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Abstract. This study develops a deterministic mathematical model to quantify the role played by comorbidity

among humans as a risk factor for driving COVID-19 epidemic. The newly developed model is confined to

those comorbidities that are not infectious and thus there is no transmission of comorbidities among individuals

within the compartments of the model. Firstly, we carry out the quantitative and qualitative analysis of the model

appertaining positivity, boundedness, equilibrium points, reproduction number, stability of the equilibrium points

and bifurcation analysis. Secondly, we fit the model to real COVID-19 data of the Republic of South Africa to

assure the validity of the model. Finally, we compute sensitivity indices with respect to the parameters of interest

for the purpose of sensitivity interpretation and perform numerical simulations to assess the trajectory of COVID-

19 infections as the parameters of interest vary. Results indicate that comorbidity contributes significantly in

increasing the number of the COVID-19 infections.
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1. INTRODUCTION

It has been more that three years since the first case of COVID-19, the most recent coron-

avirus to be observed in humans was reported [1]–[3]. As indicated in [2],[4]–[8], its causative

agent is the Severe Acute Respiratory Syndrome-Corona-Virus-2 (SARS-CoV-2). It has proved

to be the most devastating coronavirus with its severity and rapidly spreading feature [9]. The

disease was firstly reported in December 2019 at Wuhan, Hubei province in China [8],[10]–

[12]. Since then, many countries globally have battled the epidemic. At least four variants of

SARS-CoV-2 namely, α , β , γ and δ were experienced world-wide [13]. The disease infected

millions of people as well as claiming millions of lives globally. To be more precise, as of April

4, 2022 (12:30 GMT), the world had recorded 491,930,645 COVID-19 positive cases with

6,176,813 deaths. The Republic of South Africa alone had confirmed 3,722,954 COVID-19

positive cases with 100,050 fatalities [14].

Data-based studies such as studies in [15, 16] have identified common comorbidities as hy-

pertension, diabetes, cardiovascular disease, cerebrovascular disease, obesity, malignancy, liver

disease, renal disease and Tuberculosis. Most of these comorbidities are also common in the

Republic of South Africa which was the leading COVID-19 epicenter in Africa. A study in

[17] on the relationship of COVID-19 and comorbidity showed that COVID-19 patients with

comorbidity had worse clinical outcomes as compared to those without comorbidity. It further

indicated that the higher the number of comorbidities, the greater the risk of serious adverse

outcomes. More data-based studies on the relationship between COVID-19 and comorbidity

are done in [18]–[23].

On the pathway of mathematical modeling, many studies have been done on the dynamics of

the COVID-19. In particular, modeling studies done in [1, 2, 6],[24]–[33] have focused on the

impacts of non-pharmaceutical control measures such as wearing of face masks, social distanc-

ing, lock-downs, quarantine, use of digital apps and hygienic practices. Other modeling studies

such as studies done in [9],[34]–[41] have specialized on the impact assessment of vaccination

against the COVID-19. However, few modeling studies have explored the relationship between

COVID-19 and comorbidities. For instance, the study in [42] uses mathematical modelling to
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analyze the co-existence of Diabetes and COVID-19. Another study in [43] devises a mathe-

matical model of COVID-19 with comorbidity and controlling using non-pharmaceutical inter-

ventions and vaccination. The study in [44] models the COVID-19 pandemic and highlights the

negative impact of quarantine on Diabetic people. Finally, a study in [13] uses mathematical

modeling to analyze Tuberculosis and COVID-19 co-infection.

The present study seeks to develop a mathematical model that incorporates comorbidity as

a risk driver of COVID-19. The model is confined particularly to those comorbidities that

are not infectious thus they cannot be transmitted from one individual to another within the

compartments of the model.

The rest of the paper is arranged as follows: In Section 2, we develop the model. Section 3

presents the quantitative and qualitative analysis of the system appertaining positivity, bounded-

ness, equilibrium points, reproduction number, stability of the system equilibria and bifurcation.

Section 4 presents numerical analysis of the model including model parameterization, sensitiv-

ity analysis, and simulations. Finally, Section 5 gives the conclusion.

2. MODEL DEVELOPMENT

Aiming to investigate the role of comorbidity on the transmission dynamics of the COVID-

19 epidemic, we extend the standard SEIR mathematical model by introducing comorbidity in

the susceptible population. The new mathematical model contains six compartments that is,

susceptible individuals without comorbidity (S), susceptible individuals with comorbidity (Sc),

exposed individuals (E), infectious individuals without comorbidity (I0), infectious individu-

als with comorbidity (Ic) and the removed individuals from the chain of transmission of the

COVID-19. The removed class here collects individuals who recover and those who die from

the COVID-19. Thus the total population is assumed to be given by

N = S+Sc +E + I0 + Ic +R.(1)

We assume human to human transmission of the COVID-19, no transmission of the comorbidi-

ties within the classes of the model, all the compartments are mutually exclusive and individuals

with comorbidity are highly vulnerable to the COVID-19 when exposed. The model generates
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the following system of nonlinear ordinary differential equations

dS
dt

= (1−ω)π− (λs +δ )S,(2)

dSc

dt
= ωπ− (λc +δ +µ)Sc,(3)

dE
dt

= λsS+λcSc− (η +δ +µ)E,(4)

dI0

dt
= (1−ρ)ηE− (α +δ )I0,(5)

dIc

dt
= ρηE− (ψ +δ +µ)Ic,(6)

dR
dt

= αI0 +ψIc− (δ +µ)R.(7)

We note that, just as many comorbidities have been, the COVID-19 has been endemic. Due

to this reason, the model considers a recruitment rate of π where a proportion ω flux to the com-

partment of susceptible individuals with comorbidity Sc and the remaining proportion (1−ω)

flux to the compartment of susceptible individuals without comorbidity S. Individuals with co-

morbidity progress to the exposed class E at the rate of β following close contact with COVID-

19 infectious individuals. This defines the force of infection for the individuals with comorbidity

denoted by λc on the model. Similarly, individuals without comorbidity move to the exposed

class E at the rate of κβ once they come into close contact with COVID-19 infectious individ-

uals. Here, we confine κ < 1 since individuals with comorbidity are assumed to have a weaker

immune system and thus are highly vulnerable to contraction of the COVID-19 infections than

their counterparts. Thus, κβ I defines the force of infection for the individuals without comor-

bidity represented by λs on the model. Therefore, the force of infection for the model is given

by λs +λc = (κβ +β )I, where I = I0 + Ic.

All the adequately exposed individuals collected in the latent class E progress to the COVID-

19 infectious classes following completion of the incubation period η . A proportion ρ of the

E class joins the class of the COVID-19 infectious individuals with comorbidity Ic whereas the

remaining proportion (1−ρ) flux to the COVID-19 infectious individuals without comorbidity

I0. Individuals with comorbidity get removed from the COVID-19 chain of transmission by

recovery or death due to COVID-19 at the rate of ψ . Similarly, Individuals without comorbidity
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move to the class of removed individuals R at the rate of α . Individuals from all the compart-

ments of the model die naturally at the rate of δ whereas individuals in the Sc, E, Ic and R

compartments additionally die due to comorbidity at the rate of µ . The schematic diagram for

the model is represented by Figure 1 with the parameters described in Table 1.

𝑆𝑐(𝑡)

𝐸(𝑡)

𝐼0(𝑡)

𝑅(𝑡)

𝛿 + 𝜇 𝐸

𝛿𝐼0

𝛿 + 𝜇 𝑅

𝛿 + 𝜇 𝑆𝑐

𝐼𝑐(𝑡)

𝛿 + 𝜇 𝐼𝑐

𝑆(𝑡)

𝛿𝑆

FIGURE 1. Schematic representation of the proposed model.

TABLE 1. Parameter description for the model (2)–(7) and their estimated values.

Symbol Parameter Description Value per day Source
π Rate of recruitment 11244 [24]

ω Proportion of recruited individuals with comorbidity 0.2 Fitted

β Rate of contact with COVID-19 infectious individuals (0,2) Variable

κ Modification parameter for COVID-19 infection on individuals

without comorbidity

0.2735 Fitted

ρ Proportion of COVID-19 infectious individuals with comorbidity (0,1) Variable

η Incubation period for COVID-19 0.1961 [36, 37]

ψ Rate of recovery and/or death due to COVID-19 by infectious indi-

viduals with comorbidity

0.4217 Fitted

α Rate of recovery and/or death due to COVID-19 by infectious indi-

viduals without comorbidity

0.0316 Fitted

µ Rate of death due to comorbidity 0.0018 Fitted

δ Rate of natural death 0.0001 [27]
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3. QUANTITATIVE AND QUALITATIVE ANALYSIS OF THE SYSTEM

3.1. Positivity of the Solution. Lemma 3.1:

Suppose S(0)≥ 0, Sc(0)≥ 0, E(0)≥ 0, I0(0)≥ 0, Ic(0)≥ 0, and R(0)≥ 0. Then S(t), Sc(t),

E(t), I0(t), Ic(t) and R(t) are positive ∀ t ≥ 0.

Proof

We solve equation (2) by integration using integrating factor exp
{

δ t +
∫ t

0 κβ I(τ)dτ
}

such that

we have

dS(t)
dt

exp
{

δ t +
∫ t

0
κβ I(τ)dτ

}
+(κβ I(t)+δ )S(t)exp

{
δ t +

∫ t

0
κβ I(τ)dτ

}
= (1−ω)π exp

{
δ t +

∫ t

0
κβ I(τ)dτ

}
,(

dS(t)exp
{

δ t +
∫ t

0 κβ I(τ)dτ
})

dt
= (1−ω)π exp

{
δ t +

∫ t

0
κβ I(τ)dτ

}
,

S(t)exp
{

δ t +
∫ t

0
κβ I(τ)dτ

}
−S(0) =

∫ t

0
(1−ω)π exp

{
δ t +

∫ t

0
κβ I(τ)dτ

}
dt,

S(t) = S(0)exp
{
−δ t−

∫ t

0
κβ I(τ)dτ

}
+ exp

{
−δ t−

∫ t

0
κβ I(τ)dτ

}
∫ t

0
(1−ω)π exp

{
δ t +

∫ t

0
κβ I(τ)dτ

}
dt ≥ 0.

This illustration shows that S(t) is positive. Following the same procedure, similar expressions

for Sc(t), E(t), I0(t), Ic(t) and R(t) of the system (2)–(7) can be obtained respectively as

Sc(t) = Sc(0)exp
{
−(δ +µ)(t)−

∫ t

0
β I(τ)dτ

}
+

exp
{
−(δ +µ)(t)−

∫ t

0
β I(τ)dτ

}∫ t

0
ωπ exp

{
(δ +µ)(t)+

∫ t

0
β I(τ)dτ

}
dt ≥ 0;

E(t) = E(0)exp{−(η +δ +µ)(t)}+ exp{−(η +δ +µ)(t)}
∫ t

0
[(1−ω)πS(t)+ωπSc(t)]

exp{(η +δ +µ)(t)}dt ≥ 0;

I0(t) = I0(0)exp{−(α +δ )(t)}+ exp{−(α +δ )(t)}
∫ t

0
(1−ρ)ηE(t)exp{(α +δ )(t)}dt ≥ 0;

Ic(t) = Ic(0)exp{−(ψ +δ +µ)(t)}+ exp{−(ψ +δ +µ)(t)}
∫ t

0
ρηE(t)exp{(ψ +δ +µ)(t)}dt ≥ 0;

R(t) = R(0)exp{−(δ +µ)(t)}+ exp{−(δ +µ)(t)}
∫ t

0
[αI0(t)+ψIc(t)]exp{(δ +µ)(t)}dt ≥ 0.
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This proves that Sc(t), E(t), I0(t), Ic(t) and R(t) are also positive hence the solution of the

model (2)–(7) is positive ∀ t ≥ 0.

3.2. Boundedness of the Model.

Lemma 3.2: Let ΛR =
{
(S,Sc,E, I0, Ic,R) ∈ R6

+ : S+Sc +E + I0 + Ic +R≤ π

δ

}
denote a

uniformly bounded region defined for all t ≥ 0. Then, ΛR is positively invariant and attracting

with respect to the model (2)–(7) and the model can be considered as epidemiologically and

mathematically well posed within the region.

Proof

Adding all the equations of the model (2)–(7), we obtain

dN
dt

= π−δN−µ(Sc +E + Ic +R)

≤ π−δN.(8)

Solving (8) by applying integration factor and the Gronwall Inequality with N(0) = N0 yields

N(t) ≤ π

δ

(
1− e−δ t

)
+N0e−δ t .(9)

It thus follows that

lim
t→∞

sup{N(t)} ≤ π

δ
.(10)

From (10) we see that N ≤ π

δ
, ∀t ≥ 0. This proves that N is bounded and thus the biological

feasible region ΛR is positively invariant and attracting for all t ≥ 0. Hence, the solution of the

model is confined within the defined region.

3.3. The System Equilibria. We determine the equilibrium points of the model system (2)–

(7) at the steady state. We do so by first setting the left hand side of the system (2)–(7) to zero.

We noted that, solving the system explicitly at the steady state is cumbersome and not straight

forward. Thus, we solve the system in terms of forces of infections λs and λc at the steady state

as

S∗ =
(1−ω)π

λs +δ
,

S∗c =
πω

(λc +δ +µ)
,
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E∗ =
λs(1−ω)(λc +δ +µ)π +λcπω(λs +δ )

(λs +δ )(λc +δ +µ)(η +δ +µ)
,

I∗0 =
(1−ρ)η

α +δ

(
λs(1−ω)(λc +δ +µ)π +λcπω(λs +δ )

(λs +δ )(λc +δ +µ)(η +δ +µ)

)
,(11)

I∗c =
ρη

ψ +δ +µ

(
λs(1−ω)(λc +δ +µ)π +λcπω(λs +δ )

(λs +δ )(λc +δ +µ)(η +δ +µ)

)
,

R∗ =

(
ρη

ψ +δ +µ
+

(1−ρ)η

α +δ

)(
λs(1−ω)(λc +δ +µ)π +λcπω(λs +δ )

(λs +δ )(λc +δ +µ)(η +δ +µ)

)
.

If λs = 0 and λc = 0 on the system (11), then we obtain the disease free equilibrium point

given by

E 0 =

(
(1−ω)π

δ
,

ωπ

δ +µ
,0,0,0,0

)
.(12)

This means that, since the force of infections is zero, then it implies that there are no infec-

tious individuals in the population of concern. This instance is referred to as the disease free

equilibrium [27, 45].

If λs 6= 0 and λc 6= 0 then this defines a situation when the endemic equilibrium point of the

model exists. We determine the conditions for existence of the endemic equilibrium point of

the model later in Section 3.5.

3.4. Basic Reproduction Number. We employ the next generation operator technique to

compute the basic reproduction number R0 [9, 45]. The R0 here represents the secondary

number of infections caused by a single infectious individual when introduced into a suscep-

tible population [27]. From the model system (2)–(7), the classes which are involved in the

spread of the COVID-19 epidemic are E(t), I0(t) and Ic(t). Therefore we can write the system

(2)–(7) into the reduced form as

dE
dt

= κβ IS+β ISc− (η +δ +µ)E,

dI0

dt
= (1−ρ)ηE− (α +δ )I0,(13)

dIc

dt
= ρηE− (ψ +δ +µ)Ic.

We re-write the system (13) in compact matrix form separating the linear and the non-linear

parts as
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dX
dt

= F (X)−V (X),(14)

where X = [E, I0, Ic]
T ,

F =


κβ IS+β ISc

0

0

 ,(15)

and

V =


(η +δ +µ)E

−(1−ρ)ηE +(α +δ )I0

−ρηE +(ψ +δ +µ)Ic

 .(16)

In epidemiological terms, the matrix F denotes the new infections whereas V is the transfer

of infections within the compartments. The transition matrices F and V are obtained respec-

tively as the Jacobian of F and V with respect to E, I0 and Ic, evaluated at the disease free

equilibrium E 0 =
(
(1−ω)π

δ
, ωπ

δ+µ
,0,0,0,0

)
as

F =


0 κβ (1−ω)π

δ

βωπ

δ+µ

0 0 0

0 0 0

 ,(17)

and

V =


η +δ +µ 0 0

−(1−ρ)η α +δ 0

−ρη 0 ψ +δ +µ

 .(18)

The next generation matrix is defined by FV−1, where the reproduction number is the domi-

nant eigenvalue of the matrix FV−1. We now have

FV−1 =


{

ρη

(η+δ+µ)(ψ+δ+µ) +
(1−ρ)η

(η+δ+µ)(α+δ )

}
P P

α+δ

P
ψ+δ+µ

0 0 0

0 0 0

(19)
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where

P = βπ

(
(1−ω)κ

δ
+

ω

δ +µ

)
.

Hence, the basic reproduction number of the model is

R0 = βπ

(
(1−ω)κ

δ
+

ω

δ +µ

){
ρη

(η +δ +µ)(ψ +δ +µ)
+

(1−ρ)η

(η +δ +µ)(α +δ )

}
.

(20)

3.5. Existence of Endemic Equilibrium Point. We determine the conditions for existence of

the endemic equilibrium point (EEP) of the model. This is done by substituting (11) into λ ∗c =

β (I∗0 + I∗c ) with λ ∗s = κλ ∗c and solving the the force of infections equation when λc = λ ∗c 6= 0 as

follows

λ
∗
c =

(
βρη

ψ +δ +µ
+

β (1−ρ)η

α +δ

)(
κλ ∗c (1−ω)(λ ∗c +δ +µ)π +λ ∗c πω(κλ ∗c +δ )

(κλ ∗c +δ )(λ ∗c +δ +µ)(η +δ +µ)

)
.

(21)

Rearranging equation (21) and factoring out λ ∗c we have

λ
∗
c (κλ

∗
c +δ )(λ ∗c +δ +µ)(η +δ +µ)−λ

∗
c (κ(1−ω)π(λ ∗c +δ +µ)+(κλ

∗
c +δ )πω)(

βρη

ψ +δ +µ
+

β (1−ρ)η

α +δ

)
= 0.(22)

From (22), we claim that if λ ∗c 6= 0, then

(κλ
∗
c +δ )(λ ∗c +δ +µ)(η +δ +µ)− (κ(1−ω)π(λ ∗c +δ +µ)+(κλ

∗
c +δ )πω)(

βρη

ψ +δ +µ
+

β (1−ρ)η

α +δ

)
= 0.(23)

Expanding (23) and collecting like terms together we obtain a quadratic equation as

P2(λ
∗
c )

2 +P1λ
∗
c +P0 = 0(24)

where

P2 = κ,P0 = (1−R0)(δ +µ)δ ,

P1 = (δ +µ)κ +δ − κπ

η +δ +µ

(
βρη

ψ +δ +µ
+

β (1−ρ)η

α +δ

)
.(25)



MATHEMATICAL MODELING OF COVID-19 WITH COMORBIDITY 11

The solution of (24) is given as

λ
∗
c =
−P1±

√
P2

1 −4P2P0

2P2
.(26)

From (26), we claim that the model (2)–(7) has

(i) a unique endemic equilibrium if P2
1 −4P2P0 = 0;

(ii) two endemic equilibria if P0 < 0 or P2
1 −4P2P0 > 0;

(iii) no endemic equilibrium otherwise.

Here, we note that the disease EEP exists when R0 > 1 [45] and thus Case (ii) is the only case

that guarantees the existence of at least one positive EEP for the model (2)–(7). Since it is

biologically sound that the EEP must be positive, then based on the Case (ii), we further give

conditions for existence of at least one positive EEP for the model as follows

(a) one unique positive endemic equilibrium if P1 < 0 and P1 <
√

P2
1 −4P2P0 or, P1 > 0 and

P1 <
√

P2
1 −4P2P0 ;

(b) two positive endemic equilibria if P1 < 0 and P1 >
√

P2
1 −4P2P0 ;

(c) no positive endemic equilibrium otherwise.

Furthermore, holding the Case (ii) true, we give more narrowed conditions for the existence

of a positive EEP of the model based on the Descartes’ rule of sign changes. Thus, examining

the signs of the coefficients of (24), it is clear from (25) that P2 > 0 and P0 < 0 if and only

if R0 > 1. However, the sign of P1 is not clear. Therefore, we summarize the conditions for

existence of positive endemic equilibrium point(s) of the model in Table 2.

TABLE 2. Existence of positive endemic equilibrium of the model (2)–(7) .

Case Sign

of P2

Sign

of P1

Sign

of P0

No. of Sign

Changes

Conclusion

1 + + − 1 a unique endemic equilibrium

2 + − − 1 a unique endemic equilibrium

Based on the results in Table 2, it is clear that model (2)–(7) has a unique endemic equilibrium

point.
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3.6. Local Stability of the System Equilibria. We discuss the local asymptomatic stability

criteria of the equilibrium points of the model (2)–(7) by evaluating the Jacobian and the re-

sulting characteristic equations. We then scrutinize the signs of the eigenvalues based on the

Routh–Hurwitz conditions. The Jacobian of the model system (2)–(7) is given by

J =



−κβ I−δ 0 0 −κβS −κβS 0

0 −β I−δ −µ 0 −βSc −βSc 0

κβ I β I −(η +δ +µ) κβS+βSc κβS+βSc 0

0 0 (1−ρ)η −(α +δ ) 0 0

0 0 ρη 0 −(ψ +δ +µ) 0

0 0 0 α ψ −(δ +µ)


.

(27)

Lemma 3.6:

The disease free equilibrium E 0 =
(
(1−ω)π

δ
, ωπ

δ+µ
,0,0,0,0

)
is locally asymptotically stable if

R0 < 1 and unstable if R0 > 1.

Proof

The Jacobian matrix given by equation (27) evaluated at the disease free equilibrium is obtained

as

J(E 0) =



−δ 0 0 −κβS0 −κβS0 0

0 −δ −µ 0 −βS0
c −βS0

c 0

0 0 −(η +δ +µ) κβS0 +βS0
c κβS0 +βS0

c 0

0 0 (1−ρ)η −(α +δ ) 0 0

0 0 ρη 0 −(ψ +δ +µ) 0

0 0 0 α ψ −(δ +µ


.

(28)

Using equation (28), we obtain the characteristic equation as

(−δ −λ )(−δ −µ−λ )(−δ −µ−λ )(a3λ
3 +a2λ

2 +a1λ +a0) = 0(29)
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where

a3 = 1,a2 = η +3δ +2µ +α +ψ,a0 = (1−R0)(η +δ +µ)(α +δ )(ψ +δ +µ)

a1 = (α +2δ +ψ +µ)(η +δ +µ)+(α +δ )(ψ +δ +µ)−ηβπ

(
(1−ω)κ

δ
+

ω

δ +µ

)
.

(30)

It is clear from equation (29) that the first three eigenvalues are negative real values and

the rest of the eigenvalues can be obtained by solving the cubic polynomial a3λ 3 + a2λ 2 +

a1λ +a0 = 0. Applying the Routh–Hurwitz criterion on the cubic polynomials, it requires that

a3 > 0, a2 > 0, a0 > 0 and a2a1−a3a0 > 0, for the remaining three eigenvalues to be negative

or have negative real parts. Clearly from (30), a3 > 0, a2 > 0, a0 > 0 if and only if R0 < 1

and a2a1 > a3a0 if and only if R0 < 1. This satisfies the Routh–Hurwitz conditions for a cubic

polynomial if R0 < 1 and hence the disease free equilibrium is locally asymptotically stable.

For the Jacobian matrix evaluated at the disease endemic equilibrium point we have

J(E ∗) =



−(κβ I∗+δ ) 0 0 −κβS∗ −κβS∗ 0

0 −(β I∗+δ +µ) 0 −βS∗c −βS∗c 0

κβ I∗ β I∗ −(η +δ +µ) κβS∗+βS∗c κβS∗+βS∗c 0

0 0 (1−ρ)η −(α +δ ) 0 0

0 0 ρη 0 −(ψ +δ +µ) 0

0 0 0 α ψ −(δ +µ)


.

(31)

For convenience, let us denote B1 = κβ I∗+ δ , B2 = β I∗+ δ + µ , B3 = η + δ + µ , B4 =

α + δ , B5 = ψ + δ + µ , M = κβS∗, N = βS∗c and A = M +N. Then from equation (31), the

characteristic equation is

(−δ −µ−λ )(a5λ
5 +a4λ

4 +a3λ
3 +a2λ

2 +a1λ +a0) = 0(32)

where,

a5 = 1,a4 = B5 +B4 +B3 +B2 +B1,

a3 = B4B5 +B3B5 +B1B5 +B2B5 +B3B4 +B1B4 +B2B4 +B1B3 +B2B3 +B1B2−ρηA,

a2 = B3B4B5 +B1B4B5 +B2B4B5 +B1B3B5 +B2B3B5 +B1B3B5 +B1B2B5 +B1B3B4
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+B2B3B4 +B1B2B4 +B1B2B3 +(M+N)ρη− (B4 +B2 +B1)ρηA− (B5 +B2 +B1)(1−ρ)ηA,

a1 = B1B3B4B5 +B2B3B4B5 +B1B2B4B5 +B1B2B3B5 +B1B3B4B4 +(B1 +B4)ρηN2

+(B1 +B5)(1−ρ)ηN2 +(B2 +B4)ρηM2 +(B2 +B5)(1−ρ)ηM2

−(B1B4 +B2B4 +B1B2)ρηA− (B1B5 +B2B5 +B1B2)(1−ρ)ηA,

a0 = B1B2B3B4B5 +B1B4ρηN2 +B1B5(1−ρ)ηN2 +B2B4ρηM2 +B2B5(1−ρ)ηM2

−B1B2B4ρηA−B1B2B5(1−ρ)ηA.

From equation (32), we see that the first eigenvalue is a negative real value and the other

eigenvalues can be obtained by solving the fifth-ordered polynomial a5λ 5 + a4λ 4 + a3λ 3 +

a2λ 2 + a1λ + a0 = 0. By the Routh–Hurwitz criterion on the fifth-ordered polynomials, the

following conditions need to be satisfied for the remaining five eigenvalues to be negative or

have negative real parts: a5 > 0, a4 > 0, a0 > 0, a4a3− a5a2 > 0, a3a4a2 + a4a5a0− a5a2
2−

a1a2
4 > 0 and a4a1−a5a0− (a4a3−a5a2)

2a0 > 0. Thus the disease endemic equilibrium point

of the model is stable if the above conditions are satisfied and unstable otherwise. This is not

very clear and thus the bifurcation of the model is discussed later in Section 3.8.

3.7. Global Stability of the Disease Free Equilibrium. To determine the global stability

of the model’s disease free equilibrium, we need to express the system (2)–(7) in the form,
dP
dt

= Y (P,Q),
dQ
dt

= M(P,Q), M(P,0) = 0, where P denotes the collection of non-disease

classes and Q represents the collection of disease classes of the model, and show that the fol-

lowing conditions hold whenever R0 < 1

C1 :
dP
dt

= Y (P,0), P0 is globally asymptotically stable.

C2 : M(P,Q) = NQ− M̃(P,Q), M̃(P,Q)≥ 0 for (P,Q) ∈ R6
+ where N =

∂M
∂Q

E 0 and R6
+ is

the region where the model makes biological sense.

From the model system (2)–(7), we find that P = (S,Sc,R)T and Q = (E, I0, Ic)
T . The disease

free equilibrium of the model is E 0 =(P0,0)=
(
(1−ω)π

δ
, ωπ

δ+µ
,0,0,0,0

)
. The point E 0 =(P0,0)

is globally asymptotically stable if R0 < 1, hence
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dP
dt

= Y (P,0) =


(1−ω)π−δS

ωπ− (δ +µ)Sc

0

0

 ,

and thus C1 is satisfied. We then check the satisfaction of C2 as

NQ =


−(η +δ +µ) 0 0

(1−ρ)η −(α +δ ) 0

ρη 0 −(ψ +δ +µ)




E

I0

Ic


and

M(P,Q) =


κβ (I0 + Ic)S+β (I0 + Ic)Sc

(1−ρ)ηE− (α +δ )I0

ρηE− (ψ +δ +µ)Ic

 .

Using M(P,Q) = NQ− M̃(P,Q) then,

M̃(P,Q) =


κβ (I0 + Ic)

(
1− S

N

)
+β (I0 + Ic)

(
1− Sc

N

)
0

0

 .

hence M̃(P,Q)≥ 0 since S
N ≤ 1 and Sc

N ≤ 1. Thus, C2 is satisfied. This proves that the model’s

disease free equilibrium is globally asymptotically stable whenever R0 < 1.

3.8. Bifurcation analysis of the Model. We determine the nature of bifurcation of the model

system (2)–(7) when R0 = 1. To achieve this, we adopt the Center Manifold Theory established

in [46] and also applied in [13, 43, 47]. We choose the bifurcation parameter to be φ = β = β ∗,

find the values of a and b given by (33)–(34) and assess their signs for the necessary conclusion.

a =
6

∑
i, j,k=1

vkwiw j
∂ 2 fk

∂xi∂x j
(E 0,β ∗),(33)

b =
6

∑
i,k=1

vkwi
∂ 2 fk

∂xi∂β
(E 0,β ∗),(34)
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where w and v are respectively, the right and the left eigenvectors having zero eigenvalue to the

Jacobian matrix of the system (2)–(7) evaluated at the disease free equilibrium E 0 when β = β ∗,

f is the time derivatives of the state variables and x is the state variables; i, j,k are respectively

the ith, jth and kth components.

For the right eigenvector wi given by J(E 0)(wi)
T = 0, we have

−δ 0 0 −κβS0 −κβS0 0

0 −δ −µ 0 −βS0
c −βS0

c 0

0 0 −(η +δ +µ) κβS0 +βS0
c κβS0 +βS0

c 0

0 0 (1−ρ)η −(α +δ ) 0 0

0 0 ρη 0 −(ψ +δ +µ) 0

0 0 0 α ψ −(δ +µ





w1

w2

w3

w4

w5

w6


=



0

0

0

0

0

0


.

(35)

From equation (35) we obtain

w1 =−
κβS0

δ
(w4 +w5)< 0,w2 =−

βS0
c

δ +µ
(w4 +w5)< 0,w3 =

κβS0 +βS0
c

η +δ +µ
(w4 +w5)> 0,

w4 =
(1−ρ)η

α +δ
w3 > 0,w5 =

ρη

ψ +δ +µ
w3 > 0,w6 =

αw4 +ψw5

δ +µ
> 0.(36)

For the left eigenvector vi given by (J(E 0))T (vi)
T = 0, we have

−δ 0 0 0 0 0

0 −δ −µ 0 0 0 0

0 0 −(η +δ +µ) (1−ρ)η ρη 0

−κβS0 −βS0
c κβS0 +βS0

c −(α +δ ) 0 α

−κβS0 −βS0
c κβS0 +βS0

c 0 −(ψ +δ +µ) ψ

0 0 0 0 0 −(δ +µ





v1

v2

v3

v4

v5

v6


=



0

0

0

0

0

0


.

(37)

From equation (37) we get

v1 = v2 = v6 = 0,

v3 =
(1−ρ)ηv4 +ρηv5

η +δ +µ
> 0,
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v4 =
κβS0 +βS0

c
α +δ

v3 > 0,

v5 =
κβS0 +βS0

c
ψ +δ +µ

v3 > 0.(38)

We next incorporate some change of symbols in the model (2)–(7) such that S = x1; Sc = x2;

E = x3; I0 = x4; Ic = x5; R = x6 and
dxi

dt
= fi, where i = 1,2,3,4,5,6. Thus, we have

dS
dt

:= f1 = (1−ω)π−κβ (x4 + x5)x1−δx1,

dSc

dt
:= f2 = ωπ−β (x4 + x5)x2− (δ +µ)x2,

dE
dt

:= f3 = κβ (x4 + x5)x1 +β (x4 + x5)x2− (η +δ +µ)x3,(39)

dI0

dt
:= f4 = (1−ρ)ηx3− (α +δ )x4,

dIc

dt
:= f5 = ρηx3− (ψ +δ +µ)x5,

dR
dt

:= f6 = αx4 +ψx5− (δ +µ)x6.

Using (39) we obtain

∂ 2 f1

∂x1∂x4
(E 0,β ∗) =

∂ 2 f1

∂x1∂x5
(E 0,β ∗) =

∂ 2 f1

∂x4∂x1
(E 0,β ∗) =

∂ 2 f1

∂x5∂x1
(E 0,β ∗) =−κβ

∗;

∂ 2 f2

∂x2∂x4
(E 0,β ∗) =

∂ 2 f2

∂x2∂x5
(E 0,β ∗) =

∂ 2 f2

∂x4∂x2
(E 0,β ∗) =

∂ 2 f2

∂x5∂x2
(E 0,β ∗) =−β

∗;

∂ 2 f3

∂x1∂x4
(E 0,β ∗) =

∂ 2 f3

∂x1∂x5
(E 0,β ∗) =

∂ 2 f3

∂x4∂x1
(E 0,β ∗) =

∂ 2 f3

∂x5∂x1
(E 0,β ∗) = κβ

∗;

∂ 2 f3

∂x2∂x4
(E 0,β ∗) =

∂ 2 f3

∂x2∂x5
(E 0,β ∗) =

∂ 2 f3

∂x4∂x2
(E 0,β ∗) =

∂ 2 f3

∂x5∂x2
(E 0,β ∗) = β

∗;

∂ 2 f1

∂x1∂x j
(E 0,β ∗) =

∂ 2 f2

∂x2∂x j
(E 0,β ∗) =

∂ 2 f3

∂x1∂x j
(E 0,β ∗) =

∂ 2 f3

∂x2∂x j
(E 0,β ∗) = 0,∀ j = 1,2,3,6;

∂ 2 f1

∂x4∂x j
(E 0,β ∗) =

∂ 2 f1

∂x5∂x j
(E 0,β ∗) = 0,∀ j = 2,3,4,5,6;(40)

∂ 2 f2

∂x4∂x j
(E 0,β ∗) =

∂ 2 f2

∂x5∂x j
(E 0,β ∗) = 0,∀ j = 1,3,4,5,6;

∂ 2 f3

∂x3∂x j
(E 0,β ∗) =

∂ 2 f4

∂xi∂x j
(E 0,β ∗) =

∂ 2 f5

∂xi∂x j
(E 0,β ∗) =

∂ 2 f6

∂xi∂x j
(E 0,β ∗) = 0,∀i, j = 1,2,3,4,5,6;

∂ 2 f3

∂x4∂x j
(E 0,β ∗) =

∂ 2 f3

∂x5∂x j
(E 0,β ∗) = 0,∀ j = 3,4,5,6.
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Similarly,

∂ 2 f1

∂x4∂β
(E 0,β ∗) =

∂ 2 f1

∂x5∂β
(E 0,β ∗) =−κx0

1;

∂ 2 f2

∂x4∂β
(E 0,β ∗) =

∂ 2 f2

∂x5∂β
(E 0,β ∗) =−x0

2;

∂ 2 f1

∂xi∂β
(E 0,β ∗) =

∂ 2 f2

∂xi∂β
(E 0,β ∗) =

∂ 2 f3

∂xi∂β
(E 0,β ∗) = 0,∀i = 1,2,3,6;(41)

∂ 2 f3

∂x4∂β
(E 0,β ∗) =

∂ 2 f3

∂x5∂β
(E 0,β ∗) = κx0

1 + x0
2;

∂ 2 fk

∂xi∂β
(E 0,β ∗) = 0,∀k = 4,5,6; i = 1,2,3,4,5,6.

Inserting (36), (38) and (40) in (33) we obtain the value of a as

a = (2v3w1κβ
∗+2v3w2β

∗)(w4 +w5)< 0(42)

and again inserting (36), (38) and (41) in (34) we obtain the value of b as

b = v3(κx0
1 + x0

2)(w4 +w5)> 0.(43)

Clearly, a < 0 since w1,w2 < 0 and the other components forming a are positive. Also, b > 0

because v3 > 0,(κx0
1 + x0

2) > 0,(w4 +w5) > 0. This observation shows that the model (2)–

(7) undergoes forward bifurcation when R0 = 1. This means that the disease free equilibrium

changes from stable to unstable and the endemic equilibrium point becomes locally asymptoti-

cally stable. This proves the local asymptotic stability of the EEP which was not clear.

4. NUMERICAL ANALYSIS OF THE MODEL

4.1. Parameterization of the Model. We parameterize the model (2)–(7) using the Maxi-

mum Likelihood Estimation algorithm implemented in fitR package. We adopt the public data

for the daily COVID-19 positive cases as reported by the government of the Republic of South

Africa since June 01, 2020 to September 08, 2020 [14]. The best fit of the model is depicted by

Figure 2.
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FIGURE 2. Fitting of the model (2)–(7) to COVID-19 positive reported cases

(01 June - 08 September 2020) in the Republic of South Africa. The black-

dotted line represents the reported data whereas the red-continuous line shows

the model’s best fit. Parameter values used are as listed in Table 1 where β =

1.0598 and ρ = 0.46.

4.2. Sensitivity Analysis. Generally, sensitivity analysis enables a researcher to ascertain the

effect(s) of certain parameter(s) of research interest on the dependent variable [27]. For our

model, we perform the sensitivity analysis to establish the effect(s) of the parameter β (denot-

ing the contact rate of susceptibles with infectious individuals but measuring direct infection

rate of individuals with comorbidity) and the parameter ρ (representing the proportion of infec-

tious individuals with comorbidity), on the basic reproduction number R0. We find the partial

derivatives of R0 with respect to β and ρ respectively and then find the sensitivity index for

both parameters essentially for the sensitivity interpretation.
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Differentiating equation (20) representing the basic reproduction partially with respect to β

we have

∂R0

∂β
= π

(
(1−ω)κ

δ
+

ω

δ +µ

){
ρη

(η +δ +µ)(ψ +δ +µ)
+

(1−ρ)η

(η +δ +µ)(α +δ )

}
.

(44)

The sensitivity index of R0 with respect to β is

X R0
β

=
∂R0

∂β
× β

R0
= 1.(45)

Equation (45) hints that a unit change in β results to a proportional unit change in the R0. This

means that for instance if β increases by 10%, then R0 also increases by 10% and if β decreases

by 10%, then R0 also decreases by 10%. This unique trend is established in Figure 3.

FIGURE 3. Sensitivity index of R0 with respect to β .



MATHEMATICAL MODELING OF COVID-19 WITH COMORBIDITY 21

Similarly, differentiating equation (20) partially with respect to ρ we obtain

∂R0

∂ρ
= βπ

(
(1−ω)κ

δ
+

ω

δ +µ

){
η

(η +δ +µ)(ψ +δ +µ)
− η

(η +δ +µ)(α +δ )

}
.

(46)

The sensitivity index of R0 with respect to ρ is

X R0
ρ =

∂R0

∂ρ
× ρ

R0
=

1

1+ ψ+δ+µ

(α−ψ−µ)ρ

.(47)

Equation (47) implies that a unit change in ρ results to a 1
1+ ψ+δ+µ

(α−ψ−µ)ρ

change in the R0. This

observation is graphically interpreted by Figure 4. The figure reveals that an increase in ρ re-

sults to a gentle increase in R0 and vice versa. This observation gives an interpretation within

the model that, if the proportion of the COVID-19 infectious individuals with comorbidity in-

creases, then this also leads to increase in the value of the basic reproduction number which

means more COVID-19 infections would be recorded.

FIGURE 4. Sensitivity index of R0 with respect to ρ . Parameter values used

are listed in Table 1.



22 KINYILI, LUBUMA, MUNYAKAZI, MUKHTAR

4.3. Simulations. We carry out numerical simulations with respect to the parameters of inter-

est using the calibrated model. The parameters of interest here for the proposed model are β

and ρ . We vary these parameters and assess their impacts on the trajectory of the COVID-19

infections. The classes of the model adding up to the COVID-19 infections are the class of the

COVID-19 infectious individuals with comorbidity Ic and the class of the COVID-19 infectious

individuals without comorbidity I0. We use parameter values listed in Table 1.

Figure 5 shows the trajectory of the COVID-19 infectious individuals with comorbidity Ic

as β varies. We observe from the figure that as β increases, the number of the COVID-19

infectious individuals with comorbidity also increases but the infections take relatively shorter

time to clear. Contrary, as β decreases, the number of the COVID-19 infectious individuals

with comorbidity decreases but the infections delay to clear. This observation is explained by

the fact that if individuals with comorbidity are highly exposed to the COVID-19 infections,

then they highly contract the disease and hence rising the number of the COVID-19 infections.

If their contact rate with the COVID-19 infectious individuals is reduced, then the infections

reduce.
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FIGURE 5. Trajectory of the COVID-19 infectious individuals with comorbid-

ity Ic as β varies.



MATHEMATICAL MODELING OF COVID-19 WITH COMORBIDITY 23

Figure 6 illustrates the trajectory of the COVID-19 infectious individuals with comorbidity Ic

as ρ varies. We see from the figure that as ρ increases, the number of the COVID-19 infectious

individuals with comorbidity also increases and the infections take relatively longer time to

clear. On the other hand, as ρ decreases, the number of the COVID-19 infectious individuals

with comorbidity highly reduces at an accelerated rate.
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FIGURE 6. Trajectory of the COVID-19 infectious individuals with comorbid-

ity Ic as ρ varies.

Figure 7 shows the trajectory of the COVID-19 infectious individuals without comorbidity I0

as β changes. It is observable from the figure that as β increases, the number of the COVID-19

infectious individuals without comorbidity increases though the infections clear at an accel-

erated rate. Conversely, as β decreases, the number of the COVID-19 infectious individuals

without comorbidity also decreases with the infections delaying to clear. This implies that in-

creased contact rate with the COVID-19 infectious individuals will result to increased number

of the COVID-19 infections recorded. This can be reversed by reducing the contact rate by

imposing a control measure strategy to reduce the infections.
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FIGURE 7. Trajectory of the COVID-19 infectious individuals without comor-

bidity I0 as β changes.

Figure 8 shows the trajectory of the COVID-19 infectious individuals without comorbidity

I0 as ρ changes. We observe from the figure that as ρ increases, the number of the COVID-19

infectious individuals without comorbidity decreases but with the infections delaying to clear.

Contrary, as ρ decreases, the number of the COVID-19 infectious individuals without comor-

bidity increases but the infections are accelerated to clear. This is because as the proportion of

the COVID-19 infectious individuals with comorbidity increases, the proportion of the COVID-

19 infectious individuals without comorbidity decreases and vice versa.

5. CONCLUSION

The main purpose of this study was to assess the role of comorbidity on the COVID-19 infec-

tions. To achieve this purpose, we extended the standard SEIR mathematical model by adding

compartments for individuals with comorbidity. The newly developed model was confined to

those comorbidities that are not infectious and thus the model assumed that there was no trans-

mission of comorbidities from one individual to another within the compartments of the model.
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FIGURE 8. Trajectory of the COVID-19 infectious individuals without comor-

bidity I0 as ρ changes.

We carried out the qualitative analysis of the model and ascertained that the solution of the

model remained positive and bounded within a defined biological invariant region for all non-

negative time. We further validated the model by fitting it to real data using the Maximum

Likelihood Estimation algorithm implemented in fitR package. The data used here was the

Republic of South Africa’s COVID-19 positive cases reported data from June 01, 2020 to Sep-

tember 08, 2020. We next adopted the best fitted model to perform sensitivity analysis and

numerical analysis.

For the sensitivity analysis, we used the expression for the basic reproduction number R0

to compute partial derivatives of R0 with respect to the parameters of interest β and ρ . We

then found the sensitivity indices with respect to the aforementioned parameters of interest for

the purpose of sensitivity interpretation. It was found that a unit change in β resulted to a

proportional unit change in the R0. This meant that for example if β increased by 10%, then

R0 would also increase by 10% and if β decreased by 10%, then R0 would also decrease by

10%. Similarly, we found that a unit change in ρ resulted to a 1
1+ ψ+δ+µ

(α−ψ−µ)ρ

change in the R0.
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Graphical interpretation of this observation showed that an increase in ρ resulted to a gentle

increase in R0 and vice versa.

For the numerical simulations, we varied β and ρ and observed their impacts on the number

of COVID-19 infectious individuals with comorbidity and the number of COVID-19 infectious

individuals without comorbidity. Results indicated that increase in β and ρ resulted to increase

in the number of COVID-19 infectious individuals with comorbidity and vice versa. However,

though increase in β resulted to increase in the number of COVID-19 infectious individuals

without comorbidity, increase in ρ resulted to decrease in the number of COVID-19 infectious

individuals without comorbidity.
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