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Abstract. In the present paper, we apply the Adomian decomposition method for bilinear stochastic processes
with time-varying coefficients in both time and frequency domain. More precisely, we derived an analytical ap-
proximate solution and we prove its convergence to the exact solution in time domain, furthermore we give an
analytical approximate solution in frequency domain, i.e, we derived analytical approximate transfer functions
which converge to the exact transfer functions.
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1. INTRODUCTION

The Adomian decomposition method (ADM) is an approach proposed by George Adomian
(1923-1996) [3, 4, 5] which provides an analytic approximation to linear and/or nonlinear prob-
lems, boundary value problems, algebraic equations and differential equations [2, 1, 18, 20].
The general principle is based on the so-called "reversion method’ which consists of decompos-
ing the solution of a nonlinear functional equation in a series of functions elegantly computed
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[12, 15]. The method can be applied directly for different type of (stochastic) differential equa-
tions providing a solution with fast speed of convergence [7, 9, 10, 14, 16]. So, the aim of this
Note is to apply the ADM (as an alternative of Itd solution) for solving a continuous-time bi-
linear (COBL) equation defined as a stochastic differential equations (SDE) with time varying

coefficients in time and frequency domain.

2. BILINEAR STOCHASTIC DIFFERENTIAL EQUATION

In this Note, we consider the first order continuous-time bilinear process (COBL(1,1)) driven

by a stochastic differential equation of the form
(D dX (1) = (e(t)X (1) +u(2))dr + (Y(1)X (1) + B(2)) dw(t),t = 0,X(0) = 7,

where (w(t));>0 is a standard Brownian motion in R defined on some basic probability space
(Q,47,P) and a(t), pu(t) and y(r) are complex measurable functions such that V¢ > 0, o(z) # 0,
and y(t) # 0. To ensure the existence and uniqueness of the solution process (X(z));>0
of equation (1), we assume in addition that, YT > 0, [] |a(t)]dt < oo, [ |u(t)]dt < oo,
fOT |7(1)|* dt < o and that the initial state 1) is a random variable defined on (€,.<,P), in-
dependent of w with E{n} = m(0) and Var{n} = K(0). The existence of the Itd solution

process (X (¢));>0 of equation (1) in time domain is however ensured by general results on SDE

(see e.g., [6])

t

@ X0 =@ X(0)+ [®76) ()~ 7(5)B () ds+ [ @7 ()P (5)aW(s)
0

0

where ®(t) = exp{({l(a(s)—%yz (s)) ds—l—({t}/(s)dW (s)} its mean function is W (¢) =

t

exp { S Oc(s)ds}, t > 0. If the coefficients o(t), u(t), y(t) and B(¢) are constant and satisfy-
0

ing the condition ¥ # 0, & # uy,2a + > < 0, then the process (X(¢));cr is a second-order

stationary with

- 2
E{X(t)}= _g,K(O) =Var{X(1)} = % and Cov(X(1),X(t+h)) =K(0)e®" heR.
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3. DECOMPOSITION METHOD APPLIED TO COBL(1,1) IN TIME-DOMAIN

Without loss of generality we assume that () = 0, for all 7, since this assumption can

B ()

be fulfilled by the transformation Y (r) = X(¢) + 70 with some additional assumptions on

the differentiability of the functions y(z) and f (). The Adomian’s method suggest that the

~

solution process X (¢) of SDE (1) is sought in the form

3) X() =} X(t)

(o) (o)

“ Y X(0) = n+L7 w0+ (@) +vew0) ¥ X5(0),

Jj=0 J=0
) ) 1 dW(I) . 1 t
in wherein w(!) (1) = % and L is the operator defined by L™"[.] = [;(.)ds. So we have by
identification

t
) Xo(0) =+ [ (s)ds
and Vn > 1,
t

©) X, (1) = /0 ((s) + 7(s)w () X1 (5)ds,

More precisely, we have

Xi(r) = /0 ’<a<s1> (oW (1)) Xo(s1

= [ (aton) +po0w s+ [ [ (@lon) + 0w o1 as)dsads
%l = [ t( a2 + (52wt ()i (52)ds2

= [ [ @l s o) (@52) + 752w (52)dsads

* / [ [ @)+ rtsmD s @ts) + plsa ) s2) (o3 dsadsadsy

n// / a(s1) + 7(s0)WD (51))r-(0(52) + (5)w V) (52) ) dsudsn1..-dsrds:
—i—// / / a(sy) +v(sp)w (1)(s1))...(a(sn)—|—}/(sn)w(l)(sn)),u(an)dsnﬂdsndsn,l...dszdsl
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Finally, we approximate the solution by the truncated series
) YN > 1,®p(1) Z Xa(

In order to show the convergence of the series (7) to the exact solution processes we introduce
the concept of the so-called stochastic exponential associated with a centred Gaussian random

variable Z and defined by & {Z} = exp{Z — 3E {Z*} }. First, we have the following lemma

Lemma 3.1. If f is a real function defined on the interval [ty,T] C R. Then we have for all

t € lto,T] and Vn > 2,

(8) / / / S(su—1)f(sn)dspdsy—1...ds; = M,

n!

wherety < s, <85, 1< ....<sm <51 <1

Proof. By induction, we have for n = 2,

t st ; )
[ [ ssnstsaiasads = [ Fisissnas = T35

where F (1) = f,g f(s)ds. Now assume that the equation (8) holds for n — 1, it means

n—1
/to /;0 S" l)f(5n>d5ndsn_1...ds2 = %’

which implies

Sn—1 ¢ P n—1 n t Ssn
[ ) )t = [ PO g IPOT LG

n (n—1)! n!

0

Theorem 3.2 (Theorem 1, El-Kalla [13] ). If q(t) is integrable and r(t) is derivable functions,

then

o)

ew/ﬂ%mm:Z@ﬂk o v/ / drdr - di.

k=0 k— fold

We are now in a position to prove the convergence of the approximate solution ®p(t) to the

exact solution process
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Theorem 3.3. Let Oy(t) is the approximate solution (7) given by Adomian decomposition

method of the COBL(1,1) driven by the equation (1), then almost surely, we have

) Jim_ @y (1) =X(1)

Proof. Applying Lemma 3.1 on the first term of X,,(¢), we obtain

”// / alst) +y(s)w! (s1))...(c(s) + V(sn)W (1)) dsndsn1...ds2dsy
<f0<o‘(s)+Y(S)W( )(s))ds>n

n!

=n

Y

and Applying Theorem 3.2 on the infinite sum of second term of X,,(7), we obtain

2)/0 /o /0 /OS"W(SI) +y(s)WM (51)) - (0t(sn) + Y)W (50)) 1 (w1 )i 1dsud sy ..ds2dsy

=5{Akmw+ymwm@»m}42{—gimw+wmwmw»m}mwm.

Then we can obtain

lim @y(r)
N—s+oo

= os sOw (s))... S S wl) S ))dsyds,—1...dsrds
=0 X[ ) e o)) A )1y

(s s )wh) (a(s, Sn wl) S Spt1)dSpr1dsyds,—1...dsyds

Yy / [ @l + 7w D s1)) @) + 1)) 525111
(1) (

—nZJb +7(sw(s))"

n'

+@@{/Ot(a() ds}/o @@{ / )+ y(u)w ()(u))du}u(s)ds
mﬂﬂmm onas} (n+ [ 6]~ [ (@ + vam )i ueas).

where & { folous) + }/(s)w(])(s))ds} denotes the stochastic exponential of [J(c(s) +
y(s)w) (5))ds, so we get

o{ [+ romonasf —exp{ [ (ats)- @) s+ [ (5)as .
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which implies

Jim oy =exp{ [ (at) -T2 Yas+ [ o as)
Jau= [ v wan uisyas)

x (TH—/OteXp{—/OS ((x(u)—

which it is the exact It6 solution process (11) of SDE (1) and the proof is complete. O

Y (u)
2

4. DECOMPOSITION METHOD IN FREQUENCY DOMAIN

In frequency domain, the process (X (f)),cr admits the so-called Wiener-Ito orthogonal rep-

resentation

(10) X(t)=f(t,00+ Y % / 0 (1, M4 )dZ (M),

r>1

-
where A n= X A; and the integrals are multiple Wiener-It6 stochastic integrals with respect
i=1

.

to the stochastic measure Z(dA), f(t,0) = E{X(¢)}, Z(dA(,) = I Z(d4:), (see Major [19]
i=1

and Dobrushin [11]). and f(#,4,)) are referred as the r — th evolutionary transfer functions of

f(l‘,l(,))|2dF(7L(,,)) < oo, As

(X (t))ser, uniquely determined and fulfill the condition ¥, & [p.
r>0

a property of the representation (10) is that for any f(t,A(,)) and f(s,4(,,)), we have

(11)

E{ Rnf(t,7L(n))dz(/1(n)) f(taﬂ‘(m))dz()’(m))} = 6”’"”!/@1 T A0) (8, 20 )AF (A,

Rlﬂ

where 8, is the delta function and f(t, ),(,)) is the symmetrized version of f by the vector 4,
which is the average of those values of f taken by all possible permutations of entries of QL(,).

We need also the diagram formula given as follow

Lrazan) [ ¢ () 2@rm) = [ ¢ () f i) Zdagi)

Rnt+1

X [ o8 ) TORIF (30 Z(@h000)

where Z(d)\'(n\k)) =Z(dM)..Z(dM—1) . Z(dNy1) ... Z(dAy).
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Theorem 4.1. Assume that the process (X(t));>0 generated by the SDE (1) has a regular
second-order solution. Then the evolutionary symmetrized transfer functions f(t,A,)), (t,r) €

R x N of this solution are given by,

(1) f(1,0) + (1), if r =0
(l0) =gy ) U0 Ap) 7 (VO£ (0 A1) + Sy B Sif 7 > 1

Proof. See Bibi and Merahi [8]. O

(12) fN(t, ) = {

Remark 4.2. The existence and uniqueness of the evolutionary symmetrized transfer functions
f(t,A), (t,r) € RX N of this solution is ensured by general results on linear ordinary differ-
ential equations (see, e.g., [17], ch. 1) so,

(13)

00 (70,00 [ o O)n(s)as) irr =0

t

0 (209) (70K rf o (200 (HO)705Kp 1)+ 861 s ) 721

0

f(tv)“(r)):

where @ (&(r)> = exp{ft (a(s) — i&(r)> ds} :

0

Applying ADM method to obtain approximate transfer functions (FN(t,l(r))) (t,r) €

N>1°
R x N where

N—1
Fn(t,A0) = Y fult;Apy) = f(t, ) as N — oo
n=0

4.1. First Technique. We substitute the series f(r,A(,)) = Yoo fu(?,A(,)) in the equations

(12) we obtain

(1) For r =0, we have
Lf(1,0) = a(r)f(2,0) + pu(1),
which implies
Y £u(t,0) = £(0,0)+ L7 (a(t) Y. ful2,0) +u(t)) :
n=0 n=0
it follows, fo(t,0) = £(0,0) + f§ p(s)ds and Vn > 1,

70.0) = [ @l)fu1(5,0)ds.
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After computing the terms (f,(¢,0)),~ have the form

£1(1,0) = £(0,0) /O "a(s1)ds + /O [ /O " (1) a(s2)dsadsi,

= £(0,0) /0’ /OSI a(sy)a(s2)dsrdsy +/Ot /051 /Osz osy)oe(s2) e (s3)ds3dsadsy,

s1
£(0,0) / / / (sn)dsndsy_1...dsyds,
51
+// / / (s1)- W(Spt1)dspr1dspdsy—1...dsydsy.

(2) For r = 1, we have
Lf(t, ) = (ou(t) —id) f(1,4) + (y(2) f(2,0) + B (1)),
which implies
gfn(tyl) = f(0,A)+L"" ((a(t)—il);)fn(t,/l)+7(t)f(t,0)+l3(t)> :
it follows, fo(t,A) = £(0,A) + J§ (¥(s)f(5,0) + B(s))ds and ¥n > 1,

t
Bt 4) = [ (@(s)=iR) fy-a(5,2)ds:
After computing the terms (f,(¢,4)),~, have the form

£102) = £0.2) [ (@tsr) —iR)dsi + / | / " (@(s1) = i) (7(52)f(52,0) + B(s2) sz,

B6A) = £(0,2) // _id)dsads,

+ / | [ e —iA) (¥(53)£(53.0) + B(53)) dssdsads,

£t 2) = £(0,2) // / (0(50) — iA) dsudsn1...ds>ds,

_|_/ /S1 / / (sn) — L) (Y(sn+1) f(Sn+1,0) + B(Sn+1)) dSnr1dsndsy—1...dsads; .

(3) For r > 2, we have

LE(, ) = (@) = i) S8 )+ P70 £ (1, 2—),
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which implies

an t,A) = F(0,Ap)) +L7" ((a(f)—i&(r)> Zfn(f,l(r))+”7’(f)f(f,/1(r—1))> :
n=0
it follows, fo(1,A()) = (0, A()) 47 Jo Y(s) (8, A(,_1))ds and Vn > 1,

t
It ) = [ (@5 = Re)) fumr (5.2 )ds
After computing the terms (f,(t,(,))), _, have the form
f1<t,x,)):f(o,x,))/( (s1) — ik, dsH—r// u(s1) = iA() ) V(52)f (52, Ao dsads,

Falt.A) = £(0, A // a(s1) ~ k) ((s2) =iy ) dsads
br /0 /O /0 (s1) ~ i) ) (@ls2) — iAg) ¥ls3)f (53,2 dssdsads,

TSy Sn—1
f,,(t,?t(,)):f(o,l(,))// / a(sl)—i&(r)>...<(x(s,,)—i&(r))dsndsn_l...dszdsl

4 / / / / )= i) - (@) = i) ) Vsns) Fsnit, Aoy s 1dsudsy 1.dsads.

Theorem 4.3. Assume that the process (X(t));»q generated by the SDE (1) has a regular

second-order solution. We consider the process (Fn(t)),>o which has the following spectral

representation

(14) In0) =Fy(t,0)+ ) / "R Ey (1,24 )dZ (),
r>1

where FN (t, 7L Z fn (t, l ), VN > 1. Then almost surely, we have

lim Zy(r) =X(1).

N—too

Proof. First applying the Lemma 3.1, Theorem 3.2, we obtain for all » > 0,

lim Fy(t,4()) = lim antl ft ),
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by substitution in (14) we get

lim Zy(1) = F(6,0)+ X [ 6300, 24))dZ0) = X (),

N—o0 5
where the transfer functions f(t,4,), (t,r) € R x N are given by (13) in theorem 4.1. O

Remark 4.4. Theorem 4.3 means that, Vn > 0 there exists a process (Xu(t)),cp admits the

spectral representation

~ 1 i
10) = Fu(t,0)+ X - /}R R0 (6, 2)JdZ(D), ¥ > 0,

r>1

such that

X(1) = ioxnm.

4.2. Second Technique. In this subsection, we present a different technique to decomposition
the transfer functions f(#,A, by the substitution of the series f(#,4,)) = Y0 8n(t, () and
f(t, A—1)) = Xm0 &n(t, A(r—1)), for all r > 1 in the differential equations (13), so

For r = 0, we have
f(t,0) = Z gn(2,0),
n=0
where gO(tuo) = f(0,0) +f(;[.t(s)ds = fO(I,O), and

t
gn(1,0) :/ o (s)gn—1(s,0)ds, Vn > 1,
0

this implies
gn(t,0) = f,(¢,0), Vn > 0.

Now for all » > 1, we substitute the series f(t,A(,)) = Yy_&n(t,A()) and f(t,4_1)) =

Yo—08n(t,A(,—1)) in the differential equations

f(l)(taz’(r)) = (O{(l‘) _i&(r)) f(tvl(r)) +r(Y(t)f(t77L(r—l)) +5{r:l},ﬁ(t))

we obtain

(1) For r =1, we have

Lf(t,A) = (a(r) —id) f(t,4) + (¥(1)f(2,0) + B(1)),
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which implies

. 1.2) = 100.2) | Blokds+ [ T (o)) s 2) + ()50 s
n=0
it follows, go(¢,4) = £(0,A) + [y B(s)ds and

&@M=4%<>ﬂm&1@xm+/ ()81 (5.0)ds. Vn > 1.

After computing the terms (g, (t,4)),,~ have the form

21(t,A) = £(0,4) / (s1) — iL)ds1 + / / a(s1) — id) B (s2)dsads + / ¥(s1)go(s1,0)ds1,
f(0,1) // o(sy) —id)dsards)
+ / /sl / a(s1) — id) (lsz) — id) B(s3)dssdsadsy

+// o(sy)—ik) Sz)go(szao)dszdﬁﬂL/ Y(s1)g1(s1,0)ds1,

£(0,1) // / a(s1) —iA) ... (0U(sn) — L) dspdsn_1...ds2ds:
+/0/0 /O 1/0 (0(51) = iA) oor (@(5) — i2) B (51 )y 1S5 1...d52dls)
+/0’/Os' /01 (0(51) — 02 oe (0 (1) — i2) 7(52)20 (5, 0)dsudsn_1..-dsodls,
+/0’/0s' .../Os"‘z(a(sl)—ix)...(a(s,,_z)—i/l)y<sn_1)g1(sn_l,O)dsn_ldsn_z...dszdsl+...
ot / t / ; / 7 (@(s1) — id) (0(52) — iA) Y(53)2n_3 (53, 0)dssdsads,
[ [ (@) =) ps2)ga-2(52,0)dsadsn + [ Yisi)ga1(51,0)ds1

(2) For r > 2, we have
LE (e A) = (@l0) = iR ) £(0,20) + 7 £ Ay,

which implies

i gn(tvl(r)) :f(O,QL(r))—F Z /
n=0

| [(Oc(s) B li(ﬂ) 8n(8, () +rY(s)8n (s, A1) | ds
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it follows, go(#,4(,)) = f(0,4,)) and Vn > 1,

t

t
gn(tal(r)):/o ((X(S)—l&(r)> gn—l(sal(r))ds—i_r/o Y(S)gn—l(saa’(r—l))ds

After computing the terms (g,(7, /l(r)))n>1 have the form

t

g1(t, 7(,( )) f(O )L( ))/1< ( )—ll( ))dS1+I”/ }/(sl)go(sl,l(,,l))dsl,

g (t, A 07L //s1 o(s1) z?L >( (s )—i&(,)>dszds1

t
+r// ) =ik )’}/<s2)g0<s27l(r71))d52ds1+r‘/0 Y(s1)81(s1,A¢—1))ds1,

st Sn—1
Lt A0 = F(0, A // / (1) — ik ) oo (0(s2) — iy, ) dsudsn1...dsrd
8alt. 2) = £ <>)0 [ [ (alsn) —ii) e (@lon) iy ) dsudsiordsads
Sn—1
+r// / o(sy) —ll ) (Oc(s,,_l)—i&m) Y(5n)80(Sns Ar—1))dsndsy—1...dsads)
5n2 .
+}’// / OC S1 —lk ) (OC(S,,_Q)—I&(,,)) Y(Sn—l)gl(Sn—l,l(rfl))dsn—ldsn—ZmdSZdSl+m
+r/// as1) —id )( (sz)—i&(,)>}/(S3)gn_3(S3,O)dS3ds2ds1

t
b [ (o) = R40) Vis2hgn-2(o2, Ay sadss + 7 [ 500105121t

Theorem 4.5. Under the condition of theorem 4.3, ¥n > 0 there exists a process (Zn(t)),cr

admits the spectral representation
Zo0) =@t 0)+ ¥ [ EOG(020))dZ( ). 0,

such that

Proof. The result follows immediately, because

Zg,ltl ant/l F(t,20),

then
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Y 20 = YL @(t.0)+ ¥ - [ ™0 Y Gt A))dZ (k)
n=0 n=0 r>1"" n=0

(o)

~ 1 WP
= Y Rle0)+ X o [ &0 Y Rt A)dZ ()
: n=0

n=0 r>1

- 1 e
=00+ X oy [ 0T 2z i)
=X(1).

5. CONCLUSION

In this paper we propose the ADM for solving bilinear SDE driven by Brownian motion
wich behaves as a nonlinear stochastic differential equation. This method is applied in time and
frequency domain where we have proved the convergence of the approximate processes to the

exact solution.
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