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Abstract. Let G be a (p,q) graph and let A be a group. Let f : V (G) −→ A be a map. For each edge uv assign

the label
⌊

o( f (u))+o( f (v))
2

⌋
. Here o( f (u)) denotes the order of f (u) as an element of the group A. Let I be the set of

all integers that are labels of the edges of G. f is called a group mean cordial labeling if the following conditions

hold:

(1) For x,y ∈ A, |v f (x)− v f (y)| ≤ 1, where v f (x) is the number of vertices labeled with x.

(2) For i, j ∈ I, |e f (i)− e f ( j)| ≤ 1, where e f (i) denote the number of edges labeled with i.

A graph with a group mean cordial labeling is called a group mean cordial graph. In this paper, we take A as the

group of fourth roots of unity and prove that, the graphs Ladder, Slanting Ladder, Triangular Ladder, Fan, Flower

and Sunflower are group mean cordial graphs.
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1. INTRODUCTION

Graphs considered here are finite, undirected and simple. Terms not defined here are used in

the sense of Harary [4] and Gallian [3]. Somasundaram and Ponraj [6] introduced the concept
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of mean labeling of graphs.

Definition 1.1. [6] A graph G with p vertices and q edges is a mean graph if there is an injective

function f from the vertices of G to 0,1,2, ...,q such that when each edge uv is labeled with
f (u)+ f (v)

2 if f (u)+ f (v) is even and f (u)+ f (v)+1
2 if f (u)+ f (v) is odd then the resulting edge

labels are distinct.

Cahit [2] introduced the concept of cordial labeling.

Definition 1.2.[2] Let f : V (G)→ {0,1} be any function. For each edge xy assign the label

| f (x)− f (y)|. f is called a cordial labeling if the number of vertices labeled 0 and the number

of vertices labeled 1 differ by at most 1. Also the number of edges labeled 0 and the number of

edges labeled 1 differ by at most 1.

Ponraj et al. [5] introduced mean cordial labeling of graphs.

Definition 1.3.[5] Let f be a function from the vertex set V (G) to {0,1,2}. For each edge

uv assign the label
⌈

f (u)+ f (v)
2

⌉
. f is called a mean cordial labeling if

∣∣v f (i)− v f ( j)
∣∣ ≤ 1 and∣∣e f (i)− e f ( j)

∣∣ ≤ 1, i, j ∈ {0,1,2}, where v f (x) and e f (x) respectively denote the number of

vertices and edges labeled with x (x = 0,1,2). A graph with a mean cordial labeling is called a

mean cordial graph.

Athisayanathan et al. [1] introduced the concept of group A cordial labeling.

Definition 1.4.[1] Let A be a group. We denote the order of an element a ∈ A by o(a). Let

f : V (G)→ A be a function. For each edge uv assign the label 1 if (o( f (u)),o( f (v))) = 1or 0

otherwise. f is called a group A Cordial labeling if |v f (a)−v f (b)| ≤ 1 and |e f (0)−e f (1)| ≤ 1,

where v f (x) and e f (n) respectively denote the number of vertices labelled with an element x and
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number of edges labelled with n(n = 0,1). A graph which admits a group A Cordial labeling is

called a group A Cordial graph.

Motivated by these , we define group mean cordial labeling of graphs.

For any real number x, we denoted by bxc, the greatest integer smaller than or equal to x and

by dxe, we mean the smallest integer greater than or equal to x.

2. PRELIMINARIES

Definition 2.1. The graph Ln = Pn×P2 is called a Ladder graph.

Definition 2.2. The Trianular ladder, T (Ln) is a graph obtained from the Ladder graph, Ln by

adding the edges u jv j+1,(1≤ j ≤ n−1), where u j,v j(1≤ j ≤ n), are the vertices of Ln.

Definition 2.3. A Slanting ladder, S(Ln) is the graph obtained from two paths u1u2...un and

v1v2...vn by joining each v j with u j+1, 1≤ j ≤ n−1.

Definition 2.4. The graph Fn = Pn +K1 is called a Fan graph where Pn : u1u2...un is a Path.

Definition 2.5. The Flower graph Fln is a graph obtained from a Helm by joining each pendent

vertex to the central vertex of the Helm.

Definition 2.6. The Sunflower graph SFn is obtained from a Wheel with the central vertex v, the

cycle Cn : u1u2...unu1 and additional vertices v1,v2, ...,vn where v j is joined by edges to u j,u j+1

where u j+1 is taken modulo n.

3. MAIN RESULTS

Definition 3.1. Let G be a (p,q) graph and let A be a group. Let f be a map from V (G) to A.

For each edge uv assign the label
⌊

o( f (u))+o( f (v))
2

⌋
. Let I be the set of all integers that are labels

of the edges of G. f is called group mean cordial labeling if the following conditions hold:

(1) For x,y ∈ A, |v f (x)− v f (y)| ≤ 1, where v f (x) is the number of vertices labeled with x.

(2) For i, j ∈ I, |e f (i)− e f ( j)| ≤ 1, where e f (i) denote the number of edges labeled with i.

A graph with a group mean cordial labeling is called a group mean cordial graph.

In this paper, we take the group A as the group {1,−1, i,−i} which is the group of

fourth roots of unity, that is cyclic with generators i and −i.
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Example 3.2. Figure 1 is a simple example of a group mean cordial graph.
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FIGURE 1

Theorem 3.3. The Ladder, Ln is a group mean cordial graph for every n.

Proof. Let V (Ln) = {u j,v j : 1 ≤ j ≤ n}. Then E(Ln) = {u1u2,u2u3, ...,un−1un} ∪

{v1v2,v2v3, ...,vn−1vn}∪{u jv j : 1≤ j ≤ n}. This graph has 2n vertices and 3n−2 edges.

Define f : V (Ln)−→ {1,−1, i,−i} by,

f (u j) =



1 if j ≡ 0,2 (mod 8)

−1 if j ≡ 1,3 (mod 8)

i if j ≡ 4,6 (mod 8)

−i if j ≡ 5,7 (mod 8)

and

f (v j) =



1 if j ≡ 4,6 (mod 8)

−1 if j ≡ 5,7 (mod 8)

i if j ≡ 0,2 (mod 8)

−i if j ≡ 1,3 (mod 8)

The following Tables 1 and 2 show that f is a group mean cordial labeling for the graph

Ln.

Nature of n v f (1) v f (−1) v f (i) v f (−i)

n is odd n−1
2

n−1
2

n+1
2

n+1
2

n is even n
2

n
2

n
2

n
2

TABLE 1
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Nature of n e f (1) e f (2) e f (3) e f (4)

n≡ 0 (mod 4) 3n
4 −1 3n

4
3n
4

3n
4 −1

n≡ 1 (mod 4) 3n−3
4

3n−3
4

3n+1
4

3n−3
4

n≡ 2 (mod 4) 3n−2
4

3n−2
4

3n−2
4

3n−2
4

n≡ 3 (mod 4) 3n−1
4

3n−5
4

3n−1
4

3n−1
4

TABLE 2

Theorem 3.4. The Slanting Ladder, S(Ln) is a group mean cordial graph for every n.

Proof. Let V (S(Ln)) = {u j,v j : 1 ≤ j ≤ n}. Then E(S(Ln)) = {u1u2,u2u3, ...,un−1un} ∪

{v1v2,v2v3, ...,vn−1vn}∪{u j+1v j : 1≤ j≤ n−1}. This graph has 2n vertices and 3n−3 edges.

Define f : V (S(Ln))−→ {1,−1, i,−i} by,

f (u j) =


1 if j ≡ 1,3 (mod 4)

−i if j ≡ 2 (mod 4)

−1 if j ≡ 0 (mod 4)

and

f (v j) =


i if j ≡ 1,3 (mod 4)

−1 if j ≡ 2 (mod 4)

−i if j ≡ 0 (mod 4)

The following Tables 3 and 4 show that f is a group mean cordial labeling for the

graph S(Ln).

Nature of n v f (1) v f (−1) v f (i) v f (−i)

n is odd n+1
2

n−1
2

n+1
2

n−1
2

n is even n
2

n
2

n
2

n
2

TABLE 3
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Nature of n e f (1) e f (2) e f (3) e f (4)

n≡ 0 (mod 4) 3n
4 −1 3n

4 −1 3n
4

3n
4 −1

n≡ 1 (mod 4) 3n−3
4

3n−3
4

3n−3
4

3n−3
4

n≡ 2 (mod 4) 3n−6
4

3n−2
4

3n−2
4

3n−2
4

n≡ 3 (mod 4) 3n−5
4

3n−1
4

3n−1
4

3n−5
4

TABLE 4

Theorem 3.5. The Triangular Ladder, T (Ln) is a group mean cordial graph for every n.

Proof. Let V (T (Ln)) = {u j,v j : 1 ≤ j ≤ n}. Then E(T (Ln)) = {u1u2,u2u3, ...,un−1un} ∪

{v1v2,v2v3, ...,vn−1vn} ∪ {u jv j : 1 ≤ j ≤ n} ∪ {u j+1v j : 1 ≤ j ≤ n− 1}. This graph has 2n

vertices and 4n−3 edges.

Define f : V (T (Ln))−→ {1,−1, i,−i} by,

f (u j) =

 1 if j ≡ 1 (mod 2)

−1 if j ≡ 0 (mod 2)
and

f (v j) =

 i if j ≡ 1 (mod 2)

−i if j ≡ 0 (mod 2)
Table 3 proves the vertex group mean cordial condition. Table 5 proves the edge group mean

cordial condition.

Nature of n e f (1) e f (2) e f (3) e f (4)

n is odd n−1 n n−1 n−1

n is even n−1 n−1 n n−1

TABLE 5

Theorem 3.6. The Fan graph, Fn is a group mean cordial graph for every n.

Proof. Let Pn : u1u2...un be a path. Let V (K1) = {v}. Then V (Fn) = V (Pn)∪V (K1). Also

E(Fn) = E(Pn)∪{vu j : 1 ≤ j ≤ n}. The order and size of the Fan graph are n+ 1 and 2n− 1

respectively.

Define f : V (Fn)−→ {1,−1, i,−i} by,

Case 1: n≡ 0,1 (mod 4).

First, define f (v) =−1.Next define,
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f (u j) =



−1 if 1≤ j ≤
⌊n

4

⌋
1 if

⌊n
4

⌋
+1≤ j ≤

⌊n
2

⌋
i if

⌊n
2

⌋
+1≤ j ≤

⌈3n
4

⌉
−i if

⌈3n
4

⌉
+1≤ j ≤ n

Case 2: n≡ 2,3 (mod 4).

Define f (v) =−1 and f (un) = 1.Then define,

f (u j) =



−1 if 1≤ j ≤
⌊n−2

4

⌋
1 if

⌊n−2
4

⌋
+1≤ j ≤

⌊n−2
2

⌋
i if

⌊n−2
2

⌋
+1≤ j ≤

⌊3n−2
4

⌋
−i if

⌊3n−2
4

⌋
+1≤ j ≤ n−1.

The vertex and edge group mean cordial conditions are proved by the following tables 6

and 7.

Nature of n v f (1) v f (−1) v f (i) v f (−i)

n≡ 0 (mod 4) n
4

n
4+1 n

4
n
4

n≡ 1 (mod 4) n−1
4

n+3
4

n+3
4

n−1
4

n≡ 2 (mod 4) n+2
4

n+2
4

n+2
4

n−2
4

n≡ 3 (mod 4) n+1
4

n+1
4

n+1
4

n+1
4

TABLE 6

Nature of n e f (1) e f (2) e f (3) e f (4)

n is even n
2

n
2

n
2

n
2−1

n is odd n−1
2

n−1
2

n+1
2

n−1
2

TABLE 7

Theorem 3.7. The Flower graph, Fln is a group mean cordial graph for every n.

Proof. Let V (Fln) = {u j,v j : 1 ≤ j ≤ n}∪ {v}. Then E(Fln) = {u ju j+1 : 1 ≤ j ≤ n− 1}∪

{unu1}∪{u jv j,u jv,v jv : 1≤ j ≤ n}. The order and size of this graph are 2n+1 and 4n respec-

tively.
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Define f : V (Fln)−→ {1,−1, i,−i} as follows:

Case 1: n is even.

f (v) = i

f (u2 j−1) = 1 i f 1≤ j ≤ n
2

f (u2 j) =−1 i f 1≤ j ≤ n
2

f (v j) = i i f 1≤ j ≤ n
2

f (v n
2+ j) =−i i f 1≤ j ≤ n

2 .

By this labeling, we get v f (1) = v f (−1) = v f (−i) = n
2 and v f (i) = n

2 +1. Also, e f (1) = e f (2) =

e f (3) = e f (4) = n.

Case 2: n is odd.

Here define,

f (u1) = f (v) = i ; f (un−1) = f (un) = 1 and f (vn−1) = f (vn) =−1.

f (u2 j+1) = 1 i f 1≤ j ≤ n−3
2

f (u2 j) =−1 i f 1≤ j ≤ n−3
2

f (v j) = i i f 1≤ j ≤ n−3
2

f (v n−3
2 + j) =−i i f 1≤ j ≤ n−1

2 .

In this case, we get v f (1) = v f (−1) = v f (i) = n+1
2 and v f (−i) = n−1

2 . Also, e f (1) = e f (2) =

e f (3) = e f (4) = n.

Hence the Flower graph Fln is a group mean cordial graph for every n.

Theorem 3.8. The Sunflower graph, SFn is a group mean cordial graph for every n.

Proof. Let Cn : u1u2...unu1 be a cycle. Let v be the central vertex.Let v1,v2, ...,vn be the

newly added vertices. Then E(SFn) = E(Cn)∪ {u jv,u jv j : 1 ≤ j ≤ n} ∪ {u j+1v j : 1 ≤ j ≤

n−1}∪{u1vn}. The order and size of this graph are 2n+1 and 4n respectively.

Define f : V (SFn)−→ {1,−1, i,−i} as follows:

Case 1: n≡ 0 (mod 4).

f (v) =−1 and
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f (u j) = f (v j) =



1 if j ≡ 1 (mod 4)

−1 if j ≡ 2 (mod 4)

i if j ≡ 3 (mod 4)

−i if j ≡ 0 (mod 4).
In this case, we get v f (−1) = n

2 +1. Also v f (1) = v f (i) = v f (−i) = n
2 .

Case 2: n≡ 1 (mod 4).

The group mean cordial labeling of SF5 is given in Figure 2

4

4
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4

4

3

3

3

3

3

2

2

2 2

2

11

1

1

1

−i

−i

i

i

i

−1

−1 1

1

−1
1

FIGURE 2

Let n≥ 9. Define f (v) =−1

Label u j,v j(1≤ j ≤ n−9) as follows:

f (u j) = f (v j) =



−1 if j ≡ 1 (mod 4)

1 if j ≡ 2 (mod 4)

i if j ≡ 3 (mod 4)

−i if j ≡ 0 (mod 4).
Next define,

f (un−8) =−1; f (un−7) = f (un−5) = f (un−2) = 1;

f (un−6) = f (un−4) = f (un−3) = f (un−1) = f (un) = i;

f (vn−8) = f (vn−5) = 1; f (vn−2) = f (vn−3) =−1;
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f (vn−7) = f (vn−6) = f (vn−4) = f (vn−1) = f (vn) =−i

In this case, we get v f (−1) = n−1
2 . Also v f (1) = v f (i) = v f (−i) = n+1

2 .

Case 3: n≡ 2 (mod 4).

Label the vertices v and u j,v j(1 ≤ j ≤ n− 6) as in case 1. Next assign 1 to the vertices

un−5,un−2,vn−5 and vn−3. Assign −1 to the vertices vn−2,vn. Then, assign i to the vertices

un−4,un−3 and un−1. Finally assign −i to the vertices un,vn−4 and vn−1.

In this case, we get v f (1) = n
2 +1. Also v f (−1) = v f (i) = v f (−i) = n

2 .

Case 4: n≡ 3 (mod 4).

Label the vertices v and u j,v j(1≤ j ≤ n−3) as in case 1. Assign 1 to the vertices un−2,vn and

−1 to the vertex vn−2. Next assign i to the vertices un−1,un and −i to the vertex vn−1.

In this case, we get v f (−i) = n−1
2 . Also v f (1) = v f (−1) = v f (i) = n+1

2 .

In all the cases,we get e f (x) = n, for all x ∈ {1,2,3,4}.
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