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Abstract. The existence of a solution in Banach algebras for a fractional order nonlinear quadratic differential
equation with initial value condition is investigated in this paper. Furthermore, we demonstrate that the solutions
to this equation are appealing locally. The primary conclusion is established using basic hybrid fixed point theory
methods for three operators. Under certain monotonicity criteria, existence theorems for extremal solutions can
also be established. Finally, we provide a specific example to demonstrate our findings.
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1. INTRODUCTION

Fractional differential equations (FDEs) appear in a variety of scientific and engineering
disciplines because the mathematical analysis of systems and processes in the fields of physics,
aerodynamics of complex media, and others requires fractional order derivatives of the order
[1,5,9]. Many writers have recently examined fractional Order differential equations (FODE)

from two perspectives: the theoretical characteristics of solution existence and uniqueness, and
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the analytic and numerical methods for solving them. FDEs are very useful for describing the
hereditary features of different materials and processes. As a result, the subject of fractional
differential equations is becoming increasingly popular. See 3,7, 10] and the references therein
for some recent developments on the subject. In the area of nonlinear analysis and associated
applications, fractional order nonlinear differential equations play an essential role. Dealing
with nonlinear differential equations can be done in a variety of ways.

Fixed point theory is a crucial aspect of nonlinear analysis. For the existence of a solution to
a fractional order nonlinear differential equation, I employed the fixed point approach. This
approach has been demonstrated to handle a wide range of nonlinear problems successfully,
quickly, and precisely. Several fixed point theorems are now used in nonlinear differential and
integral equations applications. The fixed point theorem is chosen based on the data that is

provided. With the given initial conditions, we investigate the FNQDE.

x(t) x(t)

P [f(t,x(t>,x(5(t)))} A [f(r,x<r>,x<6<r>>>

} = g(t,x(t),x(8(1))),t € R
(2) x(tp) = x0,x(8(t)) =z0 € R

3) f(to,x(to),x(S(to))) = f(lo,)Co,Z()) e R.

forA>0cR,ac(0,1)
Where, ¢: Ry xRxR —R—{0}and y: Ry xR x R — R are continuous functions.
By a solution of Fractional Order Nonlinear Quadratic Differential Equation (1) we mean a
function x € ¥ (R4, R) such that:
. . x(t) . .
(i) The function t — [ ORI (z)))} is continuous for each x € R.

(ii)x satisfies (1),(2) and (3)

2. PRELIMINARIES

We provide definitions, notation, hypothesis, and preliminary tools in this area, which will be

utilised in the next section.
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Let X = ¢ (R4, R) be the space of continuous real valued function on R and Q be a subset
of X. Let a mapping A: X — X be an operator and consider the following operator equation in

X, namely,

4) x(t) = (Ax)(t), Vi e Ry

Below we give some different characterization of the solutions for operator equation(4) on R .
We need the following definitions.

Definition 2.1. [4] We say that solution of the equation (4) are locally attractive if there exists

a closed ball B,(0) in the space @74 (R;,R) and for some real number r > 0 such that for
arbitrary solution x = x(¢) and y = y(¢) of equation (4) belonging to B,(0) N Q we have that
limy o0 (x(2) — y(¢)) = 0.

Definition 2.2.[2] Let X be a Banach space. A mapping A : X — X is called Lipschitz if there
is a constant & > 0 such that, ||[Ax — Ay|| < a|x —y|| for all x,y € X. If a < 1, then A is called
a contraction on X with the contraction constant .

Definition 2.3.[8] An operator Q on a Banach space X into itself is called compact if for any
bounded subset S of X, Q(S) is relatively compact subset of X. If Q is continuous and compact,
then it is called completely continuous on X.

Definition 2.4.]2](Dugunji and Granas) Let X be a Banach space with the norm || - || and let
Q : X — X, be an operator (in general nonlinear). Then Q is called

i. Compact if Q(X) is relatively compact subset of X.

ii. Totally compact if QQ(S) is totally bounded subset of X for any bounded subset S of X.

ii1. Completely continuous if it is continuous and totally bounded operator on X.

It is clear that every compact operator is totally bounded but the converse need not be true. We
recall the basic definitions of fractional calculus which are useful in what follows.

Definition 2.5.[1] The Riemann - Liouville fractional derivative of order ¢ > 0,n—1 < a <

n,n € .4 with lower limit zero for a function f is defined as

appy_ L d [ f(s)
Df(t)_ma/o (t—s)“ds >0
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Such that D™%f (1) = I%f(t) = ﬁ I %ds respectively.
Definition 2.6. [9] The Riemann-Liouville fractional integral of order £ > 0,n—1< & <n,n €

A with lower limit zero for a function f is defined by the formula:

Iéf(t)zr(lg)/ot Jis ds, t>0

b

where I'(§) denote the Euler gamma function. The Riemann-Liouville fractional derivative
operator of order & defined by D* = % = %OI 1-£,
Theorem 2.7.2] (A rzela-Ascoli Theorem) If every uniformly bounded and equicontinuous se-

quence { f, } of functions in % (R, ,R), then it has a convergent subsequence.

Theorem 2.8.[2] A metric space X is compact iff every sequence in X has a convergent subse-
quence.
We employ a new hybrid fixed pint theorem proved by Dhage [2] which is the main tool in the
existence theorem of solutions of FNQDE.
Theorem 2.9.[2] : Let S be a non-empty, bounded and closed-convex subset of the Banach space
Xandlet A: X — X and B : § — X are two operators satisfying:
a) A is Lipschitz with a lipschitz constant &
b) B is completely continuous, and
c) AxBx € S for all x € S, and
d) aM < 1 where M = ||B(S)|| : sup {||Bx|| : x € S}.Then the operator equation AxBx = x has a
solution in S.
Existence Theory:
We seek the solution of (4) in the space € (R, R,R) of continuous and real-valued function
defined on R.. Define a standard norm || - || and a multiplication ”-” in ¢’ (R4, R) by,

Il = sup { ()] : 1 € R}, (xy) (1) = x(e)y(2), € R
Clearly, ¢ (R ,R) becomes a Banach space with respect to the above norm and the multiplica-
tion in it.

Definition 2.10. [2] : A mapping g : R; x R X R — R is Caratheodory if:
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i)t — g(t,x,y) is measurable for each x,y € R and
ii) (x) — g(¢,x,y)is continuous almost everywhere forr € R .
Furthermore a Caratheodory function g is 2! -Caratheodory if:
iii) For each real number r > 0 there exists a function i, € £ (R, R) such that |g(z,x,y)| <
h(t) ae. t € R, forall x,y € R with |x|, < r,|y|, <r
Finally a caratheodory function g is .,2”3% -caratheodory if:
iv) There exists a function & € £ (R, R) such that |g(t,x,y)| < h(t), ae. t € R, for all
x,y € R.

For convenience, the function 4 is referred to as a bound function for g.

Lemma 2.11. Suppose that & € (0, 1) and the function f, g satisfying FNQDE (1 — 3). Then x

is the solution of the FNQDE (1 — 3) if and only if it is the solution of integral equation

w A ()
f(to,x0,20) L) Jiy fs5,x(5),x(8(s)))(r —s)1 =«

) x(t) = f(£,x(t),x(8(¢)))

forallt e Ry

Proof : Integrating equation (1 — 3) of fractional order o with respect to, we get,

36 x(1) ¢ x(1) TN
S8 | o) o) = 060
x(t) ! ¢ x(1) o ()x
[f(t,X(t>,x(5(t)))},o+M {fo,x(t),x(s(t)))] = 1%[g(t,x(2),x(5(1)))]
UM 1) BT O NS

Fx)x(30)  Flo(to) x(30)) T T(e) Sy F5.5(5),2(8(5)
- L / (s, x(s) x(8(5))) (1 — )% ds
x(to) At x(s)

— (t—s)%" Lds
I (to,x(t0) ,x(6(t0)))  T'(et) Jz f(S X(Sa (5(S)))
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Since x (fo) = x0,x(6(t0)) = zo € R and f (t0,x (1) ,x(6(t0))) = f (to,x0,20) € R

Conversely differentiate (5) of order o with respetive to, we get,

x (o) Aot x(s)

— _s a—1 s

oo 0 ]| o) T T [EEORCION R

T (5())) (L et
T(a) Ji, (t—s)!"¢

o x(t) :| — D { x(l‘o) :| ADE™ |: x(t) :|
L’(f x(1),x(8(1))) f(t0,x(10),x(8(10))) ! f(t,x(2),x(6(1)))

o x(t) _n_
® [f(lax(l)>x(5(f)))} - A{f(hx(f)ax(fs(l)))

oo [ x(1) (1) ] — (gl x(0),(8(1)))

f(t,X(t),X(fS(f)))} HL {f(EX(t)J((S(f)))
We need following hypothesis for existence the solution of FNQDE (1).
(74) The function f: Ry xR xR — R — {0} is continuous and bounded with bound F =
SUP (1 (1) x(8(1))) R xR xR |f (£,%(),x(6()))|. There exist a bounded function k : Ry — R with
bound || k|| satisfying:
| (2,x(2),x(8(2))) = f (2, 9(1),5(8(1)))| < K (1) max{[x(r) —y(r)[, |x(8(¢)) —y(8(z))]} forall x,y €
R
(765) The function g(f,x,y) = g : Ry x R x R — R is satisfying caratheodory condition with
continuous function A(z) : R4 — R such that g(7,x,y) < h(r) Vt € Ry and x,y € R
(743) The function f: Ry Xx R x R — R — {0} is satisfying caratheodory condition with con-
tinuous function P(¢) : R4 — R such that O < P(r),vte Ry andx e R

fex(1) x(8(1)))
(%ﬁ) The function u,v : Ry — R defined by the formulas u(t) = fo 1 ads and v(t) =

fo 1 zds is bounded on R and the functions P(#), u(r) andv(¢) vanish at mﬁnlty.
Remark 3.1: Note that the (.771) and (.77;) hold, then there exists a constant K, K, > 0 such

that K| = sup{ff(‘g)) = R+} and K, = sup{rv((fx)) = R+} forallt c Ry and P+K; +Kp =

K say.
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3. MAIN RESULT

In this part, we’ll look at the FNQDE (1). The preceding B.D. Karande [2] hybrid fixed point
theorem for three operators in Banach algebras X will be utilised to show the existence of the
solution for the following problem (1).

Theorem 3.1. Assume that conditions (7#1) — (%) hold. Further if FK < r and KK; < 1,
where K and K; is defined in remark (3.1). Then FNQDE (1) has a solution in the spacee
¢ (R4+,R), moreover solution of (1) are locally attractive on R .

Proof: By a solution of FNQDE (1) we mean a continuous function

X : Ry — R that satisfies FNQDE (1) on R.. Set X = %" (R4,R) and define a subset S of X as
S ={x e X ||x|]| <r}. Wherer satisfies the inequality, FK < r

Let X = % (R4,R) be a Banach Algebra of all continuous real-valued function on Ry with the

norm,
(©) ]l = sup |x(1)] € B

We shall obtain the solution of FNQDE (1) under some suitable conditions involved in (1) Now
the FNQDE (1) is equivalent to the FNQIE (5)
Let us define the two mappings A : X — X and B : § — X by,

(7 Ax(r) = f(t,x(1),x(8(1))),1 € Ry,

o xw) A sl e,

Bt) = o) xB0))  T(@) Jo P @G 4
[ 80 X0(0)
Do)y (—s)-c

®)
+

dS, te R+
Thus from the FNQDE (1) we obtain the operator equation as follows:
) x(t) = Ax(t)Bx(z),r € Ry

If the operator A and B satisfy all the hypothesis of theorem (2.9), then the operator equation

(9) has a solution on S.
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Step I: Firstly we show that A is Lipschitz on S. Let x,y € B,(0); then by (4#7),

[Ax(r) = Ay(0)] < | (2,x(1),x(8())) = f(2,¥(2),5(8(2)))]
< K1) |x(r) = y(1)]

< k(t)|x(r) —y(t)| forallt e Ry, x,y € S

Taking suprimum over ¢t we get, ||Ax — Ay|| <||x|||[x —y]|| for all x,y € S Thus, A is Lipchitz on
S with Lipschitz constant || k||

Step II: To show the operator B is completely continuous on X. Let {x,} be a sequence in S
converging to a point x. Then by lebesgue dominated convergence theorem for all r € R, we

obtain lim,_,.. Bx, (¢)

X (t0) A t Xn(S)

_ (t—s)* 'ds
i [ (to,xn (t0),x(6(20)))  T(@) Jig f(5,%n(s)),%u(6(s))
n—soo 1 fg(s,xn(S),xn(5(f)))
e, g
X(lo) A ! X(S) ! g(S,X(S),X((S(S)))dS

_ _ _ ool
= Tl B @ Lo oGy e e

=Bx(r),Vt e Ry

This shows that B is continuous on S.

Next we will prove that the set B(S) is uniformly bounded in S, for any x € S, we have,

X(l‘()) . A ' X(S) ([—S)ailds
oy | P05 (0) 5(800) T Jy Fox).5(30)
- L1 [ a9 5(8()
F(OC)/;O t— s)l—o‘
x(0) Aop ) ey,
S’f(ro, )00 (fo)))‘+‘ () Ju Foats) a3
+‘ L g(x(9).0030)
Mo) by (—s)-e
Aopl X e [l
R AT OO LR MRS vl M=

(
At P(s) 1 © h(s)
<Po gy J, e F@) Jy e
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Taking supremum over t, we obtain

Au(r)
I'a)

Therefore ||Bx|| < K, which shows that B is uniformly bounded on S. Now we will show

<P+Ki+K,=

K say.

that B(S) is equicontinuous set in X. Let #,f, € Ry with 1, > 11 and x € S, then we have

|IB3x(t2)—IBBx(t1)|
( x(IO) B A ! x(s) (I—S)aildsw
Fl0,x00) x(8(0)) (@) Sy 7(5:3(5),2(3(5)))
L gs,x(5),5(8(5))
Bl 8 ) A=
a ( X(t()) - A ! X(S) (t_s)oc—ldsw
| Fliox(0) x(30) (@) Jiy F5:3(5) 23 (5)))
L g(s,x(5),5(8(5))
\ Ty e P
A ! x(s) _ ol
o) sl (@) Jy Foaae)
Flio-x0) <)) Floxl <G| |2 )
T(E) Sy f(5(5),x(8(5))
L g(sx(),x(8()) , 1 [ gls,x(s),x(8(5))
+‘F(0‘)/ro g g | g
A [y — s tas— [Pl — )% as| +
—‘rwm S A S
% : h(s)(t2 — 5)® 'ds — t: h(s)(ty — )% ds

A
< —— P
F t. 1
(Ol) + 2([2—.5‘)“ lds—/l(ll
o o
e a—1 n a—1
th—s ds—/ H—s ds
el JRCSD C(0-9)
~ o)

1
—/ (t1 — )% 'ds
1o

Ot ldS

thl
+ / °(
(I
INa)

%) 1
/ (ty—s5)* ds — / (t1 —s)* ds
1) I

5)* lds — / 1 —s)% 'ds

1
(tz—s)“flds—/ (t — )% lds
o

15}
—i—/ (t —s5)* lds
3]
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([T —5)%7" (-7 ([T —5)%7" [(t—5)*1"])
< A P { - }m_{l—a }m %+HhH { —a }m_{l—a }m
Rl (-5 [ T(@ (11 —5)%]"
L " [ ]_a :|t1 ) L " [ ]—Ot :|ll )
(|-l - -0))|) [ |-l -2)% (2 —10)]
S M R CEALEN TRV Sov et S CEISLECRS L b
-+ |- [ -2 ()| |+ =10 —)% = (12— 12)?)]

<{ a1+ e U2~ 0)% = (=)0} 0
as 11 — 1, Vn € N. Implies B is equicontinuous. Therefore by Arzela Ascoli theorem that B is
completely continuous operator on s.
Step III: To show x = AxBy — x € §,Vy € S Let x € X and y € § such that x = AxBy By
assumptions (J4 , 56, 73)
(1)] = [ Ax(r)Bux(7)]

< || Ax(r)[[[Bx(7)]

x(to B Aot x(s)
[ (t0,x(t0) ,x(8(10)))  T'(§) Jug f(s,x(s

~—
=
~~
o2
)
~—
~—
~—

< |f (2, x(1),x(8(2)))]

L g(s.x(s).x(3(5)))
Y] A=
x(1) AR ey
F’f(IO>X(fo)X(5(fo)))’+‘ &) Jo o)y 4
. L g(s,x(s) X(3(5))
+'F(0‘)/to (EDIE
Aol k) ey 1[0 BE)
SF{P(’*F(&)/m R0 R s N I d}

Taking supremum over t, we obtain

<F {IP’O + F(/la) /tot G ?ﬁ;?am r(lé) /tot G _hg)lads}

SF{P()—F?IZ—SS—F;((?)} SF{]P)()—FKl—I—Kz}:FKSr
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Therefore ||x|| < FK <r.
That is we have, ||x|| = ||AxBx|| < r,Vx € S.
Hence assumption (c¢) of theorem (2.9) is proved.

Step IV: Also we have M = ||B(s)|| = sup{||Bx||

M) A sl e T
. ||[FT0) 5@ Ty )48
sup L g(s,x(8) x(5(5))
e, e |
x(0) AR e )
<sup{ sup ot S| |
<supq sup Lt g(sx(s),x(5(s)
*‘rm)/to (e J
. Aol x(s) e, Jals.x(s) X))
S,eﬂél{%r(a)/m O CO) N v "}

=5 {PO * r?a) / <r - Sza"” r<1a> / <r . (>)ld}

taking supremum over t, we obtain

(o) | (@)

< {Po+lu(t) v(t) }

<{Po+Ki+K} =K
and therefore MK = KK < 1.
Thus the condition (d) of theorem (2.9) is satisfied.
Hence all the conditions of theorem (2.9) are satisfied and therefore the operator equation
AxBx = x has a solution in. As a result, the FNQDE (1) has a solution defined on R .
Step V: Finally we have to show that the locally attractivity of the solution for FNQDE (1).
Let x and y be two solutions of FNQDE (1) in § defined on R.. Then we have

X)) At x) p oa-l
{VOxU)A3OD”{fWMWMMmD (@) o 7wy U~ 9)° ds]}
) ) 7(

+
st s — T o Teadsmmy () ds
_ Jto,y(f0),x(0(fo a) Jlo f(s,y(s)y(0(s
[ (t,y(1),y(8(1)))] ),
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x(to) A gt x(s) a—1
S N N L Ny (t —5)%ds
X ) s.x(s).x(0(s
< {f(t,x(t),x(S(t))) f(tO’l( )z(gg(?))cz)),x(ﬁ(s))l;@) 0 o) ‘
g goore 98

y(to) At y(s) a—1
) | A (1 —5)%1ds
, ), ot S y\s), o
+{f(t,y(t),)’(3(to))) i yl(m) t(g((:,il)()s),y@ m)?)(é) o et ‘
+ () Jto (t—s)l-o ds‘

Aol () e [l BE)
SF{P‘)*r(é)/to OG0 | LA v A L= }+
TR e 1[0,
F{P”r(a)/m ORI A v () F T d}

y
: F{P” r?a) / <t - Siad” r<la> / (r—h ij)lads}*
F{P” r?oo/fo q - Sz-ad” r<1a>/to ( . (>)1"}

< ZF{]P’0+ F(/Ioc) /ﬁ: (1 iP)Sz—adhL F(loc) /;Ot (¢ —hs)l_ads}

Taking supremum over t, we obtain

o)

)
Since lim;_e v(f) = 0,1im; o u(?) = 0,lim; 0 P(2 0 for € > 0, there exist a real number
T' > 0,T" > 0 and T" > 0 such that Py < %, u(z)

we choose T* = max {T’, ", T"} .

) =
< H%e and v(r) < BEE forall 1 > T*, if

Then from above inequality it follows that |x(¢) — y(z)| < € for all r > T*.

Hence FNQIE (1) has a locally attractive solution on R .

4. EXISTENCE OF EXTREMAL SOLUTIONS

A closed and non-empty set K in a Banach Algebra X is called a cone if
. K+KCK

ii. AKCKforA eR,A>0

iii. {—K} NK = 0 where 0 is the zero element of X.

and is called positive cone if

iv. KoK C K

And the notation o is a multiplication composition in X
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We introduce an order relation < in X as follows.
Let x,y € X then x <y if and only if y —x € K. A cone K is called normal if the norm || - ||
is monotone increasing on K. It is known that if the cone K is normal in X then every order-
bounded set in X is normbounded set in X. We equip the space % (R ,R) of continuous real
valued function on R with the order relation < with the help of cone defined by,
K={xe?RL,R):x(t) >0Vt R}

We well known that the cone K is normal and positive in ¢ (R, R). As a result of positivity

of the cone K we have:

Lemma 4.1. [7] Let py, p2,q1,92 € K be such that p; < g1 and p; < g then p1p2 < q19».

For any p,q € X =% (R,,R), p < q the order interval [p,q] is a set in X given by,

[p,q] ={xeX:p<x<gq}

Definition 4.2. [7] A mapping G : [p,q] — X is said to be nondecreasing or monotone increasing
if x <y implies Gx < Gy for all x,y € [p,¢]

For proving the existence of extremal solutions of the equations (1) under certain monotonicity
conditions by using following fixed pint theorem of Dhage [7].

Theorem 4.3. [7] Let K be a cone in Banach Algebra X and let [p,q] € X. Suppose that
A,B: [p,q] — K are two operators such that

a. A is a Lipschitz with Lipschitz constant ¢,

b. B is completely continuous,

c. AxBx € [p,q] for each x € [p,q| and

d. A and B are nondecreasing.

Further if the cone K is normal and positive then the operator equation AxBx = x has the least
and greatest positive solution in [p,g| whenever oM < 1, where M = ||B([p, ¢q])|| = sup{||Bx]| :
x € [p,q]} We need following definitions and hypothesis for existence the extremal solution of
FNQDE (1).

Definition 4.4. A function p € &/% (R, R) is called a lower solution of the FNQDE (1) on R,
if the
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function t — OTONICO)) 1s continuous and

(10)  D“ pt) } Sg(t,p(t))—/l{ pt) et R,

ft,p(1),p(8(1))) f(t,p(1),p(8(1)))

(11) p(to) = pop(8(t0)) =co € R

(12) f(to, p(t0), p(8(t0))) = f(to, Po,co)-

Again a function g € &/% (R,R) is called an upper solution of the FNQDE (1) on R if

q(t)

function the ¢t — OGO 1s continuous and

(13) D%

q(t)
f(t,q(t),q(5(1)))

q(t)
f(t,q(t),q(5(1)))

<g(t,q(1),q(6(1))) — 2 a.e .t Ry

(14) q(to) = qo, q(8(to)) = do

(15) f(t0,q(t0),  p(8(t))) = f(t0,40,do)

Definition 4.5. A solution xj; of the FNQDE (1) is said to be maximal if for any other solution

x to FNQDE (1) one has x(r) < xp(¢) for all t € Ry Again a solution xs of the FNQDE (1) is

said to be minimal if xps(¢) < x(¢) for all t € R where x is any solution of the FNQDE (1) on

R,.

Definition 4.6. (Caratheodory Case): We consider the following set of assumptions: 81

B1 The functions g(z,x(z),x(5(¢))) and W are Caratheodory.

B2 The functions (¢,x(¢),x(6(2))),g(¢,x(¢),x(8(¢))) and % are non-decreasing
in x almost everywhere for all 7 € R,..

B3 The FNQDE (1) has a lower solution p and an upper solution g on R with p <gq.

B4 The function / : Ry, R defined by, I(z) = |g(¢,p(2),p(6(2)))| + |g(t,q(2),q(8(2)))]| is

Lebesgue measurable.
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B5 The function q: R, R defined by, 11(r) = 7 p(p ‘ + ‘f e (t))) is Lebesgue

measurable.

Remark 4.7: Assume that ("B1 — ’BS) hold. Then |g(#,x(2),x(6(t)))| < I(2), a.e. t € Ry, for
allx € [p,q| and ‘f—‘ <t
Theorem 4.7. Suppose that the assumptions (79) — (%) and (B1) — (BS5) holds and 1,11 are

given in remark (4.7) and {IP’O—f— M [Aln]l 1 + 1]l 1] < 1 hold then FNQDE (1) has a

TE+1D)
minimal and maximal positive solution on R .

Proof: Now FNQDE (1) is equivalent to FNQIE (3.1)on R.. Let X = %" (R, R) and define an
order relation ”\leq” by the cone K given by (4.7). Clearly K is a normal cone in X. Define
two operators A and B on X by (7) and (8) respectively. Then FNQIE (5) is transformed into
an operator equation AxBx = x in BanachAlgebraX. Notice that (*81) implies A, B : [p,q] = K
Since the cone K in X is normal, [p,¢] is a norm bounded set in X. Now it is shown, as in the
proof of Theorem (3.1), that A is a Lipschitz with a Lipschitz constant || || and B is completely
continuous operator on [p, q|.

Step I: Again the hypothesis ( 282 ) implies that A and B are non-decreasing on [p,¢q]. To see
this, let x,y € [p,g| be such that x <y. Then by ( B2 ) we have, Ax(t) = f(¢,x(t),x(6())) <
f,y(t),5(8(1)) < Ay(r),Vt € Ry

Similarly,

Bx(t) = - (t—s5)*"ds

< By(t)JVt S R+
Implies that A and B are non-decreasing operators on [p,q]
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Step II: Again definition (4.4) and hypothesis (B3) implies that,

p (to) A p(s) (t— )% ds
’ ’ 6 r o 5 5 6
(1) < £(t.p(0).p(8(10)) f(to,p(to),p(8(t0))) T(ax) f(slp(S)lp( (s))) i
N 8(s,p(s),P(8(5)))
Cla)Jy  (t—s)7®
x(to) A x(s) Cvaetg ]
Fli0:2(0) 230)  T(@ Jy Fooee Y @
< f(t,x(t),x(6(t0))) | 5
N /g(s,x(S),x( ) 4
F(é) 10 t_s)l_a )
CI(tO) . A ! CI(S) (t_s)a—lds\
_ f(to,q(t0),q(8(t0))) T() Jiy f(s,q(s),q(5(s)))
_f(tacI(t)7CI(5(s))> 1 t o
N /g(s,q(S),q( $)) 4
Lla) Jy — (t—s)17@ )
< q(t),Vr € Riand x € [p,q]
As aresult p(r) < Ax(t)Bx(r)
<q(t),Vt e Ryand x € [p,q]
Hence AxBx € [p,q],Vx € [p,q]
StepIll :M = [[B([p,q])|| = sup{||Bx|| : x € [p,q]}
x(t()) B A ! x(s) )1 g
< Pl 0] ) T b T 5@ <s>>>(’ o
<sup{ sup
teRy g ,X 7 5(S
\ % (t—s)l—@ )
( x(to A () anly
< sup{ sup ot || e L, 7 e
o teR, —i—‘ 1 " g(s,x(s),x(6 s)))ds
\ \ (o) Ji (r—s)l-@
L ave x(s) — 5 1 B
< ot @) o L 7w |9
_zsengi 1 s
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Sti‘ﬁéi{{%*r?a) / (t—lsl)l‘“dHF(lé) / <r—lis>)1—ads}}

e

<Pot o {0 = (=) 4 g o L0~ (- )®)
=Fot F(/lol|:1L||1) (r=10)"+ r(c|a|clJ”r pl—*

<Py+ %T“ + %T“

<Po+———[A l
< O+F(oc+1)[ [1ll o1 + 2] 1]
5. APPLICATION

Example S.1. Consider the following FNQDE of type (1)

I x(t)

o} i 2 ey = 80,301 € R,
x(0)=0
£(0,0,0) = (0,0) Where the functions f(¢,x(¢),x(3(t))) = cost [lf(;)t +e*t} )

)
g(t,x(2),x(8(1))) = m’h@ =SandP(t) = g and a = 3,4 =2

1+x cost

(1) Now | f(2,x(2),x(8(1))) — f(2,y(2),5(8(1)))]

oo = e Ao [
) .

x(t)y(t) +x(t) — y(t) —x(t)y(t)
x(t)y(t) —x(t) —y(t) +1

< |cost||x(t) — y(t)]
< (1)) =y (1))

< x|l lx(r) =y (@)

Since k() = cost say which is continuous and bounded on R has bound | k||

() Take h(t) = [is, it is continuous on R, .
1
[5

Implies g(¢,x(¢),x(6(¢)) < h(t) that is m

Implies g is caratheodory satisfy above condition.

VAN

17
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il €0) is again caratheodory function with continuous function P(¢) :

(%) The function W

R4+ — R such that
P(t) = -1 and satisfying %
It follows that all the conditions (7#]) — (#3) satisfied. Thus by theorem (2.9) above problem

IN

P(z)

has a solution on R .

Example 5.2. Consider the following FNQDE of type (1)

0} il | +2 | rae sy | = 8x0),x(8(0).1 € Ry

x(0)=0

£(0,0,0) = (0,0)

Where the functions f(¢,x(¢),x(8(¢))) = sint [ x(;gt) +e’t} )
g(t,x(t),x(6(1))) = m,h(t) = '2 and P(r) = L anda=1,1=2
(1) Now [f(2,x(1),x(8(1))) — f(2,5(2),y(8(1)))]

o [ -t [ )
_|si )

1
x(t)y(t) +x(t) — y(t) —x(t)y(t)
x(t)y(t) —x(t) —y(t) + 1

< Isint||x(¢) — y(2)|
< k(1) |x(r) — y(2)]

< [xellx(r) = y()]

< |sint|

Since k(¢) = sint say which is continuous and bounded on R has bound ||x||.

() Take h(t) = le’ it is continuous on R, .

1
po)

| A

Implies g(t,x(¢),x(6(z)) < h(z) that is m
Implies g is caratheodory satisfy above condition.

(#3) The function % is again caratheodory function with continuous function P(¢) :
R+ — R such that

P(¢) =
It follows that all the conditions (.747) — (743) satisfied. Thus by theorem (2.9) above problem

and satisfying ﬁ <P(z)

sin t

has a solution on R .
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6. CONCLUSION

We investigated the existence of a solution to a fractional order nonlinear quadratic differen-
tial equation in this study. The result was derived by using Dhage’s hybrid fixed point theorem
to three operators in Banach space. With the assistance of an example, the primary outcome is

vividly shown.
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