVQF ideals with thresholds (α,β ) f of S,

(4) f ◦α

β
g = f fα

β
g, for every IVQF interior ideals with thresholds (α,β ) f and g of S,

(5) f ◦α

β
g = f fα

β
g, for every IVQF ideals with thresholds (α,β ) f and g of S,

(6) f ◦α

β
g = f fα

β
g, for every IVQF interior ideal with thresholds (α,β ) f of S and every IVQF

ideal with thresholds (α,β ) g of S,
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(7) f ◦α

β
g = f fα

β
g, for every IVQF ideal with thresholds (α,β ) f of S and every IVQF interior

ideal with thresholds (α,β ) g of S.

Proof. (1)⇒ (2) Suppose that f is a IVQF interior ideal with thresholds (α,β ) of S. Then f is a IVQF

subsemigroup with thresholds (α,β ). We will show that f ◦
(t,s)

f = f (t,s). Let u ∈ S and q ∈ Q.

If Fu = /0, then it is easy to verify that ( f ◦α

β
f )(u,q)� f (α,β )(u,q).

If Fu 6= /0, then

( f ◦α

β
f )(u,q) = ( g

(x,y)∈Fu

{ f (x,q)f f (y,q)}fβ )gα

= ( g
(x,y)∈Fu

{ f (x,q)f f (y,q)fβ}fβ )gα

� ( g
(x,y)∈Fu

{ f (xy,q)gα}fβ )gα

= (( f (u,q)gα)fβ )gα = (( f (u,q)gα)gα)f (β gα)

= ( f (u,q)gα)f (β gα) = ( f (u,q)fβ )gα = f (α,β )(u,q).

Thus, ( f ◦α

β
f )(u,q)� f (α,β )(u,q). Hence, f ◦α

β
f v f (α,β ).

Since S is semisimple, we have there exist w,x,y,z ∈ S such that u = (xuy)(zuw). Thus

( f ◦α

β
f )(u,q) = ( g

(i, j)∈Fu

{ f (i,q)f f ( j,q)}fβ )gα

= ( g
(i, j)∈F(xuy)(wuz)

{ f (i,q)f f ( j,q)}fβ )gα

� (( f (xuy,q)f f (wuz,q))fβ )gα

= (( f (xuy,q)gα)f ( f (wuz,q)gα)fβ )gα

� (( f (u,q)fβ )f ( f (u,q)fβ )fβ )gα

= (( f (u,q)fβ )fβ )gα = ( f (u,q)fβ )gα = f (α,β )(u,q).

Hence, ( f ◦α

β
f )(u,q)� f (α,β )(u,q), and so f (α,β ) v f ◦α

β
f . Therefore, f ◦α

β
f = f (α,β ).

(2)⇒ (1) Let K be an interior ideal of S. Then by Theorem 2.3, λ K is a IVQF interior ideal with

thresholds (α,β ) of S. By supposition and Lemma 3.2, we have

(λ K2)(α,β )(u,q) = ((λ K)◦α

β
(λ K))(u,q) = (λ K)(α,β )(u,q) = β .

Thus u ∈ K2. Hence K2 = K. By Lemma 3.4, we have S is semisimple.

(1)⇒ (4) Let f and g be IVQF interior ideal with thresholds (α,β ) of S. Then by Theorem 2.7, f

and g are IVQF ideal with thresholds (α,β ) of S. Thus by Lemma 3.3, f ◦α

β
gv f fα

β
g. On other hand,

let u ∈ S and q ∈ Q. Then there exist w,x,y,z ∈ S such that u = (xuy)(zuw). Thus
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( f ◦α

β
g)(u,q) = ( g

(i, j)∈Fu

{ f (i,q)fg( j,q)}fβ )gα

= ( g
(i, j)∈F(xuy)(wuz)

{ f (i,q)fg( j,q)}fβ )gα

� (( f (xuy,q)fg(wuz,q))fβ )gα

= (( f (xuy,q)gα)f (g(wuz,q)gα)fβ )gα

� (( f (u,q)fβ )f (g(u,q)fβ )fβ )gα

= ((( f (u,q)fg(u,q))fβ )fβ )gα

= (( f (u,q)fg(u,q))fβ )gα = ( f fα

β
g)(u,q).

Hence, ( f ◦α

β
g)(u,q)� ( f fα

β
g)(u,q) and so f fα

β
gv f ◦α

β
g. Therefore, f ◦α

β
g = f fα

β
g.

(4)⇒ (1) Let K and L be interior ideals of S. Then by Theorem 2.3, λ K and λ L are IVQF interior

ideals with thresholds (α,β ) of S. By supposition and Lemma 3.2, we have

(λ KL)(α,β )(u,q) = ((λ K)◦α

β
(λ L))(u,q) = ((λ K)f

α

β
(λ L))(u,q) = (λ K∩L)(α,β )(uq) = β .

Thus, u ∈ KL. Hence, KL = K∩L. By Lemma 3.4, S is semisimple.

(1)⇒ (6) Let f and g be an IVQF interior ideal with thresholds (α,β ) and an IVQF ideal with

thresholds (α,β )of S respectively. Then g is an IVQF interior ideal with thresholds (α,β ) of S. Thus by

(4), f ◦α

β
g = f fα

β
g.

(6)⇒ (1) Let K,L be an interior ideal and ideal of S respectively. Then by Theorem 2.3, λ K and λ L

is a λ L are IVQF interior ideal with thresholds (α,β ) and λ L are IVQF ideals with thresholds (α,β ) of

S respectively. Then by Theorem 2.4, λ L is an IVQF interior ideal with thresholds (α,β ) of S. Similarly

from (4)⇒ (1), we have S is semisimple.

So, (1)⇔ (3), (1)⇔ (5) and (1)⇔ (7) are Straightforward. �
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