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Abstract. This paper presents the validity and efficiency of the coupled Aboodh and Reduced Differential Trans-

form Methods (ABRDTM). This method has been used in solving the coupled mKdV and KdV equations involving

two different types of initial conditions. The Reduced Differential Transform Method which is a modified form of

differential transform method (DTM) and emanated from the Taylors expansion is incorporated into the scheme

of the Aboodh transform method and calculated in an iterative procedure which converged quickly to a closed

form solution. In this work, the examples illustrated showed that the scheme provides a series of function which

converged to the analytical solutions of the system earlier mentioned.
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1. INTRODUCTION

The concept of finding analytical solution to nonlinear equations are very essential in the un-

derstanding of many nonlinear phenomenon. For Example, the wave phenomenon observed in

plasma-optical fibres and fluid dynamics are mostly modelled by some kink-shape tanh solution

and bell-shape sech solutions. In this work, the generalized Hirota-satsuma equation coupled
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KdV and mKdV equations introduced by kangalgil and Ayaz is considered [15];

(1)

ut =
1
2uxxx−3uux +3(vw)x

vt =−vxxx +3uvx,

wt =−wxxx +3uwx

and coupled mKdV equation;

(2)
ut =

1
2uxxx−3u2ux +

3
2vxx +3uvx +3uxv−3λux

vt =−vxxx−3vvx−3uxvx +3u2vx +3λvx

where λ is an arbitrary constant and the subscripts x and t denote the differentials with re-

spect to x and t respectively. Equation(1) is thus reduced to a new system of coupled KdV

equation when w=v* and w=v [14]. Also,when u=0 Equation (2)then becomes a generalized

KdV and an mKdV for v=0 [4]. These coupled equations have been studied by numerous re-

searchers through distinct methods. Jiang and Zhu[41] provided a suggestion on the solitary

wave solution for coupled mKdV systems by using the Homotopy Perturbation Method(HPM),

the miura transformation was worked on by Wu et al.[26]and He et al. solved the solitary

wave solution for the Hirota-Satsuma Coupled mKdV and KdV equations with the variational

iteration method[18]. Zayed et al [31] also used the Jacobi elliptic function to solve these equa-

tions,Yong and Zhang [32] employed the projective Riccati equations method, Assas [33] solved

the coupled-KdV equations with the variational iteration method. Raslan[34] and Kaya[39]

solved the Hirota Satsuma equations using the Adomian’s decomposition method, Ganji and

Rafei [35] the homotopy pertubation method, Abbasbandy[36] the homotopy analysis method,

Cao et al.[37] the trigonometric function transform method,Yong et al.[38] the homogenous

balance method and Zayed et al.[30] used the Jacobian and rational methods to explain the soli-

tary wave solution for the nonlinear coupled KdV system of equations.

In this paper, a reliable procedure to solve coupled mKdV and KdV equations is intro-

duced. This procedure involves merging of two transforms; the Aboodh Transform method and

Reduced Differential Transform Method. The theory of the Reduced Differential Transform

method for defining sets of transformation rules to overcome the complex calculations of the

traditional Differential Transform Method(DTM)was introduced by Keskin and Oturanc[40].
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Also, the Aboodh transform method has recently been used to solve varieties of problems in

applied sciences.

In this work, the combined technique (ABRDTM)is highlighted first and then the applica-

tion to the Hirota-Satsuma coupled mKdV and KdV equations has been evaluated for different

initial conditions. In the result section, the closed form solutions have been obtained and com-

pared with [15] and the analytical solution listed in tabular and graphical forms.

2. PROPERTIES OF ABOODH TRANSFORM

The Aboodh Transform [1] [2] [3] [22] [23] [24] defined for functions of exponential order

and is given in a set A as;

(3) A =
{

f (τ) : M,k1,k2 > 0, | f (τ)|< Me−vτ
}

Where M is a constant that must be an infinite number and k1,k2 may be either finite or infinite.

The Aboodh transform defined by Aboodh et al. [6] is denoted by the operator A(.) and defined

by the integral;

(4) A [ f (τ)] = K(v) =
1
v

∫
∞

0
f (τ)e−vτdτ,τ ≥ 0,k1 ≤ v≤ k2

Given that, K(v) is the Aboodh transform of f (τ) such that

A[( f (τ))] = K(v)

then,the integral transform:

(1) A[ f
′
(τ)] = vk(v)− 1

v f (0)

(2) A[ f
′′
(τ)] = v2k(v)− 1

v f
′
(0)− f (0)

(3) A[ f m(τ)] = v(m)k(v)−∑
m−1
k=0

f (k)(0)
v2−m+k

where f (τ) which is the inverse Aboodh transform of K(v)is define as:

f (τ) = A−1[K(v)]

3. ABOODH REDUCED DIFFERENTIAL TRANSFORM METHOD(ABRDTM)

This paper focuses on the solution of the Hirota-Satsuma coupled mKdV and KdV using the

merger of the Aboodh Transform Method and Reduced Differential Transform Method(ABRDTM)
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As given by[5],[14] considering;

(5)
δ mu(x,τ)

δτm +Ru(x,τ)+Nu(x,τ) = f (x,τ)

where m=1,2,3, with the initial conditions;

(6)
δ m−1u(x,τ)

δτm−1 = gm−1(x)

Partial derivative of the function u(x,τ) of the mth is given as
dmu(x,τ)

dτm , where R defines the

linear differential equation, N is the nonlinear terms of the differential equations and f (x,τ) the

source terms. Applying the Aboodh transform into equation(5) then;

(7) A
[

δ mu(x,τ)
δτm

]
+A [Ru(x,τ)]+A [Nu(x,τ)] = A [ f (x,τ)]

where,

(8) A
[

δ mu(x,τ)
δτm

]
= A [u(x,τ)]v(m)−

m−1

∑
k=0

1
v2−m+k

δ ku(x,0)
δτk

Substituting equation (8)into (7) this gives;

(9) A [u(x,τ)]v(m)−
m−1

∑
k=0

1
v2−m+k

δ ku(x,0)
δτk +A [Ru(x,τ)]+A [Nu(x,τ)] = A [ f (x,τ)]

Thus,

(10) A [u(x,τ)]v(m) = A [ f (x,τ)]+
m−1

∑
k=0

1
v2−m+k

δ ku(x,0)
δτk −{A [Ru(x,τ)]+A [Nu(x,τ)]}

Thus, Simplifying equation(10) we have;

(11) A [u(x,τ)] =
1

vm A [ f (x,τ)]+
m−1

∑
k=0

1
v2+k

δ ku(x,0)
δτk − 1

vm{A [Ru(x,τ)]+A [Nu(x,τ)]}

By applying the inverse Aboodh transform on equation (11)we obtain;

(12) u(x,τ) = A−1

[
1

vm A [ f (x,τ)]+
m−1

∑
k=0

1
v2+k

δ ku(x,0)
δτk − 1

vm{A [Ru(x,τ)]+A [Nu(x,τ)]}

]
Equation (12) can then be written as;

(13) u(x,τ) = F(x,τ)−A−1
[

1
vm{A [Ru(x,τ)]+A [Nu(x,τ)]}

]
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where F(x,τ) is the expression that arises from the initial conditions given and the source terms

after it has been simplified. The solution will be expressed as:

(14) u(x,τ) =
∞

∑
r=0

ur(x,τ)

The nonlinear part is reduced as follows;

(15) Nu(x,τ) =
∞

∑
r=0

Ar

where Ar is expressed as the reduced polynomial which can be gotten from the below formula;

Ar =Ur(x)Uk−r(x), r = 0,1, ...

Substituting equations(14)and (15)into equation(13) to obtain;

(16)
∞

∑
r=0

ur(x,τ) = F(x,τ)−A−1

[
1

vm{A

[
R

∞

∑
r=0

ur(x,τ)

]
+A

[
∞

∑
r=0

Ar

]
}

]
From equation(16)we have;

(17) ur(x,τ) = F(x,τ), r = 0

Also, the recursive relation as;

ur+1 =−A−1
[

1
vm{A [Rur(x,τ)]+A [Ar]}

]
where m=1,2,3 and r ≥ 0

The exact solution u(x,τ) can be approximated by the truncated series;

u(x,τ) = lim
N→∞

N

∑
r=0

ur(x,τ)

4. APPLICATION TO THE KDV EQUATION

Considering Equation (1) with the following conditions;

(18) u(x,0) =
1
3
(β −8k2)+4k2 tanh2(kx)

(19) v(x,0) =−4(3k4c0−2βk2c1 +4k4c1)

3c2
1

+
4k2

c1
tanh2(kx)
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(20) w(x,0) = c0 + c1tanh2(kx)

where β ,c0,c1 6= 0, and k are the arbitrary constants.

Taking the Aboodh transform of Equation (1);

vk(v)− 1
v

u(0) = A
[

1
2

uxxx−3uux +3(vw)x

]

(21) vk(v)− 1
v

v(0) = A [−vxxx +3uvx]

vk(v)− 1
v

w(0) = A [−wxxx +3uwx]

where;

A[ut ] = vu(x, t)− 1
v

u(x,0)

A[vt ] = vv(x, t)− 1
v

v(x,0)

A[wt ] = vw(x, t)− 1
v

w(x,0)

Taking the inverse Aboodh transform of Equation (21)alongside the given conditions to obtain;

(22) u = A−1{ 1
v2

[
1
3
(β −8k2)+4k2 tanh2(kx)

]
+

1
v

A
[

1
2

uxxx−3uux +3(vw)x

]
}

(23) v = A−1{ 1
v2

[
−4(3k4c0−2βk2c1 +4k4c1)

3c2
1

+
4k2

c1
tanh2(kx)

]
+

1
v

A [−vxxx +3uvx]}

(24) w = A−1{ 1
v2 [c0 + c1tanh2(kx)]+

1
v

A [−Wxxx +3uwx]}

The first iterate is given as;

(25) u0 =
1
3
(β −8k2)+4k2 tanh2(kx)
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(26) v0 =−
4(3k4c0−2βk2c1 +4k4c1)

3c2
1

+
4k2

c1
tanh2(kx)

(27) w0 = c0 + c1tanh2(kx)

The recursive relation is given as:

(28) un+1 = A−1
{

1
v

A
[

1
2

un,xxx−3unun,x +3(vw)n,x

]}
vn+1 = A−1

{
1
v

A [−vn,xxx +3unvn,x]

}
‘wn+1 = A−1

{
1
v

A [−wn,xxx +3unwn,x]

}
when n=0 then Equation (28) becomes;

(29) u1 = A−1
{

1
v

A
[

1
2

u0,xxx−3u0u0,x +3(vw)0,x

]}
v1 = A−1

{
1
v

A [−v0,xxx +3u0v0,x]

}
w1 = A−1

{
1
v

A [−w0,xxx +3u0w0,x]

}
Thus,

(30)

u1 = A−1

{
1
v

A

[(
8sinh(kx)(−3k2c0cosh(kx)2−6cosh(kx)2k2c0 +βc1cosh(kx)2 + ...

)
k3

cosh(kx)5c1

]}

v1 = A−1
{

1
v

A
[

8sinh(kx)k3β

cosh(kx)3c1

]}
w1 = A−1

{
1
v

A
[
16c1(1− tanh(kx)2)2k3tanh(kx)−8c1tanh(kx)3(1− tanh(kx)2)k3 + ...

]}
Hence,

(31) u1 =

(
8sinh(kx)(−3k2c0cosh(kx)2−6cosh(kx)2k2c0 +βc1cosh(kx)2 + ...

)
k3t

cosh(kx)5c1

v1 =
8sinh(kx)k3tβ
cosh(kx)3c1

w1 =
2tsinh(kx)c1kβ

cosh(kx)3
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when n=1

(32) u2 = A−1
{

1
v

A
[

1
2

u1,xxx−3(u0u1,x +u1u0,x)+3(v0w1 + v1w0)x

]}

v2 = A−1
{

1
v

A [−v1,xxx +3(u0v1,x +u1v0,x]

}

w2 = A−1
{

1
v

A [−w1,xxx +3(u0w1,x +u1w0,x)]

}
Hence,

(33)

u2 =−
(
12cosh(kx)6k4c0 +24cosh(kx)6k4c1 +2cosh(kx)6β 2c1−12cosh(kx)6k2c0− ...

)
4t2k4

cosh(kx)8c1

(34)

v2 =−
(
2cosh(kx)6β 2c1 +72cosh(kx)4k4c0 +144cosh(kx)4k4c1−3cosh(kx)4β 2c−...

)
4t2k4

cosh(kx)8c2
1

(35)

w2 =−
(
2cosh(kx)6β 2c1 +24cosh(kx)4k4c0 +48cosh(kx)4k4c1 +16cosh(kx)4βk2c1− ...

)
4t2k4

cosh(kx)8

when n=2

(36) u3 = A−1
{

1
v

A
[

1
2

u2,xxx−3(u0u2,x +u1u1,x +u2u0,x)+3(v0w2 + v1w1 + v2w0)x

]}

v3 = A−1
{

1
v

A [−v2,xxx +3(u0v2,x +u1v1,x +u2v0,x]

}

w3 = A−1
{

1
v

A [−w2,xxx +3(u0w2,x + v1w1,x +u2w0,x)]

}
Hence,

(37) u3 =

(
−9720k6c2

1 +10440k4c2
1−720k2c2

1 +45coshcosh(kx)4β 2c2
1− ...

)
16t3sinh(kx)

3cosh(kx)11c2
1

(38) v3 =

(
−21708k4c1 +5292k4c0cosh(kx)2 +36000cosh(kx)2k4c1− ...

)
16t3sinh(kx)

3cosh(kx)11c2
1
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(39) w3 =

(
−7236k4c1 +1764k4c0cosh(kx)2 +12000cosh(kx)2k4c1− ...

)
4t3sinh(kx)

3cosh(kx)11

Approximating the series in equations (25-39),then u(x, t),v(x, t), w(x, t) can be determined by

the Equations given below as:

(40) u(x, t) = u0 +u1 +u2 +u3 + ...

Thus,

u(x, t) =
8tsinh(kx)(−3k2c0cosh(kx)2−6cosh(kx)2−6cosh(kx)2k2c1)

cosh(kx)5c1
+ ...

(41) v(x, t) = v0 + v1 + v2 + v3 + ...

v(x, t) =
8tsinh(kx)k3β

cosh(kx)3c1
− 1

cosh(kx)8c2
1

(
4t2k4(2coshkx)6

β
2c1

)
)+ ...

(42) w(x, t) = w0 +w1 ++w2 +w3 + ...

w(x, t) =
2tsinh(kx)c1kβ

cosh(kx)3 − 1
cosh(kx)8

(
t2k2(2cosh(kx)6)β 2c1

)
+ ...

Table 1. Comparisons between the numerical solution(ABRDTM) and analytical solution of

the coupled KdV equation with the initial condition in Equations(18-20) where c0 = c1 = β =

1,k = 0.1, t = 1.

x unum uanaly vnum vanaly wnum wanaly

-40 .3465052773 .3466011627 .06566783502 .06566782943 1.998362507 1.998362402

-30 .3454868399 .3461851777 .06525197191 .06525184445 1.987964060 1.987962778

-20 .3386008827 .3432422696 .06231369975 .06230893638 1.914421730 1.914390076

-10 .3108142225 .3271899722 .04632619381 .04625663889 1.513454720 1.513082639

0 .3071854666 .3070640150 .02613333333 .02613068170 1.010000000 1.009933709

10 .3486048769 .3322986140 .05141988761 .05136528069 1.641103062 1.640798684

20 .3489927303 .3443377450 .06340740135 .06340441178 1.941798252 1.941776961

30 .3470443375 .3463432716 .06541002353 .06540993837 1.991916122 1.991915126

40 .3467190185 .3466227462 .06568941744 .06568941289 1.998902081 1.998901989
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Table 1b. Error between the numerical solution(ABRDTM) and analytical solution of the

coupled KdV equation with the initial conditions in Equations(18-20) where c0 = c1 = β =

1,k = 0.1, t = 1.

x uerror verror werror

-40 0.0000958854 5.59(10−9) 1.05(10−7

-30 0.0006983378 1.2746(10−7) 0.000001282

-20 0.0046413869 0.00000476337 0.000031654

-10 0.0163757497 0.00006955492 0.000372081

0 0.0001214516 0.00000265163 0.000066291

10 0.0163062629 0.00005460692 0.000304378

20 0.0046549853 0.00000298957 0.000021291

30 0.0007010659 8.516(10−8) 9.96(10−7)

40 0.0000962723 4.55(10−9)) 9.2(10−8)

FIGURE 1. The numerical solutions for u(x,t),v(x,t) and w(x,t)

Equation (1) was solved again subject to the initial condition:

(43) u(x,0) =
1
3
(β −2k2)+2k2 tanh2(kx)
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(44) v(x,0) =−4k2c0(β + k2)

3c2
1

+
4k2(β + k2)

3c1
tanh(kx)

(45) w(x,0) = c0 + c1tanh(kx)

Table 2. Comparisons between the numerical and analytical solution of the coupled KdV

equation with the initial condition in Equations(43-45) where c0 = k = β = 1,k = 0.1, t = 2.

x unum uanaly vnum vanaly wnum wanaly

-40 .3466267012 .3466266705 -.02691987165 -.02691986126 .00099963453 .0010004022

-30 .3463732202 .3463730133 -.02683417850 -.02683410448 .00736323657 .0073684798

-20 .3445961109 .3445954991 -.02621739376 -.02621698765 .05317622369 .0531939872

-10 .3354751638 .3354855632 -.02240821623 -.02240902851 .3363338590 .3359632297

0 .3274709759 .3274458069 -.01080924445 -.01080867902 1.197107200 1.197375320

10 .3405590059 .3405662667 -.002240532021 -.00224011796 1.833504318 1.833654607

20 .3457089092 .3457081597 -.0003262940575 -.00032665918 1.975767238 1.975743130

30 .3465343642 .3465341826 -.000044613562 -.00004467704 1.996687054 1.996682398

40 .3466487115 .3466486853 -.6046197462E-5 -.605506E-5 1.999551024 1.999550366

Table 2b. Comparisons between the exact and numerical errors of the coupled KdV equations

with the initial conditions in Equations(38-40) where c0 = k = β = 1,k = 0.1, t = 2.

x uerror verror werror

-40 3.07(10−8) 1.039(10−8) −7.6767(10)−7

-30 2.069(10−7) 7.402(10−8) 0.000005243221

-20 6.118(10−7) 4.0611(10−7) 0.00001776351

-10 0.3354751638 8.1228(10−7) 0.0003706293

0 0.0000251690 0.02161792347 0.000268120

10 0.0000072608 4.14061(10−7) 0.000150289

20 7.495(10−7) 3.651225(10−7) 0.000024108

30 1.816(10−7) 6.3478(10−8) 0.000004656

40 2.62(10−8) 0.000012101257 6.58(10−7)
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FIGURE 2. The numerical solutions for u(x,t),v(x,t) and w(x,t)

In the tables above, comparisons have been made between the ABRDTM and the analytical

solution of the system considered.

5. APPLICATION TO THE MKDV EQUATION

Considering equation (2) with the initial condition;

(46) u(x,0) =
b
2k

+ k tanh(kx)

(47) v(x,0) =
λ

2

(
1+

k
b

)
+b tanh(kx)

where β ,c0,c1 6= 0, and k are arbitrary constant.

Taking the Aboodh transform of Equation (2)we obtained;

(48) vk(v)− 1
v

u(0) = A
[

1
2

uxxx−3u2ux +
3
2

vxx +3(uv)x−3λux

]

(49) vk(v)− 1
v

v(0) = A
[
−vxxx +3vvx +3(vu)x−3u2vx−3λvx

]
Taking the inverse Aboodh transform of Equation (49) alongside the given conditions to obtain;

(50)

u(x, t) = A−1{ 1
v2

[
b
2k

+ k tanh(kx)
]
+

1
v

A
[

1
2

uxxx−3u2ux +
3
2

vxx +3uvx +3uxv−3λux

]
}
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(51)

v(x, t) = A−1{ 1
v2

[
λ

2

(
1+

k
b

)
+b tanh(kx)

]
+

1
v

A
[
−vxxx +3vvx +3(vu)x−3u2vx−3λvx

]
}

The first iterate is given as;

(52) u(x,0) =
b
2k

+ k tanh(kx)

(53) v(x,0) =
λ

2

(
1+

k
b

)
+b tanh(kx)

The Recursive relation is expressed as:

(54) un+1(x, t) = A−1
{

1
v

A
[

1
2

un,xxx−3u2
nun,x +

3
2

vn,xx +3unvn,x +3un,xvn−3λun,x

]}

vn+1(x, t) = A−1
{

1
v

A
[
−vn,xxx +3vnvn,x +3(vu)n,x−3u2

nvn,x−3λvn,x
]}

when n=0 then Equation (54) becomes;

(55) u1 =
1
4

(
−4bk4−6bk2λ +6k3λ +3b3) t

cosh(kx)2b

v1 =−
1
4

(
28b2k4cosh(kx)2 +6λb2k2cosh(kx)2−12bk3λcosh(kx)2−6k4λcosh(kx)2− ...

)
t

cosh(kx)4kb

When n=1,

(56) u2 =

(
−16cosh(kx)3sinh(kx)b2k8 +144cosh(kx)3sinh(kx)b2k6λ − ...

)
t2

16kcosh(kx)6b2

v2 =

(
−396cosh(kx)3b3k5λ +576cosh(kx)3b2k6 +108cosh(kx)3bk7λ + ...

)
t2

16k2cosh(kx)7b2

When n=2,

(57) u3 =

(
−16cosh(kx)3sinh(kx)b2k8 +144cosh(kx)3sinh(kx)b2k6λ − ...

)
t2

24kcosh(kx)6b2

v3 =

(
−396cosh(kx)3b3k5λ +576cosh(kx)3b2k6 +108cosh(kx)3bk7λ + ...

)
t2

24k2cosh(kx)7b2
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Hence, the closed form is obtained as;

(58) u(x, t) =
b
2k

+ ktanh
[

k
(

x+
1
4

(
6kλ

b
+

3b2

k2 −6λ −4k2
)

t
)]

v(x, t) =
λ

2

(
1+

k
b

)
+btanh

[
k
(

x+
1
4

(
6kλ

b
+

3b2

k2 −6λ −4k2
)

t
)]

Table 3. Comparisons between the numerical and analytical solutions of the coupled mKdV

equation with the initial conditions in Equations(46-47) where k = 0.1,b = λ = 0.1 and t = 0.5.

x unum uanaly vnum vanaly

-40 0.4000717889 0.4000097769 .00006970239290 .00007221960

-30 0.4005293006 0.4000722196 .0005140739471 .00053240638

-20 0.4038491249 0.4005324064 .003746666718 .00386819089

-10 0.4254250682 0.4254387962 .02508781610 .02543879620

0 0.5038818750 0.5036983125 .1055875000 .1036983125

10 0.5775699574 0.5776700629 .1790583310 .1776700629

20 0.5966265235 0.5966550519 .1969009038 .1966550519

30 0.5995364223 0.5995406680 .1995752020 .1995406680

40 0.5999371305 0.5999377125 .1999424098 .1999377125

FIGURE 3. The numerical solutions for u(x,t) and v(x,t)
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Equation (2) was further considered with a different initial condition given as:

(59) u(x,0) = ktanh(kx)

(60) v(x,0) =
1
2
(4k2 +λ )−2k2tanh2(kx)

Table 4. Comparisons between the exact and numerical solutions of the coupled mKdV equa-

tion with the initial conditions in Equations(59-60) where λ = 1,k = 0.1, t = 0.5

x unum uanaly vnum vanaly

-40 -0.09994178131 -0.09999219290 0.5000326720 0.5000031227

-30 -0.09957065168 -0.09957463673 0.5002401648 0.5001697834

-20 -0.09687218682 -0.09689910298 0.5017084899 0.5012211277

-10 -0.07904650037 -0.07915243723 0.5097287399 0.5074697834

0 -0.007550000000 -0.007535687005 0.5198112667 0.5198864268

10 0.07270488781 0.07280192976 0.5071908057 0.5093997580

20 0.09580535936 0.09582864870 0.5011645610 0.5016337402

30 0.09942167452 0.09942510121 0.5001616755 0.500229285

40 0.09992153295 0.09992200205 0.5000219565 0.5000311870

FIGURE 4. The numerical solutions for u(x,t) and v(x,t)
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In Table 4, we made comparisons between the exact and the numerical solutions of u(x, t)

and v(x, t) and noted that the results obtained include small errors.

6. DISCUSSION OF RESULTS

The Aboodh Transform method has been effectively combined with reduced differential

transform polynomials to handle the nonlinear aspect of the partial differential equation con-

sidered. The scheme was used to solve Equations (1) and (2) using four initial conditions. The

result obtained is in series solutions which is in agreement with the analytical solution and thus

shows the efficacy of the scheme. The Equations considered showed that the technique is ef-

fective for solving coupled nonlinear partial differential equation as the obtained results agrees

with those in the highlighted references. Also, figures 1, 2, 3 and 4 show the graph of the prob-

lems considered at different initial conditions in order to give detail explanation on the behavior

and shape of the coupled equations considered at any particular time which can be of interest to

the engineers in case of control analysis and other physical problems. The small computational

size which is also not affected by discretisation error will hence make the Aboodh reduced

differential method a suitable and applicable scheme for other nonlinear evolution equation.

7. CONCLUSION

In this work, the ABRDTM has been used to obtain solutions of the Hirota-Satsuma coupled

mKdV and KdV equations with two different initial conditions. Consequently, for Equations (1)

and(2),the results computed have been presented in tabular form. Tables 1,2,3 and 4 compare the

ABRDTM and analytical values for the initial conditions considered. It is expedient to say that

the result gotten agreed with the closed form solutions [4]. However, the ABRDTM has an edge

over the Differential Transform Method(DTM) [15] in terms of easier computability. Hence,

the ABRDTM has many advantages and it is a strong tool for solving systems of nonlinear

partial diferential equations with broad applications in physics and engineering fields.
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