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Abstract. Let φ be a proper total coloring of a graph G with integers as colors. For a vertex v, let w(v) denote the

sum of colors assigned to edges incident to v and the color assigned to v. If w(u) 6= w(v) whenever uv ∈ E(G), then

φ is called a neighbor sum distinguishing total coloring. A k-assignment L of G is a list assignment L of integers

to vertices and edges with |L(z)|= k for each z ∈V (G)∪E(G). A total-L-coloring is a total coloring φ of G such

that φ(v) ∈ L(v) whenever v ∈V (G) and φ(e) ∈ L(e) whenever e ∈ E(G). The smallest integer k such that G has

a neighbor sum distinguishing total-L-coloring for every k-assignment L is called the neighbor sum distinguishing

total choosability of G and is denoted by Ch′′
∑
(G). Wang, Cai, and Ma [15] proved that every planar graph G

without 4-cycles with ∆(G) ≥ 7 has Ch′′
∑
(G) ≤ ∆(G)+3. In this work, we strengthen the result of Wang et al by

proving that Ch′′
∑
(G)≤ ∆(G)+3 for every planar graph G without 4-cycles adjacent to 3-cycles with ∆(G)≥ 7.
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1. INTRODUCTION

We consider only simple, finite, and undirected graphs in this work. For a plane graph G, we

use V (G), E(G),F(G),δ (G), and ∆(G) to denote the vertex set, edge set, face set, minimum
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degree, and maximum degree of a graph G, respectively. We say that two faces are adjacent if

their boundaries share an edge.

A k-vertex (face) is a vertex (face) of degree k, a k+-vertex (face) is a vertex (face) of degree

at least k, and a k−-vertex (face) is a vertex (face) of degree at most k. A (d1,d2, . . . ,dk)-face

f is a face of degree k where vertices incident to f have degree d1,d2, . . . ,dk. A k-face f1 with

incident vertices v1,v2 . . . ,vk in a cyclic order is a spacial k-face of a 3-face f2 if the boundaries

of f1 and f2 share exactly two vertices vi and vi+1 and at least one of edges vi−1vi and vi+1vi+2

is not incident to a 3-face.

Let φ : V (G)∪ E(G) −→ {1, . . . ,k} be a proper k-total coloring. We denote the sum of

colors assigned to edges incident to v and the color on the vertex v by w(v) (i.e., w(v) =

∑uv∈E(G)φ(uv)+φ(v)). The total coloring φ of G is a neighbor sum distinguishing total color-

ing if w(u) 6= w(v) for each edge uv ∈ E(G). The smallest integer k such that G has a neighbor

sum distinguishing total coloring is called the neighbor sum distinguishing total chromatic num-

ber of G, denoted by tndi∑(G).

Pilśniak and Woźniak [7] introduced neighbor sum total coloring and obtained tndi∑(G) for

cycles, cubic graphs, bipartite graphs, and complete graphs. Furthermore, they posed the fol-

lowing conjecture.

Conjecture 1. [7] If G is a graph with at least two vertices, then tndi∑(G)≤ ∆(G)+3.

The conjecture is verified for K4-minor free graphs by Li, Liu, and Wang [6], for planar

graphs with large maximum degrees by Li et al [5], and for triangle free planar graphs with

maximum degree at least 7 by Wang, Ma, and Han [16]. The conjecture is also shown to be true

for planar graphs with other conditions [2, 3, 4, 8, 13].

A k-assignment L of G is a list assignment L of integers to vertices and edges with |L(z)|= k

for each z ∈ V (G)∪E(G). A total-L-coloring is a total coloring φ of G such that φ(z) ∈ L(z)

when z ∈ V (G)∪E(G). We call that G has a neighbor sum distinguishing total-L-coloring (or

nsd total-L-coloring) if G has a total-L-coloring such that w(u) 6= w(v) for each uv∈ E(G). The

smallest integer k such that G has a neighbor sum distinguishing total-L-coloring for every k-

assignment L, denoted by Ch′′
∑
(G), is called the neighbor sum distinguishing total choosability

of G.
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Qu et al [9] proved that Ch′′
∑
(G) ≤ ∆(G)+3 for every planar graph G with ∆(G) ≥ 13. Yao

et al [17] studied Ch′′
∑
(G) of d-degenerate graphs. More results about the neighbor sum distin-

guishing total choosability for planar graphs can be seen in [10, 11, 12, 14]. Wang, Cai, and

Ma [15] studied the neighbor sum distinguishing total choosability for planar graphs without

4-cycles and proved the following theorem.

Theorem 1. ([15]). If G is a planar graph without 4-cycles with ∆(G) ≥ 7, then Ch′′
∑
(G) ≤

∆(G)+3.

In this paper, we strengthen Theorem 1 by extending the result to planar graphs without

4-cycles adjacent to 3-cycles.

2. HELPFUL LEMMAS

The first lemma is an easy observation about plane graphs without 4-cycles adjacent to 3-

cycles.

Lemma 2. If H is a plane graph without 4-cycles adjacent to 3-cycles, then a 3-face in H is

adjacent to neither 4-face nor another 3-face. Consequently, if v is a k-vertex in H, then v is

incident to at most b k
2c 3-faces.

The two following lemmas are required to prove the results about minimal counterexamples.

Lemma 3. ([9]). Suppose that m and n are positive integers such that m≥ n, and Li is a set of

at least n integers (i = 1, . . . ,m). Let Tm(L1 . . . ,Lm) = {∑m
i=1 xi|xi ∈ Li, i 6= j =⇒ xi 6= x j}. Then

Tm(L1 . . . ,Lm)≥ mn−m2 +1.

Lemma 4. ([1]). Let F be a field, and let P = P(x1, . . . ,xn) be a polynomial in F[x1 . . . ,xn].

Suppose that the degree deg(P) of P equals k1 + · · ·+ kn where ki is a nonnegative integer

(i = 1, . . . ,n), and the coefficient of
n

∏
i=1

xki
i in P is nonzero. If S1, . . . ,Sn are subsets of F with

|Si|> ki, then there are si ∈ Si (i = 1, . . . ,n) such that P(s1, . . . ,sn) 6= 0.

We also use the following helpful observation. For a 3−-vertex v, there are at most 3 adjacent

vertices, 3 incident edges, and the sum at v must be different from at most 3 sums at adjacent
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neighbors. Since |L(u)| ≥ 10, we may delete the color at u and recolor it later to have an

appropriate coloring. Thus we will omit the recoloring of 3−-vertices in subsequent arguments.

Let G be a minimal non (∆+ 3)-choosable plane graph (with respect to |V (G)|+ |E(G)|).

Let H be the graph obtained by removing all the 2−-vertices from G. For a vertex v in G, we

use dG(v) (or dH(v)) to denote the degree of v in G (or in H.) We have that the graph H satisfies

all the following lemmas regardless of conditions on cycles.

Lemma 5. ([15]).

(a) δ (H)≥ 3.

(b) Each 4−-vertex in H is not adjacent to a 3-vertex.

(c) Each 3-face in H is either a (3,5+,5+)-face or a (4+,4+,5+)-face.

Lemma 6. If a vertex u has dH(u) = 3, then dG(u) = 3.

Proof. Suppose to the contrary that H has a vertex u with dH(u) = 3 but dG(u) ≥ 4. It follows

that u is adjacent to three 3+-vertices u1,u2,u3, and t 2−-vertices v1, . . . ,vt where t = dG(u)−

dH(u) ≥ 1. Let G′ = G−{uv1, . . . ,uvt}. Let L be a (∆(G)+ 3)-assignment that G has no nsd

total-L-coloring. By the minimality of G, there is an nsd total-L-coloring for G′ where L is

restricted to the graph G′.

(1) t = 1.

First, we delete the colors on vertices u and v1.

To extend an nsd total-L-coloring to G, a color for uv1 must be different from the colors of

edges incident to u and v1. Let S1 denote the set of legal colors that can be assigned to uv1.

Then we have |S1| ≥ |L(vu1)| − 4 = ∆(G)− 1 ≥ 6. Similarly, a color for u must be different

from the colors assigned to uui and ui (i = 1,2,3). Let S2 denote the set of legal colors that can

be assigned to u. Then we have |S2| ≥ |L(u)|−6 = ∆(G)−3≥ 4.

Next, we aim to make the sum obtained at u distinct from the sums at u1,u2, and u3. Let w0

be the temporary sum at u and let wi be the sum at ui (i = 1,2,3). We use x1 for a color assigned

to uv1 and use x2 for a color assigned to u. Altogether, we want to find x1 and x2 such that the

following polynomial is non-zero:

P(x1,x2) = (x1− x2)(x1 + x2 +w0−w1)(x1 + x2 +w0−w2)(x1 + x2 +w0−w3).
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We have deg(P) = 4 and the coefficient of x3
1x2 is 2 (calculated by Scilab). By Lemma 4, there

exist x1 ∈ S1 and x2 ∈ S2 such that P(x1,x2) 6= 0. Finally, we recolor the 2−-vertex v1 to extend

an nsd total-L-coloring to G which contradicts the choice of G.

(2) t ≥ 2.

We delete the colors on vertices v1, . . . ,vt . To extend an nsd total-L-coloring to G, a color for

uvi must be different from the colors of edges incident to u and vi, and from the color of u. Let Si

denote the set of legal colors that can be assigned to uvi (i = 1, . . . , t). Then |Si| ≥ |L(uvi)|−5 =

∆(G)− 2 ≥ 5. It follows from Lemma 3 that Tt(S1, . . . ,St) ≥ 2× 4− 22 + 1 = 5 when t = 2,

and Tt(S1, . . . ,St) ≥ 3× 4− 32 + 1 = 4 when t = 3. Note that |Si| ≥ ∆(G)− 2 ≥ t + 1 since

∆(G)≥ t +3. By Lemma 3, Tt(S1, . . . ,St)≥ t(t +1)− t2 +1≥ 5 when t ≥ 4. Thus we can find

xi ∈ Si (i = 1, . . . , t) that are mutually distinct such that the sum at u is distinct from the sums at

u1,u2, and u3. Finally, we recolor the 2−-vertices v1, . . . ,vt to extend an nsd total-L-coloring to

G which contradicts the choice of G. �

Lemma 7. Each 5-vertex in H is adjacent to at most one 3-vertex.

Proof. Suppose to the contrary that H has a 5-vertex v adjacent to 3-vertices u1 and u2. Let

v1,v2, and v3 be the remaining neighbors of v in H, and let w1, . . . ,wt be the 2−-neighbors of v

in G where t = dG(v)−dH(v).

(1) t ≤ 2.

Let G′ = G−{vu1,vu2,vw1, . . . ,vwt}. Let L be a (∆(G)+ 3)-assignment that G has no nsd

total-L-coloring. By the minimality of G, there is an nsd total-L-coloring for G′ where L is

restricted to the graph G′.

We delete the colors on vertices u1,u2,w1, . . . ,wt . We use xi for a color assigned to vui (i =

1,2) and use x2+ j for a color assigned to vw j ( j = 1, . . . , t). To extend an nsd total-L-coloring to

G, a color for vui where i = 1,2 must be different from the colors of edges vv1,vv2,vv3 and the

colors of edges incident to ui, and the color of the vertex v. Let Si denote the set of legal colors

that can be assigned to vui. From Lemma 6, each of u1 and u2 has exactly three neighbors in

G. Then we have |Si| ≥ |L(uv)| − 6 = ∆(G)− 3. Similarly, a color for vw j where j = 1, . . . , t

must be different from the colors of edges vv1,vv2,vv3 and the colors of edges incident to uw j,
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and the color of the vertex v. Let S2+ j denote the set of legal colors that can be assigned to vw j.

Then we have |S2+ j| ≥ |L(u)|−5 = ∆(G)−2.

Next, we aim to make the sum obtained at v distinct from the sums at v1,v2, and v3. Let w0

be the temporary sum at v and let wi be the sum at vi (i = 1,2,3). Altogether, we want to find

x1, . . . ,x2+t such that the following polynomial is non-zero:

P(x1, . . . ,x2+t) = ∏
1≤i< j≤2+t

(xi− x j)
3

∏
i=1

(
2+t

∑
r=1

xr +w0−wi

)

If t = 0, then we have deg(P) = 4 and the coefficient of x3
1x2 is 2 (calculated by Scilab). Note

that |S1|, |S2| ≥ 4. By Lemma 4, there exist x1 ∈ S1 and x2 ∈ S2 such that P(x1,x2) 6= 0.

If t = 1, then we have deg(P) = 6 and the coefficient of x2
1x2x3

3 is 1 (calculated by Scilab).

Note that |S1|, |S2| ≥ 4 and |S3| ≥ 5. By Lemma 4, there exist x1 ∈ S1, x2 ∈ S2, and x3 ∈ S3 such

that P(x1,x2,x3) 6= 0.

If t = 2, then we have deg(P) = 9 and the coefficient of x2
1x4

3x3
4 is 1 (calculated by Scilab).

Note that |S1|, |S2| ≥ 4 and |S3|, |S4| ≥ 5. By Lemma 4, there exist x1 ∈ S1, x2 ∈ S2, x3 ∈ S3, and

x4 ∈ S4 such that P(x1,x2,x3,x4) 6= 0.

Thus we can find xi ∈ Si (i = 1, . . . ,2+ t) that are mutually distinct such that the sum at v is

distinct from the sums at v1,v2, and v3. Finally, we recolor the 3−-vertices u1,u2,w1, . . . ,wt to

extend an nsd total-L-coloring to G which contradicts the choice of G.

(2) t ≥ 3.

Let G′ = G−{vw1, . . . ,vwt}. Let L be a (∆(G)+ 3)-assignment that G has no nsd total-L-

coloring. By the minimality of G, there is an nsd total-L-coloring for G′ where L is restricted to

the graph G′.

We delete the colors on vertices u1,u2,w1, . . . ,wt . We use xi for a color assigned to vwi ( j =

1, . . . , t). Let i= 1, . . . , t. To extend an nsd total-L-coloring to G, a color for vwi must be different

from the colors of edges vu1,vu2,vv1,vv2,vv3 and the colors of edges incident to wi, and the

color of the vertex v. Let Si denote the set of legal colors that can be assigned to vwi. Then

we have |Si| ≥ |L(uv)| − 7 = ∆(G)− 4 ≥ (t + 5)− 4 = t + 1. By Lemma 3, Tt(S1, . . . ,St) ≥

t(t +1)− t2+1≥ 4 when t ≥ 3. Thus we can find xi ∈ Si (i = 1, . . . , t) that are mutually distinct
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such that the sum at u is distinct from the sums at v1,v2, and v3. Finally, we recolor the 3−-

vertices u1,u2,w1, . . . ,wt to extend an nsd total-L-coloring to G which contradicts the choice of

G.

�

3. MAIN RESULTS

Theorem 2. If G is a planar graph without 4-cycles adjacent to 3-cycles with ∆(G) ≥ 7, then

Ch′′
∑
(G)≤ ∆(G)+3.

Proof. Suppose to the contrary that G is a minimal counterexample with respect to |V (G)|+

|E(G)|. Let the graph H be defined as in the previous section. The initial charge is defined to be

µ(x) = d(x)−4 for each x ∈ V (H)∪F(H). Then by Euler’s formula and by the Handshaking

lemma, we have

∑
v∈V (H)

µ(v)+ ∑
f∈F(H)

µ( f ) =−8.

Now, we derive a new charge µ∗(x) for each x ∈ V (H)∪F(H) by transferring charge from

one element to another and the summation of new charge µ∗(x) remains −8. If we show that

µ∗(x)≥ 0 for each x∈V (H)∪F(H), then we obtain a contradiction and a counterexample does

not exist.

The discharging rules are defined as follows: Let w(x→ y) be the charge transferred from

x to y where x,y ∈V (H)∪F(H).

(R1) Let f be a 3-face incident to a vertex u and adjacent to a face g.

(R1.1) If u is a 5-vertex, then w(u→ f ) = 1
3 .

(R1.2) If u is a 6+-vertex, then

w(u→ f ) =


1
3 , when f is a (3,5+,5+)-face,

2
3 , when f is a (4+,4+,5+)-face.

(R1.3) If g is a 5+-face, then

w(g→ f ) =


3
10 , when g is a special face of f ,

1
5 , when g is not a special face of f .

(R2) If u is a 5+-vertex adjacent to a 3-vertex v, then w(u→ v) = 1
3 .

Now, it remains to show that after discharging, the new charge µ∗(x)≥ 0 for all x ∈V (H)∪
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F(H).

Consider a 3-face f . It follows from Lemma 5(c) that f is a (3,5+,5+)-face or a (4+,4+,5+)-

face. Note that all adjacent faces of f are 5+-faces by Lemma 2. If f be a (3,5+,5+)-face, then

µ∗( f ) ≥ µ( f )+ (3× 1
5)+ (2× 1

3) > 0 by (R1). If f is a (4+,4+,6+)-face or a (4+,5+,5+)-

face, then µ∗( f ) ≥ µ( f )+ (3× 1
5)+

2
3 = 0 or µ∗( f ) ≥ µ( f )+ (3× 1

5)+ (2× 1
3) > 0 by (R1),

respectively. Suppose that f is a (4,4,5)-face. Let v be a 5-vertex incident to f . Let f1 and f2

be faces adjacent to f and incident to v. Let a face gi 6= f (i = 1,2) be adjacent to fi and incident

to v. It follows from Lemma 2 that g1 or g2 is not a 3-face. Consequently, f1 or f2 is a special

face of f . Thus µ∗( f )≥ µ( f )+(2× 1
5)+

3
10 +

1
3 > 0 by (R1).

If f is a 4-face, then it does not involve in a discharging process and thus µ∗( f ) = µ( f ) = 0.

Consider a k-face f where k ≥ 5. Assume f is adjacent to the faces f1, . . . , fk in a cyclic

order. To calculate µ∗( f ), we redistribute w( f → fi) as follows. Let w( f → fi) =
1
5 . If fi is not

a 3-face, then we transfer from fi the charge 1
10 to fi−1 and 1

10 to fi+1 where all subscripts are

taken modulo k. Thus if fi is a 3-face, then it gains charge at least 1
5 , otherwise fi gains charge

at least 1
5 − (2× 1

10) = 0. Moreover if f is a special face k-face of fi, then fi−1 or fi+1 is not a

3-face. By the rules of redistribution, f gains charge at least 1
5 +

1
10 = 3

10 . Thus the new charge

of f is at least µ( f )− (k× 1
5) =

4k
5 −4≥ 0 while its adjacent faces receive charges not less than

ones according to (R1.3). This implies that µ∗( f )≥ 0 according to (R1.3).

Consider a vertex v. It follows from Lemma 5(a) that v is a 3+-vertex. If v is a 3-vertex

v, then it follows from Lemma 5(b) that each neighbor of v is a 5+-vertex. Thus µ∗(v) ≥

µ(v)+(3× 1
3) = 0 by (R2).

If v is a 4-vertex, then it does not involve in a discharging process and thus µ∗(v) = µ(v) = 0.

If v is a 5-vertex, then v is incident to at most two 3-faces and adjacent to at most one 3-vertex

by Lemmas 2 and 7, respectively. Thus µ∗(v)≥ µ(v)− (3× 1
3) = 0 by (R1.1) and (R2).

Consider a k-vertex v where k ≥ 6. Let f1, . . . , fk be incident faces of v in a cyclic order and

v1, . . . ,vk be adjacent vertices of v such that vi and vi+1 are incident to fi where i = 1, . . . ,k and

all subscripts are taken modulo k. To calculate µ∗(v), we redistribute w(v→ vi) as follows. Let

w(v→ vi) =
1
3 . If vi is not a 3-vertex but fi−1 or fi is a 3-face, then we transfer 1

3 from vi to a

3-face fi−1 or a 3-face fi. By Lemma 2, at most one of fi−1 and fi is a 3-face. It follows that if
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vi is a 3-vertex, then it gains charge 1
3 , otherwise it gains charge at least 1

3 −
1
3 = 0. Consider a

3-face fi. It follows from Lemma 5(c) that fi is a (3,5+,5+)-face or a (4+,4+,5+)-face. If fi is

a (3,5+,5+)-face, then it gains charge 1
3 from vi or vi+1. If fi is a (4+,4+,5+)-face, then it gains

charge 2× 1
3 =

2
3 from vi and vi+1. Thus the new charge of v is at least µ(v)−k× 1

3 =
2k
5 −4≥ 0

while its incident faces and adjacent vertices receive charges not less than ones according to

(R1.2) and (R2). This implies that µ∗(v)≥ 0 according to (R1.2) and (R2).

This completes the proof. �
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