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Abstract: In this work, we performed systematic tests of recently invented stable and explicit algorithms which 

preserve the positivity of the solution for the linear heat equation. It is well known that the widely used explicit finite 

difference schemes are typically unstable if the time step size is below the so called CFL limit, and even if they are 

stable, they can produce negative temperatures. However, the numerical solutions should satisfy the same properties 

as the exact solution, such as positivity. Thus, we collected the available explicit positivity preserving methods, most 

of them created by us recently to examine their performance and relative competitiveness. We tested them in the case 

of several 2D systems to find how the errors depend on the stiffness ratio and the CFL limit of the system for each 

algorithm. Then we created an anisotropic but equidistant grid by shrinking the vertical dimension of the 2D system 

and examined how this kind of anisotropy effects the errors.  

Keywords: heat equation; diffusion equation, positivity preserving methods; stiff systems; unconditional stability; 

hopscotch methods. 
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1. INTRODUCTION  

In recent years our group develops novel numerical methods for parabolic partial differential 

equations (PDEs), most importantly the heat conduction or diffusion equation and similar 

diffusion-reaction equation. In a homogeneous space, the diffusion equation has analytical 

solutions, old and new ones as well, [1], but when the material properties are functions of space, 

numerical integration is necessary. We are aware that many new and efficient methods are 

proposed and tested recently as well, [2]–[7], but here we are investigating the so-called positivity 

preserving methods. It is well known that the true solution of the heat or diffusion equation always 

follows the maximum and minimum principles [8] (p. 87). We know that these principles typically 

do not hold if there is a source term in the diffusion equation, either if it is constant, or if it is 

nonlinear, such as in the case of the Fisher and Huxley equations. But even in the latter cases, if 

the source term is necessarily positive, the dependent variable (e.g., the concentration) cannot be 

negative. It is important [9], [10] to have numerical schemes that preserve the positivity of the 

solution, because the quantities that are being modelled, concentrations of chemical species, 

populations sizes or number of neutrons, etc. are positive. Standard finite difference or finite 

element discretization does not explicitly incorporate the condition that the solutions be positive. 

So even though these algorithms usually yield positive values, due to truncation or other errors 

their solutions may become negative and non-physical. Then the solutions will usually start 

oscillating leading to numerical instabilities. That is why unconditionally positive schemes are 

investigated by some scholars [9]–[13]. We note that numerical methods that include the positivity 

of solutions have been used for ordinary differential equations, [14], [15] as well. 

This work can be considered a continuation of our previous papers, [16]–[25], in which we 

developed novel numerical algorithms to solve the heat or diffusion equation. In our case, 

maximum and minimum principles hold, thus we say a method is positivity preserving if it never 

violates this principle. It means that we use this term in a stricter sense than most of the literature. 

In this paper we perform systematic tests for systems by gradually changing some parameters of 

the grid to examine how the performance of the individual methods changes and which of them is 
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the best choice under different circumstances.   

 

2. THE EQUATIONS AND THEIR DISCRETIZATION 

If we denote the unknown function (temperature, concentration, etc.) by u, then the simplest form 

of the diffusion equation is the following linear parabolic partial differential equation (PDE):  

     
2u
u

t



= 


.              (1) 

Eq. (1) can be used if the medium where the diffusion takes place is homogeneous. Otherwise, one 

can use a more general form: 

                         ( )
u

c k u
t




= 


,                              (2) 

where, in case of conductive heat transfer, ( )k k r ,t=  , ( )c c r ,t=   and ( )r ,t =    are the heat 

conductivity, specific heat and mass density, respectively. These quantities cannot be negative and 

the / ( )k c=    relation connects the four quantities. We consider the initial function ( )0u t =  as 

given, while the boundary conditions will be specified when we present the concrete examples. 

Eq. (1) is usually spatially discretized in one dimension by applying the well-known central 

difference formula for obtain a system of ordinary differential equations (ODEs) for nodes 

1 2i ,...,N= − : 

                        
2

i i-1 i i+12du u u u

dt x


− +
=


                      (3) 

In this paper, we don’t exactly follow this formalism as explained in the following. We examine 2 

space-dimensional, topologically rectangular meshes where the total number of cells is x zN N N= . 

The space step size (dimensions of the cells) in the horizontal and vertical directions is denoted by 

1ix , i ,...,N =   and 1kz , k ,...,N =  , respectively. The mesh is general in the sense that these 

quantities are not necessarily equal, i.e., 1i i kx x z+      can happen. Moreover, the k, c, and ρ 

quantities, which represent the material properties, can be functions of the space variables. Now 
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we give briefly the essential elements of the generalization procedure which is explained in more 

details in our previous papers, Kovács et al., [18], [22], [26] (which is based on the appropriate 

literature, e.g. Chapter 5 of the book, M. Munka and J. Pápay [27]). The (2-dimensional) volume 

of the cell can be given as i i iV x z=   , and with this the heat capacity of the cells can be calculated 

as i i i iC c V=  , while the thermal resistance between the cells in the x and z direction is 

, 1
, 1

i

i
i i

i i

x
Rx

k z
+

+





 and ,

,

i

i
i Nx i

i Nx i

z
Rz

k x
+

+





, provided that the cell has a right and lower neighbor, 

respectively. Figure 1 is presented to help the reader to visualize this system.  

 

Figure 1. Arrangement of the generalized variables for the case when the mesh is not necessarily regular. 

The red double arrow is for conduction between cells with neighboring capacities indexed with number 3 

and 4 through the resistance R34.  

 

Now the spatially discretized form of Eq. (2) can be written as follows:  

                             
j ii

ij ij

u udu

dt R C

−
= ,                          (4) 

where the summation is going over all neighbors of the cell i, i.e.,  1 1 x xj i , i , i N , i N − + − +  

for an inner cell. Eq. (4) is the generalization of Eq. (3) in the sense that if the definition of the 

volume, capacity and resistance is substituted back to (4) in the case of an equidistant 1D mesh, 

we obtain (3).  

Equation systems (3) and (4) can be written into a matrix-form:  
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du

Mu
dt

=                                      (5) 

In the one-dimensional case of Eq. (3), the matrix M is tridiagonal with the following elements: 

ii i,i+1 i,i 12 2 2

2
(1 ), (1 ), (1 )m i N m i N m i N

x x x

  
−= −   =   =  

  
   (6-a) 

In the general case of Eq. (4), the nonzero elements of the matrix can be given as:  

                        
ij ii ij

, ji i j i

1
,m m m

R C 

= = −                            (6-b) 

The characteristic time or time constant τi of cell i can be introduced, which is always a non-negative 

quantity: 

                               ( )
1

iii m
−

−                      (7) 

The time variable is discretized by setting time levels according to the standard rules: 

0 1nt nh , n ,...,T= = − . We introduce the following notations for practical reasons 

                        

j j i

j
ij j

ij

 and i i
i i

n
n

i

uh
r A h m u h

C R  

= = =                    (8) 

The quantity ri is similar to the standard mesh ratio 
2

h
r

x


=


, while the Ai collects the effect coming 

from the neighbors of the cell i.  

 

3. DESCRIPTION OF THE APPLIED METHODS 

First, we need to recall the original UPFD, the CNe, the two- and three-stage linear-neighbor (LNe 

and LNe3) methods and the CpC algorithms. 

The unconditionally positive finite-difference (UPFD) method was introduced by Chen-

Charpentier and Kojouharov [9], [11] in 2013 for advection–diffusion reaction equations. In the 

case or Eq. (1) the algorithm reads as follows: 

                         
( )n

1 1n 1

1 2

n n
i i i

i

u r u u
u

r

− ++
+ +

=
+

 ,                      (9) 

and the general form for Eq. (2) is: 
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n

n 1

1 2

i

i

i
i

u A
u

r

+ +
=

+
                             (10) 

We emphasize that this method was not invented by us but other scholars, while all the upcoming 

8 methods are our constructions. 

The second formula we use is the constant neighbor (CNe) method, which is introduced and tested 

in our papers, Kovács et al., [17], [18]. In the simplest case of Eq. (1),  

                           ( )2 21 1 1 1
2

n n
n n i i
i i

r ru u
u u e e− −+ − ++

=  + −                       (11) 

While for general grids it is: 

                          ( )i i1

i

1in n
i i

r rA
u u e e

r

− −+ =  + −                      (12) 

The third and fourth methods we use are the 2 and 3 stage linear-neighbor (LNe and LNe3) 

methods, which are introduced in our paper, Kovács [18]. They are based on the CNe method, 

which is used as a predictor to calculate new CNe
iu  values valid at the end of the actual time step. 

Using them we can recalculate new

j i

CNe
j

ij
i

i

u
A h

C R

=  , with which we can make the corrector step for 

the two-stage LNe method as follows: 

          
i

i

new new
n+1 n i i i i
i i i

i i i

1
r

r A A A Ae
u e A

r r r
u

−
−  − −−

+ − +  
 

=                 (13) 

The values given in (13) can be used to recalculate again 
new
iA  which makes sense to repeat (13) 

to obtain even more accurate results, which is called three-stage LNe3 method. We mention that 

this iteration can be repeated even more times to obtain LNe4, etc. methods, but as we showed in 

our paper, Kovács [18], usually these don’t significantly improve the accuracy.   

The fifth method we examine is the two-stage Constant-neighbor (briefly: CpC) algorithm which 

is introduced in our paper, Kovács et al., [25]. This generally starts with a fractional time step with 

length ph, but here we take 1
2

p = , because it is the simplest and usually the most accurate choice.  
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So, at the first stage, we can calculate new predictor values of the variables, but with a 
1 2h h /=   

time step:  

                            ( )/2 /2Cp n i
ii

i

1i ir rA
u u e e

r

− −
= + − .                       (14) 

At the second stage, we can recalculate the values 

                              
new

j i

Cp
j

ij
i

i

u
A h

C R

=  ,                       (15) 

and take a full-time step size corrector step. Thus, the final values at the end of the time step are 

                             ( )i i

new
1

i

1in n
i i

r rA
u u e e

r

− −+ =  + −               (17) 

Now let us turn the attention to the hopscotch-type methods. First, we recall the original OEH 

method, where we need to construct a bipartite grid, in which the set of nodes (or cells) is divided 

into two similar subsets, the odd and even nodes, such that all nearest neighbors of even nodes are 

odd nodes and vice versa, like on a checkerboard. We treat the odd nodes in the first stage in odd 

time steps, and only the u values belonging to the beginning of the time step are used. Then, in the 

second stage, the new values of odd neighbors, which have just been calculated, are used, when 

the values of their even neighbors are calculated. The roles of the nodes are interchanged when 

even time steps start, as shown in Figure (2-a). 

The original OEH method applies the standard explicit Euler formula in the first stage and the 

implicit Euler formula in the second stage. This is a powerful explicit method which is 

unconditionally stable for the heat equation, but it is far from being positivity preserving. In fact, 

as we have shown in, Kovács et al., [21], the deviation from the true values can be very large in case 

of stiff systems. Therefore, we substitute all the formulas by the CNe scheme (12) to obtain our 

sixth method denoted by OEH-CNe.  

For the seventh method, we modify the time and space structures of the original OEH method to 

construct the so called shifted-hopscotch method, Kovács et al., [22], as follows. The calculation 

starts with taking a half-sized time step for the odd nodes which is symbolized by a light green box 
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containing the number 0 in Figure (2-b). Then, a full-time step is taken for the even nodes, then 

for the odd nodes and for the even nodes again. Finally, a half-size time step closes the calculation 

of the values. We use the latest available u values of the neighbors in each stage, so that the method 

is fully explicit and the previous values do not need to be stored at all. We have a structure 

consisting of five stages, which correspond to five partial time steps, which altogether spanned 

two-time steps for odd and even cells, too. In Figure (2-b), the number "0" means that this stage is 

implemented only once and is not repeated. Also, T must be an even integer because the stages 1–

4 are repeated T/2 times (including the last, halved stage 4). So, finally, we have five different 

stages from 0 to 4. 

Whereas in the case of the new leapfrog-hopscotch method, the calculation starts with taking a 

half-sized time step for the odd nodes using the initial values, Kovács et al., [23]. Then, for the even 

and odd nodes, full-time steps are taken strictly alternately until the end of the last timestep (dark 

green box in Figure 2-c), which should also be halved for odd nodes to reach exactly the same time 

point as the even nodes. 

The last of our method is called asymmetric hopscotch (ASH), Fig. (2-d), similar to what was 

published in a previous paper, Kovács et al., [24]. This method uses only three stages instead of 

four. It means that the calculation starts with taking a half-sized time step for the odd nodes and 

full-time step for the even nodes, finally, a half-size time step closed the calculation of the values. 

 
  Figure 2.  The stencil of the odd-even hopscotch structures for two nodes. (a) The OEH. (b) The 

shifted-hopscotch. (c) The leapfrog-hopscotch. (d) The asymmetric hopscotch. 
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Here it should be noted that we used only CNe formula with all stages in these structures because 

in previous papers, Kovács et al., [22], [23] we showed that among the positivity preserving 

combinations the full CNe was the best. In the case of halved time steps, the quantities ir  and iA  

must be divided by 2.  

As one can see in Figure 2, in case of the SH method, there were five-time steps (five stages) 

altogether, instead of four, while in the case of the ASH scheme, there were 3-time steps instead 

of two.  Therefore, for the sake of correctness, we used the effective time step size as 4
EFF 5h h=  

and 2
EFF 3h h=  for the SH and the ASH method, respectively, when the errors were plotted as a 

function of the time step sizes. 

In our previous publications it has been proved that for all the methods presented here, the new 

value of 
1n

iu +
  is the convex combination of the old values 

n
ju  , thus all of these methods are 

automatically unconditionally positive when applied to the linear heat equation. 

 

4. RESULTS OF THE SYSTEMATIC TESTING AND DISCUSSION  

4.1. General definitions and investigation circumstances 

  We consider the 2D system described in Section 2 as thermally isolated (zero Neumann 

boundary conditions). Let us denote by λMIN and λMAX the eigenvalues of the system matrix M with 

the (nonzero) smallest and the largest absolute values, respectively. Now, λMAX/λMIN gives the 

stiffness ratio of the system, and the maximum possible time step size for the FTCS (explicit Euler) 

scheme is exactly given by 2 / ,MAX

FTCS
MAXh =  above which the solutions are expected to diverge 

due to instability. This FTCS
MAXh  threshold time step size is frequently called the CFL limit and valid 

for the second order explicit Runge-Kutta (RK) methods as well. We stress again that this 

restriction is absolutely not valid for the methods presented here, but these two numbers give 

information about the difficulty level of the problem.  
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  In the first type of our experiments, randomly generated cell capacities and thermal resistances 

following a log-uniform distribution 

i x,i z,i
( ) ( ) ( )10 1, ,0 10C C Rx Rx Rz Rzrand rand randC R R
     −  −  − = = =  

  have been given to the cells. The parameters C C Rx Rx Rz Rz, , , , ,       of the distribution 

of the mesh-cells data have been chosen to construct test problems with various stiffness ratios. 

More concretely, we used the parameters shown in Table 1. 

Table 1 The parameters used in algorithms 

 

  The size of the grid is fixed to 50xN =  and 50zN = , thus the total cell number is 2500, while 

the final time is fin 0.2t = . 

  The numerical error is calculated by comparing our numerical solutions 
num
ju  produced by the 

examined method with the reference solution 
ref
ju at final time fint .The reference solution is given 

by the “ode15s” routine of MATLAB with large prescribed accuracy. We use the following three 

types of (global) error. The first one is the maximum of the absolute differences: 

                       
ref num
j fin j fin

0 j
Error( ) max ( ) ( )

N
L u t u t

 
= −                   (18) 

  The second one is the average absolute error:  

                        
ref num

1 j fin j fin

0 j

1
Error( ) ( ) ( )

N

L u t u t
N  

= − .                      (19) 
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  We call the third one energy error, because it gives the error in terms of energy in case of the heat 

equation: 

                     
ref num
j fin j fin

1 j
jError( ) ( ) ( )

N

Energy C u t u t
 

= −                (20) 

  For different algorithms these errors depend on the time step size (and the system parameters) 

in different ways. Thus, we first calculated the solution with a large time step size (which was 

fin / 4t ), then repeated the calculation for subsequently halved time step sizes S=15 times until h 

reached a small value. Now the aggregated relative error (ARE) quantities for each type of errors 

defined above are calculated as an average of these errors. For example, in the case of the L error, 

it has the following form: 

                          ( )
1

1
ARE( ) log Error( )

S

i

L L
S

 

=

=                  (21) 

  Finally, the simple average of the three kinds of errors also can calculated: 

                      ( )1

1
ARE ARE( ) ARE( ) ARE( )

3
L L Energy= + +             (22) 

4.2. Comparison between positivity preserving methods for a mildly stiff system 

First, we examined the following concrete parameter-combination, 

1 1 1 1 0 0c c Rx Rx Rz Rz, , , , , , = −  = +  = −  = +  =  =  

which configuration has number 3 in Table 1 and categorized as mildly stiff.  

We have plotted the L  errors as a function of the effective time step size EFFh  and as a function 

of the running times for all methods. In Figure 3 we present the L  error as a function of the 

effective time step size EFFh   for the nine positivity preserving methods defined in Section 3, 

while in Figure 4 one can see the L  errors vs. the total running times. 

  One can see the LNe3 scheme is the most accurate, but the accuracy of the LH-CNe as well as 

the SH-CNe and ASH-CNe methods approach it. However, since the LNe3 is a three-stage method, 

it is slightly slower for the same accuracy than the LH-CNe, SH-CNe and ASH-CNe.  
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Figure 3. The L  errors as a function of the effective time step size ( EFFh ) for the (Mildly Stiff) system, 

in the case of the UPFD, CNe, CpC, LNe2, LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and the ASH-

CNe methods. 

   

Figure 4. The L  errors as a function of the running times for the (mildly stiff) system, in the case of the 

UPFD, CNe, CpC, LNe2, LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and the ASH-CNe methods. 
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4.3. Comparison between positivity preserving methods for a large, very stiff 

system 

We put new values for the α and β parameters for the very stiff system in the second case study: 

 

3 3 2 2 2 2c c Rx Rx Rz Rz, , , , , , = −  = +  = −  = +  = −  = +  

In Figures 5 and 6, the L  error is presented as a function of the effective time step size EFFh   

and the total running time, respectively. 

We can see that in this case, the LH-CNe method outperforms all other examined positivity 

preserving methods provided that not only the accuracy, but also the speed, is taken into account.  

In Table 2, the data related to this numerical experiment is reported. 

   

Figure 5. The L  errors as a function of the effective time step size ( effh ) for the (very Stiff) system, in 

the case of the UPFD, CNe, CpC, LNe2, LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and the ASH-

CNe methods. 
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Figure 6. The L  errors as a function of the running times for the (very Stiff) system, in the case of the 

UPFD, CNe, CpC, LNe2, LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and the ASH-CNe methods. 

 

Table 2. Comparison the UPFD, CNe, CpC, LNe2, LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and 

the ASH-CNe methods for the very stiff system of 2500 cells. 

Numerical Method ( )LError   1( )LError  Energy Error  Running Time (sec)  

UPFD, 55 10h −=   34.012 10−  41.44 10−  0.753  0.2128  

CNe, 55 10h −=   32.046 10−  56.46 10−  0.4042  0.3947  

CpC, 55 10h −=   43.034 10−  67.093 10−  0.0333  0.357  

LNe2, 55 10h −=   42.622 10−  67.8522 10−  0.0448  0.5898  

LNe3, 55 10h −=   59.6 10−  63.22 10−  0.02698  0.935  

OEH-CNe, 55 10h −=   47 10−  51.845 10−  10.995 10−  0.4788  

SH-CNe, 55 10h −=   42.16 10−  65.49 10−  10.315 10−  0.317  

LH-CNe, 55 10h −=   42.16 10−  65.49 10−  10.315 10−  0.477  

ASH-CNe, 55 10h −=   69.4 10−  72.44 10−  31.5 10−  0.7048  
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4.4. Comparison the ARE errors between positivity preserving methods as a 

function of hMAX and stiffness ratio 

Figures 7 and 8 show ARE errors as a function of hMAX and stiffness ratio, respectively. We note 

the stiffness ratio affected on the accuracy of methods when they increased, so the accuracy 

becomes worse compared to the cases of small stiff ratios. 

 

 

Figure 7. The (ARE) errors as a function of hMAX in the case of the UPFD, CNe, CpC, LNe2, LNe3, the 

OEH-CNe, the SH-CNe, the LH-CNe and the ASH-CNe methods. 
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Figure 8. The (ARE) errors as a function of Stiff Ratio in the case of the UPFD, CNe, CpC, LNe2, LNe3, 

the OEH-CNe, the SH-CNe, the LH-CNe and the ASH-CNe methods. 

 

We summarize the ARE error quantities, defined in Equation (22), for both case studies in the 

following table: 

Table 3. ARE (average relative error) quantities of different explicit stable algorithms. 

Numerical Method ARE (Mildly Stiff) ARE (Very Stiff) 

UPFD  37.4544−  23.1613−  

CNe 42.0347−  25.9−  

CpC 80.778−  40.07−  

LNe2 79.6922−  39.228−  

LNe3 84.346−  43.75−  

OEH-CNe 72.9442−  35.09−  

SH-CNe 81.467−  41.4367−  

LH-CNe 81.4812−  41.428−  

ASH-CNe   81.376−  41.394−  
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4.5. Comparison the ARE errors between positivity preserving methods as a 

function of anisotropy coefficient (AC) 

  First, we solve PDE (1) with 1 = , on the unit square ( )    0 1 0 1x,z , ,  . The initial condition 

is the product of two sine functions: 

                           ( , , 0) sin( )sin( )u x z t x k z = = ,          (23) 

  where the wave number k is currently fixed to k =1. The simplest zero Dirichlet boundary 

conditions are used 

  ( 0, , ) ( 1, , ) ( , 0, ) ( , 1, ) 0u x z t u x z t u x z t u x z t= = = = = = = = , 

The analytical solution of this problem is obviously 

                           
( )2 21

( , ) sin( )sin( )e
k t

u x t x k z


 
− +

= .           (24) 

  We apply an equidistant grid to discretize the space variables first we take 0 02x . =  , 

0 02z . = . 

The number of cells along the axis x and z are set again to 50xN =  and 50zN = . Thus, we have a 

grid with total cell number 50 50 2500x zN N N=  =  = . 

   Then we performed systematic experiments by decreasing the dimension of the system as well 

as the cells in the z direction to introduce anisotropy into the grid. It means z  is subsequently 

decreased by a factor of 2, first to  ∆𝑧 = 0.5, then to ∆𝑧 = 0.25 , etc. It is convenient to introduce 

the following anisotropy coefficient: 

x
AC

z


=


. 

Then we examined the aggregated errors as a function of this anisotropy coefficient AC. Of course, 

the initial condition function in (23) and the exact solution must be also adjusted with recalculating 

the wave number 
12ACk −= . In Figure 9, ARE errors are presented as a function of the anisotropy 

coefficient AC. We note the relative advantage of LNe3 method increased whereas relative 

disadvantage of other methods is also increased. In Table 4, we give hMAX and the stiffness ratio 

for some AC values. 
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Figure 9. The (ARE) errors as a function of anisotropy coefficient AC in the case of the UPFD, CNe, CpC, 

LNe2, LNe3, the OEH-CNe, the SH-CNe, the LH-CNe and the ASH-CNe methods. 

 

Table 4. hMAX and stiffness ratio quantities of different AC values. 

Anisotropy coefficient hMAX Stiffness Ratio 

1 41.0423 10−  32.025 10+  

10 62.0639 10−  51.0227 10+  

100 82.084 10−  71.0127 10+  

1000 102.084 10−  91.0123 10+  

 

5. SUMMARY AND CONCLUSIONS  

In this work, we conducted systematic tests of nine explicit numerical algorithms which introduced 

in previous papers to solve the heat equation. All of the methods preserve the positivity of the 

solutions, thus stable regardless of the time step size and the stiffness of the system. First, we 

examined two-dimensional stiff systems containing 2500 cells each with completely discontinuous 

random parameters and discontinuous initial conditions. We observed that the 3-stage LNe3 
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method produced the most accurate results for a given time step size, but the LH-CNe method (and 

sometimes the SH-CNe method) requires the least CPU time to reach any prescribed accuracy. The 

increasing stiffness ratio and the decreasing CFL limit decreased the accuracy of methods, and the 

advantage of the best methods compared to the worst are decreased.  

We also examined the performance of the method for different levels of spatial anisotropy. We 

obtained that if the difference between the horizontal and vertical dimensions of the cells are 

increasing, the advantage of the LNe3 method and the disadvantage of the first order methods are 

increasing. 

We can conclude that if there is a possibility to construct the OEH structure (because the mesh is 

rectangular) than the hopscotch-CNe methods, especially the LH-CNe is the most effective among 

the positivity preserving methods, except when the anisotropy is strong. However, if an 

unstructured mesh is given, the LNe3 method is the most effective. For a very anisotropic system, 

for example a thin and wide layer, we also propose the LNe3 method. 

 

CONFLICT OF INTERESTS 

The author(s) declare that there is no conflict of interests. 

 

REFERENCES 

[1] I.F. Barna, L. Mátyás, General self-similar solutions of diffusion equation and related constructions, (2021). 

http://arxiv.org/abs/2104.09128. 

[2] N.A. Mbroh, J.B. Munyakazi, A robust numerical scheme for singularly perturbed parabolic reaction-diffusion 

problems via the method of lines, Int. J. Computer Math. 99 (2022), 1139–1158. 

[3] I. Ali, S. Haq, K.S. Nisar, S.U. Arifeen, Numerical study of 1D and 2D advection-diffusion-reaction equations 

using Lucas and Fibonacci polynomials, Arab. J. Math. 10 (2021) 513–526. 

[4] A.K. Verma, S. Kayenat, An efficient Mickens’ type NSFD scheme for the generalized Burgers Huxley equation, 

J. Differ. Equ. Appl. 26 (2020), 1213–1246. 

[5] S. Pourghanbar, J. Manafian, M. Ranjbar, A. Aliyeva, Y.S. Gasimov, An efficient alternating direction explicit 



20 

ISSA OMLE, ALI HABEEB ASKAR, ENDRE KOVÁCS 

method for solving a nonlinear partial differential equation, Math. Probl. Eng. 2020 (2020), 9647416. 

[6] A. Al-Bayati, S. Manaa, A. Al-Rozbayani, Comparison of finite difference solution methods for reaction 

diffusion system in two dimensions, AL-Rafidain J. Computer Sci. Math. 8 (2011), 21–36. 

[7] A. Costa-Solé, E. Ruiz-Gironés, J. Sarrate, High-order hybridizable discontinuous galerkin formulation for one-

phase flow through porous media, J. Sci. Comput. 87 (2021), 1–31. 

[8] M. H. Holmes, Introduction to perturbation methods, vol. 20. Springer Science \& Business Media, 2012. 

[9] B.M. Chen-Charpentier, H.V. Kojouharov, An unconditionally positivity preserving scheme for advection–

diffusion reaction equations, Math. Computer Model. 57 (2013), 2177–2185. 

[10] A.R. Appadu, Performance of UPFD scheme under some different regimes of advection, diffusion and reaction, 

Int. J. Numer. Methods Heat Fluid Flow. 27 (2017), 1412–1429. 

[11] B. Drljača, S. Savović, Unconditionally positive finite difference and standard explicit finite difference schemes 

for power flow equation, Univ. Thought Publ. Nat. Sci. 9 (2019), 75–78. 

[12] S. Savović, B. Drljača, A. Djordjevich, A comparative study of two different finite difference methods for solving 

advection–diffusion reaction equation for modeling exponential traveling wave in heat and mass transfer 

processes, Ricerche Mat. (2021). https://doi.org/10.1007/s11587-021-00665-2. 

[13] M.M. Khalsaraei, F. Khodadosti, Nonstandard finite difference schemes for differential equations, Sahand 

Commun. Math. Anal. 1 (2014), 47-54. 

[14] H. Burchard, E. Deleersnijder, A. Meister, A high-order conservative Patankar-type discretisation for stiff 

systems of production--destruction equations, Appl. Numer. Math. 47 (2003), 1–30. 

[15] D.T. Dimitrov, H.V Kojouharov, Positive and elementary stable nonstandard numerical methods with 

applications to predator--prey models, J. Comput. Appl. Math. 189 (2006), 98–108. 

[16] E. Kovács, A. Gilicz, New stable method to solve heat conduction problems in extremely large systems, Des. 

Mach. Struct. 8 (2018), 30–38. 

[17] E. Kovács, New stable, explicit, first order method to solve the heat conduction equation, J. Comput. Appl. Mech. 

15 (2020), 3–13. 

[18] E. Kovács, A class of new stable, explicit methods to solve the non-stationary heat equation, Numer. Methods 

Partial Differ. Equ. 37 (2020), 2469–2489. 



21 

EXPLICIT POSITIVITY PRESERVING ALGORITHMS FOR THE HEAT-EQUATION 

[19] M. Saleh, Á. Nagy, E. Kovács, Construction and investigation of new numerical algorithms for the heat equation: 

Part 1, Multidiszcip. Tudományok. 10 (2020), 323–338. 

[20] M. Saleh, Á. Nagy, E. Kovács, Construction and investigation of new numerical algorithms for the heat equation: 

Part 2, Multidiszcip. Tudományok. 10 (2020), 339–348. 

[21] M. Saleh, Á. Nagy, E. Kovács, Construction and investigation of new numerical algorithms for the heat equation : 

Part 3, Multidiszcip. Tudományok. 10 (2020), 349–360. 

[22] Á. Nagy, M. Saleh, I. Omle, H. Kareem, E. Kovács, New stable, explicit, shifted-hopscotch algorithms for the 

heat equation, Math. Comput. Appl. 26 (2021), 61. 

[23] Á. Nagy, I. Omle, H. Kareem, E. Kovács, I.F. Barna, G. Bognar, Stable, explicit, Leapfrog-Hopscotch algorithms 

for the diffusion equation, Computation. 9 (2021), 92. 

[24] O. Issa, New explicit algorithm based on the asymmetric hopscotch structure to solve the heat conduction 

equation, Multidiszcip. Tudományok, 11 (2021), 233–244. 

[25] E. Kovács, Á. Nagy, M. Saleh, A set of new stable, explicit, second order schemes for the non-stationary heat 

conduction equation, Mathematics. 9 (2021), 2284. 

[26] M. Saleh, Á. Nagy, E. Kovács, Construction and investigation of new numerical algorithms for the heat equation: 

Part 1, Multidiszcip. Tudományok. 10 (2020), 323–338. 

[27] M. Munka, J. Pápay, 4D numerical modeling of petroleum reservoir recovery. Budapest: Akadémiai Kiadó, 2001. 

 


