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Abstract. In this work, we analyze the effective control of Lassa fever in a given population by formulating and

analyzing a nonlinear optimal control problem. We extend an existing deterministic mathematical model to include

four control variables namely educational campaign, condom usage, treatment care, and reduction of rodents.

Using Pontryagin’s maximal principle, we established the necessary conditions for the existence of optimal control.

We use the fourth-order Runge Kutta forward-backward sweep approach to simulate the optimality system in order

to demonstrate the impact of various combinations of controls on the spread of Lassa fever. A cost-effectiveness

study is carried out to inform the public about the best cost-effective technique among several control combinations.

The results suggest that, of all the combinations considered in this study, the combination of preventative tactics

through educational campaigns and rodent reduction in the environment is the most cost-effective.
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1. INTRODUCTION

Lassa fever (LF) is an acute and viral hemorrhagic fever. It is a zoonotic disease that is

caused by the Lassa virus (LASV), a single-stranded RNA virus [1] that is borne by a mouse

species called Mastomys natalensis. This rodent species serves as a primary vector for the

transmission of the LASV [2] to humans. LASV is transmitted majorly via direct contact with

infected rodents. Direct contact with the Mastomys rodent represents about 90 -95 percent of

the modes of transmission of the LASV in the endemic regions. Secondary infection can be

transmitted through contact with the blood, body fluids, contaminated medical equipment, skin

breaks, mucous membranes, and aerosols of the infected rodents and humans [3] of all age

groups [4]. Studies also reveal a seasonal drift of the infection patterns of LASV. The highest

peak of infection is recorded during the dry seasons of the sub-Saharan West African countries

(between December and April annually) and gradual steep during the wet seasons (between May

and June annually). This is as a result of the reproductive seasons of the Mastomys rodents

being in the wet season [5]. LF is known to be a major endemic disease in the sub-Saharan

region of West Africa [6]. In this region, it has risen to become a major serious public health

challenge. In recent times, there has been a rise in the number of emergencies involving LF

and a 70 percent increase in fatality cases when not diagnosed and treated early in this region

[5]. There has also been an increase in the spread of the virus across the non-endemic regions

and countries of the world due to international travel. This points out an urgent need to seek

better approaches to detect, diagnose, report and the treatment of Lassa fever illness and as well

as train healthcare providers on how to control the spread and clinical manifestations of LASV

[7]. The control of LF in the endemic region is a major problem as its clinical symptoms are

similar to the symptoms of malaria. It is misdiagnosed as malaria, typhoid fever, and other

febrile diseases that are common in the tropical region of Africa. Ribavirin is the only accepted

antiviral treatment that is effective and employed in the treatment of Lassa Fever at the early

stage of the viral infection [8]. This treatment is not 100 percent effective and efficient for the

treatment of LASV and from review studies conducted, results prove that there is currently no

vaccine for the prevention control of Lassa fever [9]. Alternatively, other methods of control are

evaluated to curtail and reduce the spread of the disease most especially in the endemic region.
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The other measures of control include maintenance of environmental hygiene and healthy living

practices to control rodents and human contact around dwelling places [7], avoidance of rat

consumption, timely detection and diagnosis of LF at primary health facilities [10]. The early

symptoms of LF are initially treated as malaria signs and symptoms of other febrile diseases.

Many studies have been carried out to broaden the knowledge about the spread and control of

many diseases (see [11, 12, 13, 14, 15, 16, 17, 18, 19, 20] for examples), particularly some

studies on the effect of control strategies on the spread of Lassa fever have been presented. A

few of these studies are discussed as follows. In [21], the authors considered the dynamics of

Lassa fever in Nigeria by developing a mathematical model formulation solved numerically by

using the fifth-order Runge-Kutta method. The findings suggest that reduction in rodent sizes

and transmission between rodent-to-human will greatly improve the population control action

of Lassa fever. There have been several approaches to finding an optimal control for the dynam-

ics of Lassa fever in Sub-Saharan Africa. In [22], the authors considered four different controls:

pesticide fumigation, condom use to prevent human-to-human transmission during sexual ac-

tivities, early treatment, and the use of indoor residual sprays. It was observed in their results

that the fumigation of the environment does not have any effect on the exposed and infected

humans but the exposed and infected rodents. The use of condoms helped reduce secondary

transmission from humans to humans but does not affect the infected rodents. Early treatment

control strategies have a greater impact on reducing the population of infected humans. In-

door sprays have no side effects on humans but control the number of infected rodents. The

authors of [23] conducted a four-year field experiment in rural Upper Guinea and constructed

a model to investigate the region’s varied control techniques. Rodent immunization, annual

density control, and continuous density control were all investigated. They conclude that the

annual density control might not be effective in reducing the Lassa virus spillover to humans

as the rodent recovered quickly after rodenticides application. However, continuous density

and rodent vaccination could lead to Lassa virus elimination. The authors of [24] considered

the dynamical system analysis and optimal control strategies of the Lassa virus disease. They

explored controls like external protection, isolation, treatment, and rodent control. A different

model was developed based on these control parameters to understand the influence of each
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control strategy. Their model revealed that the most effective control measure is to combine all

control techniques for the reduction of Lassa fever spread. Nevertheless, despite all these con-

trol measures, the spread of Lassa fever has not diminished in any form, and because of the lack

of a potent vaccine. We continue to battle this disease and seek other best optimal strategies to

reduce this Lassa fever infection. Because present control methods are limited, we will inves-

tigate the following control strategies: disease education and information, sanitation, safe food

storage and preparation, clean water availability, and treatment for Lassa fever patients. This

study is arranged as follows: in section 2, we offer the mathematical formulation of the non-

optimal control model. The optimal control problem and its analysis are discussed in detail in

section 3, where we go through all of the necessary factors and criteria for optimality. In section

4, numerical simulations and discussion of optimal control mechanisms with cost-effectiveness

analysis are presented, while section 5 presents the conclusion and recommendations.

2. LASSA FEVER MODEL WITHOUT OPTIMAL CONTROL

Lassa fever model without optimal control is provided in this section. We note that in [21],

the authors developed and critically analyzed a six compartmental model to study the effect of

control variables on the control of Lassa fever in Nigeria. The population is stratified into the

human population of susceptible, exposed, infectious, and recovered individuals, and also the

rodent population of susceptible and infectious rodents. Consequently, the non-optimal control

model as described in [21] is given below

dSh

dt
= Λh + τhRh−β1Sh−µhSh

dEh

dt
= β1Sh− (σh +µh)Eh

dIh

dt
= σhEh− (φh +µh +δh)Ih

dRh

dt
= φhIh− (µh + τh)Rh(1)

dSr

dt
= Λr−β2Sr−µrSr

dIr

dt
= β2Sr−µrIr
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with the following initial conditions: Sh(0) > 0, Eh(0) ≥ 0, Ih(0) ≥ 0, Rh ≥ 0, Sr(0) > 0,

Ir(0) ≥ 0. The description of model variables and parameters are given in Table 1 of [21]. In

addition, the parameter values are tabulated in Table 2 of [21]. It is imperative to mention that

the non-optimal control model (1) analysis is presented in [21], thus we extend this model to

include the optimal control problem in the next section.

3. OPTIMAL CONTROL MODEL

In this section, we employ the Pontryagin’s Maximum Principle to determine the necessary

conditions for the optimal control of Lassa fever in the population. To achieve this, we modify

the model (1) by incorporating the time-dependent control functions u1, u2, u3, and u4. The

control function u1 represents the preventive strategies towards the prevention of transmission

of infection from rodents to humans. These strategies include personal hygiene, environmental

fumigation, and are achieved through an educational campaign. The control function u2 repre-

sents condom usage which is aimed at reducing the secondary transmission of the infection from

human to human. We assume the treatment rate φh presented in model (1) to be time-dependent

represented as u3, while u4 denotes the control function targeted at reducing the rodent popula-

tion, such as the use of rodents trap. Consequently, the optimal control Lassa fever model with

the four time-dependent functions is given below

dSh

dt
= Λh + τhRh− (1−u1)

βrShIr

Nh
− (1−u2)

βhShIh

Nh
−µhSh

dEh

dt
= (1−u1)

βrShIr

Nh
+(1−u2)

βhShIh

Nh
− (σh +µh)Eh

dIh

dt
= σhEh− (u3 +µh +δh)Ih

dRh

dt
= u3Ih− (µh + τh)Rh(2)

dSr

dt
= Λr−

βrSrIr

Nr
− (µr +u4)Sr

dIr

dt
=

βrSrIr

Nr
− (µr +u4)Ir

The purpose of implementing optimal control functions is to decrease the spread of Lassa fever

in the community by reducing the number of exposed humans, infected humans, and rodent
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populations while keeping costs down. To accomplish this, we define the objective functional

(also known as the cost functional) as

J(ui) =
∫ T

0

(
m1Eh +m2Ih +m3Nr +

1
2

4

∑
i=1

kiu2
i (t)

)
dt(3)

where T is the final time for control implementation, in the sense that t ∈ [0,T ]. The balancing

positive weight constants are represented by m1,m2,m3, and ki for (i = 1, . . . ,4), while kiu2
i

2 rep-

resents the total cost associated with the controls ui for i = 1, . . . ,4. The cost control functions

take a quadratic form, such that k1u2
1

2 represents the cost control function for preventive strategies

by educational campaign, and k2u2
2

2 represents the cost control function for condom usage. Also,

the cost control functions associated with treatment and rodents reduction are given as k3u2
3

2 , and
k4u2

4
2 respectively. Thus, the quadruplet optimal control u∗ = (u∗1,u

∗
2,u
∗
3,u
∗
4) is sought such that

J(u∗) = min{J(u1,u2,u3,u4) : u1,u2,u3,u4 ∈U }(4)

where U is the non-empty control set given as U =

{(u1,u2,u3,u4) : 0≤ u1,u2,u3,u4 ≤ 1, t ∈ [0,T ]}. Following the existence results by [25], the

quadruplet optimal control u∗ = (u∗1,u
∗
2,u
∗
3,u
∗
4) exists.

3.1. Control characterization. The Pontryagin’s Maximum Principle [26] gives the neces-

sary conditions for which the quadruple optimal control u∗ = (u∗1,u
∗
2,u
∗
3,u
∗
4) exists. The Pon-

tryagin’s Maximum Principle transforms the control minimization problem (4) subject to the

optimal control system (2) into a problem of minimizing point-wise Hamiltonian. As a result,

the Hamiltonian equation denoted by H is given by

H (t,y,u,λ ) = m1Eh +m2Ih +m3Nr +
1
2

4

∑
i=1

kiu2
i (t)+

6

∑
i=1

λiAi(5)

where λi for i = 1, . . . ,6 are the adjoint functions associated with the state variables of the

optimal control model in (2), while Ai for i = 1, ...,6 is the right-hand side of the differential

equations of the state variables in system (2). The expanded form of the Hamiltonian function
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is given by

H (t,y,u,λ ) = m1Eh +m2Ih +m3Nr +
1
2
(
k1u2

1 + k2u2
2 + k3u2

3 + k4u2
4
)

+ λ1

[
Λh + τhRh− (1−u1)

βrShIr

Nh
− (1−u2)

βhShIh

Nh
−µhSh

]
+ λ2

[
(1−u1)

βrShIr

Nh
+(1−u2)

βhShIh

Nh
− (σh +µh)Eh

]
+ λ3 [σhEh− (u3 +µh +δh)Ih]

+ λ4 [u3Ih− (µh + τh)Rh](6)

+ λ5

[
Λr−

βrSrIr

Nr
− (µr +u4)Sr

]
+ λ6

[
βrSrIr

Nr
− (µr +u4)Ir

]

Following the method in [25, 27], we claim the characterization result in the following theorem.

Theorem 1. Given a quadruplet optimal control u∗ = (u∗1,u
∗
2,u
∗
3,u
∗
4) that minimizes the objec-

tive functional (3) over the non-empty control set U subject to the state system (2), then there

exist an adjoint functions λ1(t),λ2(t), ...,λ6(t) which satisfy the adjoint system

dλ1

dt
= λ1µh +(λ1−λ2)

(
1− Sh

Nh

)[
(1−u1)βrIr

Nh
+

(1−u2)βhIh

Nh

]
dλ2

dt
= −m1−λ3σh +λ2(σh +µh)+(λ2−λ1) [(1−u1)βrIr +(1−u2)βhIh]

Sh

N2
h

dλ3

dt
= −m2−λ4u3 +λ3(δh +µh +u3)+(λ2−λ1) [(1−u1)βrIr +(1−u2)βhIh]

Sh

N2
h

− (λ2−λ1)(1−u2)
Shβh

Nh

dλ4

dt
= −λ1τh +λ4(µh + τh)+(λ2−λ1) [(1−u1)βrIr +(1−u2)βhIh]

Sh

N2
h

(7)

dλ5

dt
= −m3 +λ5(µr +u4)+(λ5−λ6)

βrIr

Nr

(
1− Sr

Nr

)
dλ6

dt
= −m3 +λ6(µr +u4)+(λ1−λ2)(1−u1)

βrSh

Nh
+(λ5−λ6)

βrSr

Nr

(
1− Ir

Nr

)
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with transversality conditions λi(T ) = 0, for all i = 1,2, ...,6. Furthermore, the optimal control

quadruple
(
u∗1,u

∗
2,u
∗
3,u
∗
4
)

is characterized by

u∗1 = min
{

1,max
{

0,
βrShIr(λ2−λ1)

k1Nh

}}

u∗2 = min
{

1,max
{

0,
βhShIh(λ2−λ1)

k2Nh

}}

u∗3 = min
{

1,max
{

0,
Ih(λ3−λ4)

k3

}}
(8)

u∗4 = min
{

1,max
{

0,
Srλ5 + Irλ6

k4

}}
Proof. The result from [25] is used in showing the necessary conditions for the existence of the

optimal control problem. Consequently, there exist the adjoint system (7) obtained by comput-

ing the partial derivatives of system (6) with its state variables, satisfying

dλ1

dt
=−∂H

∂Sh
,

dλ2

dt
=−∂H

∂Eh
,

dλ3

dt
=−∂H

∂ Ih
,

dλ4

dt
=−∂H

∂Rh
,

dλ5

dt
=−∂H

∂Sr
,

dλ6

dt
=−∂H

∂ Ir

with the terminal conditions λi(T ) = 0, for all i = 1,2, ...,6. Additionally, the optimal control

characterization (8) are obtained by solving the equation

∂H

∂ui
= 0, i = 1,2, ...,4

for the quadruplet optimal control u∗ = (u∗1,u
∗
2,u
∗
3,u
∗
4). Thus, the characterization u∗ is obtained

by using the standard argument involving control bounds as follows

u∗i =


0 i f ∆∗i ≤ 0

∆∗i i f 0≤ ∆∗i ≤ 1

1 i f ∆∗i ≥ 1

(9)
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for i = 1,2,3,4 and ∆i are given below

∆
∗
1 =

βrShIr(λ2−λ1)

k1Nh

∆
∗
2 =

βhShIh(λ2−λ1)

k2Nh

∆
∗
3 =

Ih(λ3−λ4)

k3

∆
∗
4 =

Srλ5 + Irλ6

k4

This completes the proof. �

4. NUMERICAL SIMULATIONS AND COST-EFFECTIVENESS ANALYSIS

We numerically solve the optimal control problem to illustrate the effect of control strategies

on the dynamics of Lassa fever in the population. We further investigate the most cost-effective

strategy among all the alternative control strategies.

4.1. Numerical simulations of optimal control. Here we implement using Matlab, the

Runge-Kutta forward-backward sweep method to simulate the effects of eight different opti-

mal control strategies on the total infected human and rodent population. The eight different

control strategies that are applied for the numerical simulations of the optimal control problem

(2) are described as follows.

(i) Strategy A: the optimal use of educational campaign only (u1 6= 0, u2 = u3 = u4 = 0)

(ii) Strategy B: optimal condom usage (u2 6= 0, u1 = u3 = u4 = 0)

(iii) Strategy C: the optimal use of treatment only (u3 6= 0, u1 = u2 = u4 = 0)

(iv) Strategy D: optimal use of rodents reduction only (u4 6= 0, u1 = u2 = u3 = 0)

(v) Strategy E: the optimal use of educational campaign and rodents reduction only (u1 6=

0,u4 6= 0, u2 = u3 = 0)

(vi) Strategy F: optimal condom usage and rodents reduction only (u2 6= 0,u4 6= 0, u1 = u3 = 0)

(vii) Strategy G: the optimal use of treatment and rodents reduction only (u3 6= 0,u4 6= 0, u1 =

u2 = 0)

(viii) Strategy H: the optimal use of all the control strategies (u1 6= 0,u2 6= 0, u3 6= 0,u4 6= 0)
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We note that the initial conditions and parameter values used are adopted from [21]. For sim-

ulation purposes, we assume the weight constants in the objective functions to be equal such

that m1 = m2 = m3 = 1, while the weight constants associated with the total costs of control

implementation are assumed to be unequal. Consequently, the weight constants are assumed

to be k1 = k2 = k4 = 50, while the weight constant k3 = 100 based on the assumption that the

weight constant for measuring the total cost to apply treatment is greater than other controls.

Unless otherwise stated, the control intervention is simulated for 60 weeks.

4.1.1. Strategy A: the optimal use of educational campaign u1 only. In Figure 1, we present

the effects of the optimal control of educational campaign u1 only on the total infected human

and rodent population. We see a drastic reduction in the size of the total infected human popu-

lation in the presence of optimal control when compared to the case with no control in Figure

1(a). We expect to see this dynamic since the educational campaign is aimed at educating the

populace on how to utilize preventive strategies such as personal hygiene, and environmental

cleanliness among many other measures. These preventive strategies have been shown to reduce

the transmission probabilities of the Lassa virus from infectious rodents to humans. However,

as seen in Figure 1(b) the control Strategy A does not have any effect on the total rodent pop-

ulation since this strategy does not impact the reduction of rodents in the environment. The

control profile of Strategy A is depicted in Figure 1(c). The result demonstrates that the ideal

educational campaign use is kept at the upper bound 100% for 57 weeks of intervention before

declining to the lower bounds.
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Figure 1: Simulations of the effects of Strategy A optimal control on (a) size of infected human (Eh+Ih);

(b) rodent population (Nr); and (c) control profile.

4.1.2. Strategy B: optimal condom usage u2 only. In Figure 2, we illustrate the effects of

Strategy B (optimal condom usage) only on the total infected human and rodent population.

We see in Figure 2(a) that the size of the total infected human population decreases largely in

the presence of the optimal use of a condom when compared to the scenario without a control

measure. However, this control strategy does not have any impact on the reduction of the total

rodent population as shown in Figure 2(b). In Figure 2(c), the control profile of the optimal

condom usage u2 only shows that the optimal control of the strategy must be maintained at the

maximum bound till the control intervention period reaches its end.
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Figure 2: Simulations of the effects of Strategy B optimal control on (a) size of infected human (Eh+Ih);

(b) rodent population (Nr); and (c) control profile.

4.1.3. Strategy C: the optimal use of treatment u3 only. In Figure 3, we simulate the effect

of the optimal treatment control u3 on the entire infected human and rodent population. Figure

3(a) shows the effect of this control strategy on the overall infected human population, which

is comparable to Figure 1(a). The optimal use of treatment of the infected individuals reduces

the burden of Lassa fever in the population due to the higher total Lassa fever infection averted

in the population. We note that the optimal use of Strategy C does not have any impact on the

total rodent population as shown in Figure 3(b). The control profile of Strategy C is presented

in Figure 3(c). For the first four weeks, the optimal treatment usage is increased to the upper
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bound and thus kept at the upper limit 100% for 45 weeks of treatment intervention before

reducing to the lower bound at the end of the intervention.
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Figure 3: Simulations of the effects of Strategy C optimal control on (a) size of infected human (Eh+Ih);

(b) rodent population (Nr); and (c) control profile.

4.1.4. Strategy D: optimal use of rodents reduction u4 only. In Figure 4, we illustrate the

total infected human population and entire rodent population under the effect of the optimal

control Strategy D. We see in Figure 4(a) that the optimal reduction of rodents reduces the size

of the entire infected human population when compared with the case without optimal control

measure. Furthermore, the presence of Strategy D leads to a reduction in the rodent population

as depicted in Figure 4(b). This result can be used to inform the public about the importance of
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reducing the primary host of Lassa virus in the population as mentioned in [23, 21]. In Figure

4(c), the control profile for the optimal control of treatment usage is maintained at the local

maximum for 9 weeks of intervention before declining to the local minimum at the end of the

intervention period.
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Figure 4: Simulations of the effects of Strategy D optimal control on (a) size of infected human (Eh+Ih);

(b) rodent population (Nr); and (c) control profile.
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4.1.5. Strategy E: the optimal use of educational campaign u1, and rodents reduction u4 only.

The combined effect of educational campaign u1 and rodent control u4 (described as Strategy E)

on the entire infected human and rodent population is depicted in Figure 5. In Figure 5(a) and

Figure 5(b), we see that throughout the intervention period the total infected human and rodent

population sizes are decreased magnificently when compared to the scenario with no control

strategy. The optimal control of Strategy E portrayed in Figure 5(c) shows that optimal control

of u1 is at the upper bound for nine weeks before declining to the lower bound. Similarly, the

optimal use of rodent control u4 is maintained at the maximum peak for eleven weeks before

declining to the lower bound at the end of the sixty weeks intervention period.
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Figure 5: Simulations of the effects of Strategy E optimal control on (a) size of infected human (Eh+Ih);

(b) rodent population (Nr); and (c) control profile.
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4.1.6. Strategy F: optimal condom usage u2, and rodents reduction u4 only. In Figure 6, we

illustrate the effects of Strategy F (combination of condom usage u2 and rodent reduction u4)

on the entire infected human and rodent population. The result observed here is similar to the

one depicted in Figure 5(a) and Figure 5(b). The respective control profile of the two combined

strategies is depicted in Figure 6(c). The optimal condom usage is maintained at the upper

bound for fifty-eight weeks, while the optimal use of rodent control is sustained for just eight

weeks before declining to the lower bound at the end of the intervention period.
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Figure 6: Simulations of the effects of Strategy F optimal control on (a) size of infected human (Eh+Ih);

(b) rodent population (Nr); and (c) control profile.
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4.1.7. Strategy G: the optimal use of treatment u3, and rodents reduction u4 only. In Figure

7, we show the effects of the optimal control of treatment care u3 and rodent control u4 on the

entire infected human and rodent population. We see a huge decrease in the size of the total

infected human and total rodent population in the presence of optimal control when compared

to the case with no control in Figure 7(a) and Figure 7(b) respectively. The respective control

profile of the two combined strategies is depicted in Figure 7(c). For the first five weeks, the

optimal treatment usage is increased to the higher bound of 82% and thus decreases to the lower

bound throughout the intervention, while the optimal control of rodent reduction is maintained

at upper bound 100% for nine weeks before decreasing to the lower bound at the end of the

control intervention period.

4.1.8. Strategy H: the optimal use of educational campaign u1, condom usage u2, treatment

u3, and rodents reduction u4. Figure 8 shows the dynamic of the total infected human and total

rodent population on the effect of the combination of all control strategies considered in this

study. Figure 8(a) and Figure 8(b) show that the total infected human population and the total

rodent population reduce enormously when all the controls are applied compared to the scenario

without control. The control profile Strategy H (combination of all strategies) is depicted in

Figure 8(c). We see that the optimal use of educational campaign and rodent control are at the

maximum peak for five weeks and eight weeks respectively, while the optimal condom usage

and treatment care are at an average bound of 40% and 58% respectively before decreasing

to the lower bound throughout the intervention period. We considered 55 weeks of control

intervention for this strategy because of the simulation processing time.
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Figure 7: Simulations of the effects of Strategy G optimal control on (a) size of infected human (Eh+Ih);

(b) rodent population (Nr); and (c) control profile.
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Figure 8: Simulations of the effects of Strategy H optimal control on (a) size of infected human (Eh+Ih);

(b) rodent population (Nr); and (c) control profile.

Overall, the result of the numerical simulations shows that the optimal use of different control

strategies has a positive impact in reducing the total human infected population. Particularly,

from Figure 4 through Figure 8, we deduce that to effectively reduce the incidence of Lassa

fever in the population, both the total infected human and total rodent population must be re-

duced through the implementation of at least combined control strategies that includes rodent

reduction u4 and any other alternative control strategies considered in this study. Thus, the next

section will focus on the cost-effectiveness analysis of at least a combination of two different

strategies.
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4.2. Cost-effectiveness analysis. Here, we undertake a cost-effectiveness analysis to deter-

mine the most efficient optimal control strategy with minimal cost, among different combina-

tions of controls. It must be noted that we consider a combination of at least two different

control strategies such that all combination includes the control of rodents in the population.

These strategies are as given in Strategy E to Strategy H, such that 41 is the combination of

educational campaign and rodent control (u1,u4),42 is the combination of condom usage and

rodent control (u2,u4),43 is the combination of treatment care and rodent control (u3,u4), and

44 is the combination of all the control strategies (u1,u2,u3,u4). We use the incremental cost-

effectiveness ratio (ICER) as presented in [28, 29]. The incremental cost-effectiveness ratio

method is used in comparing the difference between multiple contending strategies in relation

to their health benefits and costs of implementation. This is calculated by

ICER =
Difference in total costs between control strategies

Difference in total infection averted by control strategies
(10)

The total infection averted and the respective total cost for the selected intervention strategies

are tabulated in Table 1.

Strategies Total Infection Averted Total Cost

41: u1,u4 10,769,790 7,314

42: u2,u4 11,064,220 28,314

43: u3,u4 11,308,195 15,563

44: u1,u2,u3,u4 11,350,229 12,431

Table 1: Total infection averted and total cost for the selected intervention strategies

To obtain the most cost-effective strategy among the controls, we present the total Lassa fever

infection averted, total cost, and ICER in the increasing order of the total infection averted in

Table 2. The calculation of the ICER is given below.
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Strategies Total Infection Averted Total Cost ICER

41: u1,u4 10,769,790 7,314 0.00068

42: u2,u4 11,064,220 28,314 0.07132

43: u3,u4 11,308,195 15,563 -0.05226

44: u1,u2,u3,u4 11,350,229 12,431 -0.07451

Table 2: ICER in the increasing order of Lassa fever averted by selected strategies

ICER(41) =
7314

10769790
= 0.00068

ICER(42) =
28314−7314

11064220−10769790
= 0.07132

ICER(43) =
15563−28314

11308195−11064220
=−0.05226

ICER(44) =
12431−15563

11350229−11308195
=−0.07451

From Table 2, we compare Strategy 41 and Strategy 42. It is observed that the ICER(42)

is greater than the ICER(41). This means that Strategy 41 is strongly dominated by Strategy

42, this infers that Strategy 42 is more costly to implement than Strategy 41. Thus, we will

remove the costliest Strategy such that the remaining competing strategies are given in Table 3,

and the calculation of the respective ICER is shown below.

Strategies Total Infection Averted Total Cost ICER

41: u1,u4 10,769,790 7,314 0.00068

43: u3,u4 11,308,195 15,563 0.01532

44: u1,u2,u3,u4 11,350,229 12,431 -0.07451

Table 3: ICER in the increasing order of Lassa fever averted by selected strategies
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ICER(41) =
7314

10769790
= 0.00068

ICER(43) =
15563−7314

11308195−10769790
= 0.01532

ICER(44) =
12431−15563

11350229−11308195
=−0.07451

Using Table 3, we compare Strategy 41 and Strategy 43. The incremental cost-effectiveness

ratio of Strategy 43 is greater than that of Strategy 41. This result implies that Strategy 43

strongly dominates Strategy 41, which indicates that Strategy 41 is less costly to implement

than Strategy 43. Consequently, we eliminate Strategy 43 to further examine the most cost-

effectiveness among the alternative strategies. Thus the total infection averted, total cost, and

ICER of the remaining control strategies41 and44 are presented in Table 4, and the calculation

of the respective ICER is shown below.

Strategies Total Infection Averted Total Cost ICER

41: u1,u4 10,769,790 7,314 0.00068

44: u1,u2,u3,u4 11,350,229 12,431 0.00882

Table 4: ICER in the increasing order of Lassa fever averted by selected strategies

ICER(41) =
7314

10769790
= 0.00068

ICER(44) =
12431−7314

11350229−10769790
= 0.00882

By comparing Strategy41 and Strategy44, we observed a cost-saving of 0.00882 for Strategy

44 over Strategy 41. The higher ICER obtained from Strategy 44 indicates that this strategy

dominates Strategy41, which means that Strategy41 is less costly when compared to Strategy

44. Thus, the most cost-effective strategy among all combinations of control considered in this

study is Strategy 41, which is the optimal control combination of an educational campaign

about preventive measures u1, and rodents control u4.
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5. CONCLUSION

To investigate the effective control measure of Lassa fever, we integrated four-time depen-

dent control variables into an existing deterministic mathematical model: educational campaign,

condom usage, treatment care, and rodent reduction. Using the well-known Pontryagin’s max-

imal principle method, the optimum solutions to the optimal control problem and their char-

acterization were found. We model the impacts of eight different combinations of controls on

the total number of infected individuals and the total number of rodents to evaluate the impact

of optimal control measures on the spread and control of Lassa fever in the populace. When

compared to the scenario with no control strategy, the results reveal that each of the control

strategies is effective in reducing the overall number of infected humans. As a result, we use the

ICER to determine the most cost-effective optimal control approach among the four selected

combinations of controls. Among the four combined techniques studied in this study, the com-

bination of preventative strategies through educational campaigns and rodent reduction in the

environment was shown to be the most efficient and cost-effective. As a result of the findings

of this study, it is recommended that the most cost-effective optimal control method be used to

reduce the community’s risk of Lassa fever.
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