D-LOCAL ANTIMAGIC VERTEX COLORING OF A GRAPH AND SOME GRAPH OPERATIONS

PREETHI K. PILLAI*, J. SURESH KUMAR
PG and Research Department of Mathematics, N.S.S. Hindu College, Changanacherry, Kerala, India 686102
Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Let $G(V, E)$ be a simple, connected (p, q)-graph. A d-local antimagic labelling is a bijection $f: E(G) \rightarrow$ $\{1,2,3,4, \ldots q\}$ such that for any two adjacent vertices, v_{1} and $v_{2}, w\left(v_{1}\right) \neq w\left(v_{2}\right)$ where $w\left(v_{i}\right)=\sum_{e \in E\left(v_{i}\right)} f(e)-$ $\operatorname{deg}\left(v_{i}\right)$,and $E\left(v_{i}\right)$ is the set of edges incident to v_{i} for $i=1,2, \ldots, p$. Any d-local antimagic labelling induces a proper vertex coloring of G where the vertex, v_{i} is assigned the color $w\left(v_{i}\right)$ for $i=1,2, \ldots p$ and this coloring is called d-local antimagic coloring of G. The minimum number of colors required to color the vertices in a d-local antimagic coloring of G is called the d-local antimagic chromatic number of G and it is denoted as $\chi_{\text {dla }}(G)$. In this paper, we study the d-local antimagic vertex coloring of paths, cycles, star graphs, complete bipartite graphs and some graph operations such as the subdivision of each edge of a graph by a vertex and determine the exact value of the parameter, d-local antimagic chromatic number for these graphs.

Keywords: antimagic labelling; local antimagic labelling; local antimagic chromatic number; d-local antimagic labelling; d-local antimagic chromatic number.

2010 AMS Subject Classification: 05C15, 05C69.

1. Introduction

. By a graph, we mean a finite undirected graph without loops or parallel edges. A coloring of a graph G is an assignment of colors to the vertices of G such that adjacent vertices have distinct colors. We can represent the colors by natural numbers so that the function $w: V(G) \rightarrow \mathbb{N}$ is a vertex coloring of a graph G and $w(v)$ denote the color of a vertex v. If any two adjacent

[^0]vertices v_{1} and $v_{2}, w\left(v_{1}\right) \neq w\left(v_{2}\right)$ then w is called a proper vertex coloring of G. Topics related to coloring of graphs has been studied by many researchers and Suresh Kumar [5] presented a survey of various graph colorings and related parameters. . Hartsfield and Ringel [4] introduced the concept of antimagic labeling of a graph. Let $G=$ (V, E) be a graph and let $F: E \rightarrow\{1,2, \ldots|E|\}$ be a bijection. For each vertex u of G, let the weight of the vertex, u is $w(u)=\sum_{e \in E(u)} f(e)$, where $E(u)$ is the set of edges incident to u. If $w(u) \neq w(v)$ for any two distinct vertices u and v of G, then, f is called an antimagic labeling of G. A graph G is called antimagic if G has an antimagic labeling.
. Arumugam et al.[1] defined a local antimagic labelling as a bijection $f: E(G) \rightarrow\{1,2,3, \ldots q\}$ such that for any two adjacent vertices u and $v, w(u) \neq w(v)$. Thus, any local antimagic labeling induces a proper vertex coloring of G, where the vertex v is assigned the color $w(v)$. We define this coloring as local antimagic coloring of G . The local antimagic chromatic number $\chi_{l a}(G)$)is defined as the minimum number of colors taken over all local antimagic colorings of G. We use the following results about this parameter in the sequel

Theorem 1.1. [1] For any tree T with l leaves, $\chi_{l a}(T) \geq l+1$

Theorem 1.2. [1] For the path graph, P_{n} with $n \geq 3, \chi_{l a}\left(P_{n}\right)=3$.

Theorem 1.3. [1] For the cycle graph, $C_{n}, \chi_{l a}\left(C_{n}\right)=3$.
Theorem 1.4. [1] For the complete bipartite graph $G=K_{2, n}$

$$
\chi_{l a}\left(K_{2, n}\right)= \begin{cases}2 & \text { if } n \text { is even, and } n \geq 4 \\ 3 & \text { if } n \text { is odd Or } n=2\end{cases}
$$

. In this paper, we investigate a variation of local antimagic coloring, namely d-local antimagic vertex coloring, which takes the degrees of the vertices also into consideration. We also determine the d-local antimagic chromatic number of some special classes of graphs such as star graphs, path graphs, cycle graphs, complete bipartite graphs and some graph operations such as subdivision of each edge of a graph by one or two vertex each. For the terms and notations not mentioned here, reader may refer Harary [3].

2. Main Results

We begin with the definition of local antimagic coloring of a graph.

Definition 2.1. [1]
A local antimagic labelling is a bijection $f: E(G) \rightarrow\{1,2, \ldots \ldots .|E(G)|\}$ such that for any two adjacent vertices v_{1} and $v_{2}, w\left(v_{1}\right) \neq w\left(v_{2}\right)$ where $w\left(v_{i}\right)=\sum_{e \in E\left(v_{i}\right)} f(e)$ and $E\left(v_{i}\right)$ is the set of edges incident to v_{i} for $i=1,2, \ldots p$. Thus, a local antimagic labelling induces a proper vertex coloring of G where the vertex, v_{i} is assigned the color $w\left(v_{i}\right)$. This coloring is called a local antimagic coloring of G. The minimum number of colors required to color the vertices in a local antimagic coloring of a graph, G is called the local antimagic chromatic number of G and it is denoted as $\chi_{l a}(G)$. Taking the vertex degrees also into consideration, we define a new coloring and an associated graph parameter.

Definition 2.2.

A d-local antimagic labelling is a bijection $f: E(G) \rightarrow\{1,2, \ldots .|E(G)|\}$ such that for any two adjacent vertices v_{1} and $v_{2}, w\left(v_{1}\right) \neq w\left(v_{2}\right)$ where $w\left(v_{i}\right)=\sum_{e \in E\left(v_{i}\right)} f(e)-\operatorname{deg}\left(v_{i}\right)$ and $E\left(v_{i}\right)$ is the set of edges incident to v_{i} for $i=1,2, \ldots, p$. Thus any d-local antimagic labelling induces a proper vertex coloring of G, where the vertex v_{i} is assigned the color $w\left(v_{i}\right)$. We define this coloring as d-local antimagic coloring of G. The minimum number of colors required to color the vertices in a d-local antimagic coloring of a graph, G is called the d-local antimagic chromatic number of G and it is denoted as $\chi_{\text {dla }}(G)$.

Lemma 2.3. For any graph $G, \chi_{d l a}(G) \geq \chi_{l a}(G)$

Proof: If G is local antimagic colourable, $\chi_{l a}(G)$ is the minimum number of colors such that $w\left(v_{1}\right) \neq w\left(v_{2}\right)$ whenever v_{1} and V_{2} are adjacent where $w\left(w_{1}\right)=\sum_{e \in E\left(v_{i}\right)} f(e)$. If G is d-local antimagic colourable, $\chi_{d l a}(G)$ is the minimum number of colors such that $w\left(v_{1}\right) \neq w\left(v_{2}\right)$ whenever v_{1} and v_{2} are adjacent where $w\left(v_{i}\right)=\sum_{e \in E\left(v_{i}\right)} f(e)-\operatorname{deg}\left(v_{i}\right)$. It is enough to prove that if G is dlocal antimagic colourable with k colors, then G is local antimagic colourable also with k colors. That is, for any adjacent vertices, v_{1}, v_{2} of G. $\sum_{e \in E\left(v_{1}\right)} f(e)-\operatorname{deg}\left(v_{1}\right) \neq \sum_{e \in E\left(v_{2}\right)} f(e)-\operatorname{deg}\left(v_{2}\right)$ $\Longrightarrow \sum_{e \in E\left(v_{1}\right)} f(e) \neq \sum_{e \in E\left(v_{2}\right)} f(e)$. Let v_{1} and v_{2} are adjacent vertices of G . We will consider two cases.

Case.1: $\quad \operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{2}\right), w\left(v_{1}\right) \neq w\left(v_{2}\right) \Longrightarrow \sum_{e \in E\left(v_{1}\right)} f(e)-\operatorname{deg}\left(v_{1}\right) \neq \sum_{e \in E\left(v_{2}\right)} f(e)$, which implies $\sum_{e \in E\left(v_{1}\right)} f(e) \neq \sum_{e \in E\left(v_{2}\right)} f(e)$. So, G is local antimagic colourable and $\chi_{d l a}(G) \geq \chi_{l a}(G)$

Case.2. $\quad \operatorname{deg}\left(v_{1}\right) \neq \operatorname{deg}\left(v_{2}\right) w\left(v_{1}\right) \neq w\left(v_{2}\right)$ implies that $\sum_{e \in E\left(v_{1}\right)} f(e)-\operatorname{deg}\left(v_{1}\right) \neq$ $\sum_{e \in E\left(v_{2}\right)} f(e)-\operatorname{deg}\left(v_{2}\right)$ which further implies that $\sum_{e \in E\left(v_{1}\right)}(f(e)-1) \neq \sum_{e \in E\left(v_{2}\right)}(f(e)-1)$. Since $f(e)$ is a bijection, $f^{\prime}(e)=f(e)-1$ is a bijection from $E(G) \rightarrow\{0,1 \ldots q-1\}$ and, $\sum_{e \in E\left(v_{1}\right)} f^{\prime}(e) \neq \sum_{e \in E\left(v_{2}\right)} f^{\prime}(e)$. Hence, G is local antimagic colourable and $\chi_{d l a}(G) \geq \chi_{l a}(G)$

Theorem 2.4. For any graph $G, \chi_{d l a}(G) \geq \chi_{l a}(G) \geq \chi(G)$, where $\chi(G)$ is the usual vertex chromatic number of G

Proof: The lower bound immediately follows from the fact that where $\chi(G)$ is the minimum number of colors in any vertex coloring of G and $\chi_{d l a}(G)$ is the minimum number of colors in a vertex coloring of G induced by a local antimagic coloring of G. The upper bound follows from Lemma 2.3.

Theorem 2.5. $\chi_{d l a}\left(K_{1, n}\right)=n+1$ for $n \geq 3$

Proof: Let v be the apex vertex and $v_{1}, v_{2}, \ldots v_{n}$ are the pendent vertices of $K_{1, n}$. Define a function $f: E\left(K_{1, n}\right) \rightarrow\{1,2,3, \ldots, n\}$ as follows: $f\left(e_{i}=v v_{i}\right)=i$, if $1 \leq i \leq n$. The range of f is $\{1,2,3, \ldots, n\}$ which is same as the co-domain. For any two distinct edges, $e_{1}, e_{2} \in E(G)$ and $e_{1} \neq e_{2} \Longrightarrow f\left(e_{1}\right) \neq f\left(e_{2}\right)$. Hence, f is a bijection.
$w\left(v_{i}\right)=\sum_{e \in E\left(v_{i}\right)} f(e)-\operatorname{deg}\left(v_{i}\right)=i-1$ for $1 \leq i \leq n$, and $w(v)=\frac{n(n+1)}{2}-n=\frac{n(n-1)}{2}$.
So, f is a d-local antimagic labeling of $K_{1, n}$ and f induces a proper d-local antimagic vertex coloring of G using $n+1$ colors. Hence, $\chi_{d l a}\left(K_{1, n}\right) \leq n+1$. By Theorem.1.1, $\chi_{l a}\left(K_{1, n}\right) \geq n+1$ and by Theorem 2.4, $\chi_{d l a}(G) \geq \chi_{l a}(G)$ so that $\chi_{d l a}(G) \geq n+1$. Hence, $\chi_{d l a}\left(K_{1, n}\right)=n+1$.

Theorem 2.6. $\chi_{d l a}\left(P_{n}\right)=4, n \geq 4$

Proof: Let the vertices $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots v_{n}\right\} . E\left(P_{n}\right)=\left\{e_{i}=v_{i} v_{i+1}, 1 \leq i \leq n\right\}$
Case. $1 n$ is even
Define a function $f: E\left(P_{n}\right) \rightarrow\{1,2,3, \ldots, n-1\}$ as follows: $f\left(e_{i}\right)=n-1, f\left(e_{n-1}\right)=1$

$$
f\left(e_{i}\right)= \begin{cases}n-i & i \text { odd, } 1 \leq i \leq n-3 \\ \mathrm{i} & i \text { even } 2 \leq i \leq n-2\end{cases}
$$

The range of f is $\{n-1, n-3, \ldots 3,1\} \cup\{2,4, \ldots n-2\}=\{1,2,3, \ldots n-1\}$, which is same as
the co-domain of f. Also, for any two distict edges $e_{1}, e_{2} \in E(G)$ and $e_{1} \neq e_{2} \Longrightarrow f\left(e_{1}\right) \neq$ $f\left(e_{2}\right)$. Hence f is a bijection. Then the colors are

$$
w\left(v_{i}\right)= \begin{cases}n-1 & \text { if } i \text { is even, } i \neq n \\ 0 & \text { if } i=n \\ n-2 & i=1 \\ n-3 & \text { if i odd, } i \neq 1\end{cases}
$$

Hence, f induces a proper d-local antimagic vertex coloring of G using 4 colors so that $\chi_{d l a}\left(P_{n}\right) \leq 4$. By Theorem 1.2, $\chi_{l a}\left(P_{n}\right)=3$. By Theorem 2.4, $\chi_{d l a}(G) \geq \chi_{l a}(G)$.Hence, $3 \leq \chi_{\text {dla }}\left(P_{n}\right) \leq 4$.
If possible, assume that $\chi_{d l a}\left(P_{n}\right)=3$. There are only three cases to consider, since if we consider any other case then adjacent vertices will receive same color. In the above induced coloring, the initial vertex v_{1} and terminal vertex v_{n} receive different colors.

Case.1.1 v_{1} and v_{n} takes the same color. Then $n-2=0 \Longrightarrow n=2$ which is not possible, since $n \geq 4$.

Case.1.2 The initial vertex v_{1} and the odd labelled vertices v_{i} receive the same color. Then $n-2=n-3$, which is impossible.
Case.1.3 The terminal vertex, v_{n} and the even labelled vertices, v_{j} and takes the same color. Then $n-1=0 \Longrightarrow n=1$, which is not possible since $n \geq 4$. So, our assumption is wrong. $\chi_{\text {dla }}\left(P_{n}\right) \neq 3$. Hence, $\chi_{\text {dla }}\left(P_{n}\right)=4$
Case.2: n is odd. Define a function $f ; E\left(P_{n}\right) \rightarrow\{1,2,3 \ldots n-1\}$ as follows: $f\left(e_{n-1}\right)=n-1$

$$
f\left(e_{i}\right)= \begin{cases}n-i+\frac{(i-2)}{2} & i \text { even, } 2 \leq i \leq n-3 \\ 1+\frac{(i-1)}{2} & i \text { odd, } 1 \leq i \leq n-2\end{cases}
$$

Range of f is $\{n-1\} \cup\left\{n-2, n-3, \ldots \frac{n+1}{2}\right\} \operatorname{cup}\left\{2,3,4, \ldots, \frac{n-1}{2}\right\}=\{1,2, \ldots n-1\}$, which is the same as the co-domain. Also, for any two distinct edges, $e_{1}, e_{2} \in E(G)$ and $e_{1} \neq e_{2} \Longrightarrow$ $f\left(e_{1}\right) \neq f\left(e_{2}\right)$.So f is a bijection. $w\left(v_{1}\right)=0$

$$
w\left(v_{i}\right)= \begin{cases}n-3 & \text { if } i \text { even, } 2 \leq i \leq n-3 \\ n-2 & i \text { odd } 1 \leq i \leq n \\ n-3+\left(\frac{n-1}{2}\right) & \text { if } i=n-1\end{cases}
$$

Thus, f induces a d-local antimagic coloring of P_{n}, using 4 colors, so $\chi_{d l a}\left(P_{n}\right) \leq 4$. But $\chi_{l a}\left(P_{n}\right)=3$ by Theorem 1.2, $\chi_{d l a}(G) \geq \chi_{l a}(G)$ by Theorem 2.4. So, $3 \leq \chi_{d l a}\left(P_{n}\right) \leq 4$. If possible, assume that $\chi_{d l a}\left(P_{n}\right)=3$. In the above induced coloring pattern the initial vertex v_{1} and terminal vertex v_{n} receive different colors. Also v_{n-1} receives another color.There are four cases to consider. If we consider any other case, then the adjacent vertices receive same color.
Case.1. v_{1} and v_{n-1} takes the same color. So, $n-3+\frac{n-1}{2}=0 \Longrightarrow 3 n=7$ which is not possible for the integer value of n.

Case.2. v_{1} and the odd labelled vertices, v_{i}, have the same color, So $n-2=0 \Longrightarrow n=2$, which is not possible since $n \geq 4$.
Case.3. v_{n-1} and the even labelled vertices v_{j} have the same color So $n-3=n-3+\frac{n-1}{2} \Longrightarrow$ $n=1$, which is not possible since $n \geq 4$.
Case.4. v_{1} and odd labeled vertices v_{i} have the same color. So $n-2=0 \Longrightarrow n=2$, which is not possible, since $n \geq 4$. So, our assumption is wrong. $\chi_{\text {dla }}\left(P_{n}\right) \neq 3$ By Theorem 2.4, $\chi_{d l a}(G) \geq \chi_{l a}(G)$. Hence, $\chi_{d l a}\left(P_{n}\right)=4$.

Theorem 2.7. For the cycle $C_{n}, \chi_{\text {dla }}\left(C_{n}\right)=3$

Proof: .Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots v_{n}, v_{1}\right\}$ and. $E\left(C_{n}\right)=\left\{e_{i}=v_{i} v_{i}+1,1 \leq i \leq n-1\right.$, $\left.e_{n}=v_{n} v_{1}\right\}$
Define a function $f: E\left(C_{n}\right) \rightarrow\{1,2,3, \ldots, n\}$ as follows:

$$
f\left(e_{i}\right)= \begin{cases}\frac{i+1}{2} & \text { if } i \text { odd } \\ n-\frac{i-2}{2} & i \text { is even }\end{cases}
$$

When \mathbf{n} is odd

Here the range of f is $\left\{1,2, \ldots \frac{n+1}{2}\right\} \cup\left\{n, n-1, n-2 \ldots \frac{n+3}{2}\right\}=\{1,2,3, \ldots, n\}$, which is same as the co-domain. $e_{1}, e_{2} \in E(G)$ and $e_{1} \neq e_{2} \Longrightarrow f\left(e_{1}\right) \neq f\left(e_{2}\right)$. So f is a bijection.

When \mathbf{n} is even

Here the range of f is $\left\{1,2, \ldots, \frac{n}{2}\right\} \cup\left\{n, n-1, n-2, \ldots \frac{n}{2}+1\right\}=\{1,2,3, \ldots, n\}$, which is same as the co-domain. $e_{1}, e_{2} \in E(G)$ and $e_{1} \neq e_{2} \Longrightarrow f\left(e_{1}\right) \neq f\left(e_{2}\right)$. So f is a bijection.

$$
w\left(v_{i}\right)= \begin{cases}n-1 & \text { if } i \text { even } \\ n & i \text { odd }, i \neq 1 \\ \left\lfloor\frac{n}{2}\right\rfloor & \text { if } i=1\end{cases}
$$

So, f is a d- local antimagic labeling of C_{n} and f induces a proper vertex coloring using only 3 colors. Hence $\chi_{\text {dla }}\left(C_{n}\right) \leq 3$. By Theorem 1.3, $\chi_{l a}\left(C_{n}\right)=3$. By Theorem 2.4, $\chi_{d l a}(G) \geq$ $\chi_{l a}(G)=3$. Hence, $\chi_{d l a}\left(C_{n}\right)=3$.

Theorem 2.8. For a complete Bipartite graph $K_{m, 2}, \chi_{d l a}\left(K_{m, 2}\right)=3$ where $m \geq 3$
Proof: Let $V=\left\{v_{1}, v_{2}, v_{3}, \ldots v_{n}\right\}$ and $U=\left\{u_{1}, u_{2}\right\}$ be the bipartition of $K_{m, 2}$ Define a functiojn $f: E\left(K_{m, 2}\right) \rightarrow\{1,2,3, \ldots, 2 m\}$ as follows:
$f\left(v_{i} u_{1}\right)=i, 1 \leq i \leq m, f\left(v_{i} u_{2}\right)=2 m-(i-1), 1 \leq i \leq m$
Here the range of f is $\{1,2,3, \ldots, m\} \cup\{2 m, 2 m-1,2 m-2, \ldots, m+1\}=\{1,2,3, \ldots, 2 m\}$, which is same as the co-domain. $e_{1}, e_{2} \in E(G)$ and $e_{1} \neq e_{2} \Longrightarrow f\left(e_{1}\right) \neq f\left(e_{2}\right)$. So f is a bijection.

$$
\begin{gathered}
w\left(v_{i}\right)=2 m-1 \forall 1 \leq i \leq m, \\
w\left(u_{i}\right)=\frac{m(m+1)}{2}-m, \\
w\left(u_{2}\right)=\frac{m(3 m+1)}{2}-m
\end{gathered}
$$

Then, f is a d- local antimagic labeling of $K_{m, 2}$ and f induces a proper vertex coloring. The number of colors used are 3. Hence $\chi_{d l a}\left(K_{m, 2}\right) \leq 3$. By theorem $1.4 \chi_{l a}\left(K_{m, 2}\right)=2$ if n is even and $\chi_{l a}\left(K_{m, 2}\right)=3$ if n is odd. By Theorem 2.4, $\chi_{d l a}(G) \geq \chi_{l a}(G)=3$. So, $\chi_{d l a}\left(K_{m, 2}\right)=3$.

Theorem 2.9. In any star $K_{1, n}, n \geq 3$, if each edge is subdived by one vertex the d-local antimagic Chromatic number will be increased by one, and if each edge is subdivided by two vertices the d-local antimagic Chromatic number will be increased by two

Proof. Let v as the apex vertex and $v_{2}, v_{3}, \ldots v_{n}$ are the pendent vertices of the graph $K_{1, n}$. Let u_{i} be the vertices inserted on each $v v_{i}$. The resulting graph,say H has $2 n+1$ vertices and $2 n$ edges. Let these edges are $e_{2 i-1}=v_{i} u_{i}, 1 \leq i \leq n$ and $e_{2 i}=u_{i} v, 1 \leq i \leq n$. Define a function $f: E(H) \rightarrow\{1,2,3, \ldots 2 n\}$ as follows: $f\left(e_{2 i-1}\right)=1+(i-1), 1 \leq i \leq n, f\left(e_{2 i}\right)=(2 n+1)-i$, $1 \leq i \leq n$. Here the range of f is $\{1,2,3 \ldots . . n,\} \cup\{2 n, 2 n-1, \ldots, n+1\}=\{1,2,3, \ldots e n\}$ which is the co-domain of f. Also, $e_{1}, e_{2} \in E(G)$ and $e_{1} \neq e_{2} \Longrightarrow f\left(e_{1}\right) \neq f\left(e_{2}\right)$. So f is a bijection.

$$
\begin{gathered}
w\left(v_{i}\right)=i-1, \text { if } 1 \leq i \leq n \\
w\left(u_{i}\right)=2 n-1 \text { if } 1 \leq i \leq n, \\
w(v)=\frac{n}{2}(3 n+1)-n
\end{gathered}
$$

. All the v_{i} 's receive n different colors, all the u_{i} 's receive the same color $2 n-1$ and apex vertex v receives another color, so we use in total $n+2$ colors only. $\chi_{d l a}(H) \leq n+2$. Arumugam et al. [1] proved that $\chi_{l a}(H) \geq n+1$. So, $n+1 \leq \chi_{d l a}(H) \leq n+2$. Assume that $\chi_{l a}(H)=n+1$. The apex vertex v is adjacent to u_{i} 's. So color of v and u_{i} 's are different. Again u_{i} 's are adjacent to v_{i} 's, $1 \leq i \leq n$. So the color of u_{i} 's and v_{i} 's are different, $1 \leq i \leq n$. The only possibility of obtaining the chromatic number as $n+1$ is that n the color of v and the color of v_{i} 's are the same. So $\frac{n}{2}(3 n+1)-n=n-1$ gives $3 n^{2}-3 n+2=0$. Solving we can obtaining an integer value for n. So our assumption is wrong. Hence $\chi_{\text {dla }}(H) \neq n+1$. So $\chi_{d l a}(H)=n+2$.
Again consider the subdivision of each edge with two vertices. Let v as the apex vertex and $v_{1}, v_{2}, v_{3}, \ldots v_{n}$ are the pendent vertices of the graph $K_{1, n}$. Let us subdivide $v v_{i}$ with two vertices such that u_{i} be adjacent to each v_{i} and w_{i}. The resulting graph say H_{1} has $3 n+1$ vertices and $3 n$ edges.

$$
\begin{gathered}
e_{3 i-2}=v_{i} u_{i}, 1 \leq i \leq n, \\
e_{3 i-1}=u_{i} w_{i}, 1 \leq i \leq n, \\
e_{3 i}=w_{i} v, 1 \leq i \leq n,
\end{gathered}
$$

Define a bijection $f: E\left(H_{1}\right) \rightarrow\{1,2,3, \ldots, 3 n\}$ as follows:

$$
\begin{gathered}
f\left(e_{3 i-2}\right)=1+(i-1), 1 \leq i \leq n \\
f\left(e_{3 i-1}\right)=(2 n+1)-i, 1 \leq i \leq n \\
f\left(e_{3 i}\right)=(2 n+i), 1 \leq i \leq n
\end{gathered}
$$

The range of f is $\{1,2,3, \ldots, n\} \cup\{2 n, 2 n-1, \ldots, n+1\} \cup\{2 n+1,2 n+2, \ldots, 3 n\}$, which is $\{1,2,3, \ldots, .3 n\}$, the same as the co-domain. Also, $e_{1}, e_{2} \in E\left(H_{1}\right)$ and $e_{1} \neq e_{2} \Longrightarrow f\left(e_{1}\right) \neq$ $f\left(e_{2}\right)$. Hence, f is a bijection.

$$
\begin{gathered}
w(v)=\frac{n}{2}(5 n+1)-n \\
w\left(v_{i}\right)=i-1 \text { if } 1 \leq i \leq n \\
w\left(u_{i}\right)=2 n-1 \text { if } 1 \leq i \leq n \\
w\left(w_{i}\right)=4 n-1, \quad 1 \leq i \leq n
\end{gathered}
$$

. All the v_{i} 's receive n different colors, all the u_{1} 's receive the same color $2 n-1$, all the w_{i} 's receive the same color $4 n-1$ and apex vertex v receives another color, so we use in 6 total $n+3$ colors. $\chi_{\text {dla }}\left(H_{1}\right) \leq n+3$.

In any star $k_{1, n} ; n \geq 3$, if each edge is subdivided by one vertex each, then the d-local antimagic chromatic number will be $n+2$.If each edge of $K_{1, n} ; n \geq 3$ is subdivided by two vertices each, then the d-local antimagic chromatic number will increased or remains the same as H. In the first part we proved that $\chi_{d l a}(H)=n+2$. So, $n+2 \leq \chi_{d l a}\left(H_{1}\right) \leq n+3$ Assume $\chi_{l a}\left(H_{1}\right)=n+2$. Then the apex vertex v is adjacent to w_{i} 's, u_{i} be adjacent to each v_{i} and w_{i} be adjacent to u_{i}. There are three possibilities for our claim. (If we consider any other case, then the adjacent vertices receive same color.)
Case.1. The apex vertex, v and the vertices u_{i} 's have the same color. So $2 n-1=\frac{n}{2}(5 n+1)-n$ $\Longrightarrow 5 n^{2}-5 n+2=0$, which is not possible for integer values of n.
Case.2. The apex vertex, v and the vertices v_{i} 's have the same color. So $3 n-1=\frac{n}{2}(5 n+1)-n \Longrightarrow 5 n^{2}-7 n+2=0$ which is not possible for the integer value of n.

Case.3. v_{i} 's and the vertices w_{i} 's have the same color $n-1=4 n-1 \Longrightarrow n=0$, which is not possible. So our assumption is wrong. Hence, $\chi_{d l a}\left(H_{1}\right)=n+3$.

Theorem 2.10. In any path $P_{n}, n \geq 3$, the subdivision of each edge with a vertex, the d-local anti-magic chromatic number of the new graph P_{n}^{*} will remain the same as that of P_{n}.

Proof: Let the vertices of P_{n} be $v_{1}, v_{2}, v_{3}, \ldots v_{n}$. Let u_{i} be the vertices inserted on each v_{i}, v_{i+1}, The resulting graph P_{n}^{*} has $2 n-1$ vertices and $2 n-2$ edges. $e_{2 i-1}=v_{i} u_{i}, \quad 1 \leq i \leq n-1$ \forall odd $i, e_{2 i}=v_{i} v_{i}+1 \quad 1 \leq i \leq n-1 \quad \forall$ even i. Define a function $f: E\left(P_{n}^{*}\right) \rightarrow\{1,2,3, \ldots, 2 n\}$ as follows: $f\left(e_{i}\right)=1, \quad f\left(e_{2 n-2}\right)=2 n-2$

$$
f\left(e_{i}\right)= \begin{cases}1+\frac{i-1}{2} & \text { if } i \text { is odd, } 1 \leq i \leq 2 n-3 \\ (2 n-1)-i+\left(\frac{i-2}{2}\right) & \text { if } i \text { is even, } 2 \leq i \leq 2 n-4\end{cases}
$$

.Here the range of f is $\{1\} \cup\{2 n-2\} \cup\{2,3,4, \ldots, n-1\} \cup\{2 n-3,2 n-4, \ldots n\}=$ $\{1,2,3, \ldots 2 n-2\}$, which is same as the co-domain. $e_{1}, e_{2} \in E(G)$ and $e_{1} \neq e_{2} \Longrightarrow f\left(e_{1}\right) \neq$ $f\left(e_{2}\right)$. So f is a bijection. $w\left(v_{1}\right)=0, w\left(v_{i}\right)=2 n-3$ if $2 \leq i \leq n, w\left(u_{i}\right)=2 n-4$, if $1 \leq i \leq n-2$, $w\left(u_{n-1}\right)=3 n-5$. All the v_{i} 's take the same color $2 n-3$ except v_{1}, all the u_{i} 's take the same
color $2 n-4$, except u_{n-1}, so we use in total 4 colors. Colors of all adjacent vertices are distinct. So, f is a d- local antimagic labeling of P_{n}^{*}. Here we use only 4 colors, $\chi_{d l a}\left(P_{n}^{*}\right) \leq 4$. By Theorem 1.2, $\chi_{l a}\left(P_{n}\right)=3$. By Theorem 2.4, $\chi_{\text {dla }}(G) \geq \chi_{\text {dla }}(G)$.So $3 \leq \chi_{\text {dla }}\left(P_{n}^{*}\right) \leq 4$.
. When we subdivide each edge with a vertex then the number of edges becomes twice the number of edges of the original graph. So after carried out the subdivision, number of edges of the new graph becomes even, whenever n is odd or even.
. Assume that $\chi_{d l a}\left(P_{n}^{*}\right)=3$. There are only three possibilities to consider since the adjacent vertices receive same color in all other cases.

Case.1. v_{1} and v_{i} 's takes the same color. So $2 n-3=0 \Longrightarrow 2 n=3$, which is not possible for the integer value of n.

Case.2. When u_{n-1} and v_{1} takes the same color. So, $3 n-5=0 \Longrightarrow 3 n=5$, which is not possible for the integer value of n.
Case.3. the u_{i} 's and u_{n-1} take the same color. $2 n-4=3 n-5, \Longrightarrow n=1$, which isn not possible since $n \geq 3$. So our assumption is wrong so that $\chi_{d l a}\left(P_{n}^{*}\right)=4$.

Theorem 2.11. Let G_{n} be the graph obtained from the cycle $C_{n}, n \geq 3$ by subdividing each edge with a new vertex each. Then the d-local antimagic chromatic number of G_{n} is the same as that of C_{n}.

Proof: Let $v_{1}, v_{2}, v_{3}, \ldots v_{n}$ be the vertices of cycle C_{n}. Subdivide each edge $v_{i} v_{i+1}$, with a vertex u_{i} so that $G_{n}=\left(v_{1} u_{1} v_{2} u_{2} v_{3} \ldots u_{n} v_{1}\right), 1 \leq i \leq n$. Let the edges of G_{n} be $e_{2 i}=u_{i}, v_{i+1}, ; 1 \leq$ $i \leq n-1, e_{2 i-1}=v_{i} u_{i}, ; 1 \leq i \leq n, e_{2} n=u_{n} v_{1}$,

Define a function $f: E(G) \rightarrow\{1,2,3, \ldots 2 n\}$ as follows:

$$
f\left(e_{i}\right)= \begin{cases}\frac{i+1}{2} & \text { if } i \text { is odd, } 1 \leq i \leq 2 n-1 \\ 2 n-\left(\frac{i-2}{2}\right) & \text { if } i \text { is even, } 2 \leq i \leq 2 n\end{cases}
$$

Here the range of f is $\{1,2,3, \ldots . n\} \cup\{2 n, 2 n-1, \ldots, n+1\}=\{1,2,3, \ldots 2 n\}$ which is same as the co-domain. $e_{1}, e_{2} \in E\left(G_{n}\right)$ and $e_{1} \neq e_{2} \Longrightarrow f\left(e_{1}\right) \neq f\left(e_{2}\right)$. So f is a bijection. $w\left(v_{1}\right)=\left\lfloor\frac{2 n}{2}\right\rfloor$, $w\left(v_{i}\right)=2 n$ if $2 \leq i \leq n w\left(u_{i}\right)=2 n-1$, if $1 \leq i \leq n$. Let G_{n} be the graph obtained from the cycle $C_{n}, n \geq 3$ by subdividing each edge with a new vertex each and G_{n} itself be a cycle. Here we use only 3 colors and adjacent vertices have distinct colors so that it is a proper vertex coloring.

Hence, $\chi_{d l a}\left(G_{n}\right) \leq 3$. By Theorem 1.3, $\chi_{l a}\left(G_{n}\right)=3$. By Theorem 2.4, $\chi_{d l a}(G) \geq \chi_{l a}(G)$. Hence, $\chi_{\text {dla }}\left(G_{n}\right)=3$.

CONFLICT OF InTERESTS

The author(s) declare that there is no conflict of interests.

References

[1] S. Arumugam, K. Premalatha, M. Bača, A. Semaničová-Feňovčíková, Local antimagic vertex coloring of a graph, Graphs Comb. 33 (2017), 275-285.
[2] J. Gallian, A dynamic survey of graph labelling, Electron. J. Comb. 2012 (2012), \#DS6.
[3] H. Frank, Graph Theory, Addison Wesley, Reading Mass, (1969).
[4] N. Hartsfield, G. Ringel, Pearls in graph theory, Academic Press, Boston, (1994).
[5] Suresh Kumar J, Graph coloring parameters-a survey, Int. J. Res. Appl. Sci. Eng. Technol. 7 (2019), 153.

[^0]: *Corresponding author
 E-mail address: preethiasokar@gmail.com
 Received March 11, 2022

