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Abstract: The cassava virus diseases co-dynamics model is formulated and analysed using ordinary differential 

equations theories. The modelling involves cassava plant and whitefly vector population, with aspects of Farmer's 

awareness level. The evaluation of farmers' awareness inverted numerically and found that increasing awareness levels 

among farmers decrease disease transmission and spread. The data from ten district councils in the Tanzania lake zone 

fit and estimate the model parameters. In addition, time-dependent controls were incorporated to reduce the burden 

on cassava farmers. The findings revealed that with limited resources, uprooting and burning the infected cassava 

plants and awareness campaign programs significantly reduce the transmission. Therefore, to overcome the burden 

caused by cassava virus diseases, the farmers are recommended to uproot and burn the infected cassava plants from 

the farm. Also, it should be updated on controlling disease through educational campaign programs to enhance farmers' 

awareness. 

Keywords: cassava virus diseases; cassava mosaic disease; cassava brown streak disease; Farmer's awareness; 

optimal control; cost-effectiveness. 
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1. INTRODUCTION 

Cassava (Manihot esculenta Crantz) is a staple food crop in several developing countries and the 

fourth most important source of calories after sugar cane, maise, and rice[1]. Globally over 800 

million people depend on cassava tubers as their foremost staple food [2]. Cassava is the primary 

security food in Africa, and it plays a more significant role in minimising or alleviating the food 

crisis [3]. Furthermore, it is the most important source of carbohydrates in some of Sub-Saharan 

Africa's poorest countries, such as Nigeria, Kenya, Senegal, Cameroon, Benin and Tanzania [4]. 

Sub-Saharan Africa is the world's biggest cassava producer, accounting for more than 51% of 

global production [5].  

Tanzania has been the 11th cassava producer globally and Africa's sixth largest, with an estimated 

annual output of 5.4 million tonnes per year [5]. Humans consume over 84% of the cassava 

produced in Tanzania, the remainder going to animal feed, alcohol manufacture, and starch 

production [6]. In Tanzania, the average cassava output is 2.0 tons per hectare, lower than the 

potential yield of 20 tons per hectare [7]. Even though cassava is cultivated throughout the country, 

the lake zone in Tanzania is the leading area for cassava production [8]. Cassava is one of the 

country's most essential security food crops and the most important staple food in the Tanzanian 

lake zone (Kapinga et al., 1997). However, cassava yields in Tanzania's Lake Zone are still low 

due to various factors, including pests and diseases, according to NBS.In addition, cassava yields 

have been severely affected due to several diseases. However, cassava Virus Diseases (CVD), 

particularly Cassava Mosaic Disease (CMD) and Cassava Brown Streak Disease (CBSD), are the 

most devastating and pose the most significant danger to cassava production [10], [11].  

This paper focuses on CVD co-infection, specifically CMD and CBSD, which are biotic threats to 

cassava productivity [11]. The number of CMD and CBSD cases reported in several districts 

threatens cassava production[4], [5]. The Cassava Mosaic Virus (CMV), which causes CMD, is 

spread by whitefly vectors (Bemisia tabaci) and through vegetative propagation [12]. Leaf 

yellowing, narrowing, deformation, stunted growth, and narrowing of root tubers indicate CMD 

dictated by the host plant's sensitivity, virus strain, and climatic conditions [13]. 
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Cassava is also affected by severe CBSD, which degrades the quality of the roots in several Lake 

Zone districts (IITA, 2010). CBSD is caused by the Cassava Brown Streak Virus (CBSV), which 

is spread by planting infected cuttings and via the whitefly vector (Bemisia tabaci) [6]. Foliar 

chlorosis and a few stem lesions are among the CBSD symptoms [10], [15]. The CBSD also affects 

tuberous roots, which develop a yellow/brown, dry, corky necrosis within the starch-bearing 

tissues for a while, along with pitting and distortion visible from the outside [6]. According to 

disease research, the crop can lose up to 74% of its production, while in severely impacted areas, 

yield losses can reach 100% [6]. 

According to John (2011), CMD and CBSD co-infection in cassava cultivars lead to more severe 

symptoms, and such a condition could have devastating effects on cassava output. Therefore, 

management of CVD control techniques is recommended to prioritise both the CMV and CBSV 

viruses. CMD and CBSD are currently managed by using disease-free planting material, uprooting 

and burning diseased cassava plants, planting symptomless cassava, quarantining and scanning the 

fields for diseased plants, and planting resistant varieties [6], [15]–[21]. However, more study is 

still underway on creating tolerant/resistant cassava planting material variants. Although some 

farmers employ pesticides, pesticides are ineffective and inefficient. 

Kinene et al. (2015) proposed a mathematical model for transmitting CBSD in Uganda and the 

most cost-effective control techniques. Researchers introduced two controls one involves spraying 

pesticides, and the second requires removal of the infected plants by uprooting and burning. 

Findings show that the most cost-effective strategy combines uprooting and burning infected 

cassava plants. 

Awareness campaigns, in particular through radio, Television, social media and Seminars among 

cassava farmers, are required so that farmers will gain knowledge on a CVDs control approach. In 

their awareness, farmers can keep the crop under observation. Therefore, if correctly instructed, 

they will implement the control to reduce the spread of CVD co-infection. People working in 

agriculture need accurate and up-to-date information about crops, diseases and pests. Hence, the 

importance of electronic media in keeping farmers informed and providing them with crucial 
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agricultural details [22]–[24]. Accessible pesticide information campaigns help farmers know the 

severe risks pesticides have on human health and the environment and minimise adverse effects 

[25]. Adopting awareness programs to educate farmers results in better comprehensive 

development for the cultivars and farmers. Farmers primarily receive information on the use and 

risks of pesticides orally. Farmers who are self-aware use vastly enhanced agronomic techniques, 

protecting public health and lowering environmental hazards [26]. Therefore, awareness is 

essential in crop pest management. Television, radio, and mobile telephone are beneficial media 

providing agricultural practices and crop protection information. This article presents a 

mathematical model for CMD and CBSD (CVD co-infection), incorporating farming awareness 

levels. The main focus is to compare a fundamental advantage favouring the combined strategy by 

involving the following CVD co-infection control management. This is the immediate removal of 

the infected plants by uprooting and burning, killing the whitefly vectors through spraying 

pesticides and other means, and increasing farming awareness through the education campaign 

among cassava farmers through media to minimise the spread of CVD. The three-dependent 

optimal control problem is formulated and solved using the Pontryagin Minimum Principle to 

determine the optimal level of control strategies for cost-effectiveness.  

 

2. MODEL DESCRIPTION AND FORMULATION 

The deterministic mathematical model of Codynamics of Cassava mosaic disease (CMD) and 

Cassava brown streak disease (CBSD) was formulated and analysed following the theory of 

ordinary differential equations. The model includes the Cassava plant and whitefly vectors 

population. The awareness level among farmers ( )A t   is incorporated to minimise disease 

transmission and spread. The Cassava population ( )N t   is divided into five classes, namely: 

Susceptible (P), exposed (E), infected with CMD (M), infected with CBSD (S) and finally, CVD 

co-infection (B) class of plants infected with both CMD and CBSD. Thus  

( ) ( ) ( ) ( ) ( ) ( )N t P t E t M t S t B t= + + + +  
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The total whitefly vector population ( )VN t  has two classes: susceptible (V) and Infected (I). 

Thus ( ) ( ) ( )VN t V t I t= + . 

 The compartmental diagram in Figure 1 summarises the transmission dynamics of CVD co-

infection. 

 

 

Figure 1: Compartment model diagram model for the transmission dynamics of CVD co-infection 

with awareness. The solid lines symbolise the constant transmission from one compartment to 

another. The red dotted lines depict the regular interactions between different compartments, while 

the blue dashed dot lines indicate the activities of farmers due to disease awareness.  

The susceptible cassava plants contacted an infected whitefly vector and moved to the exposed 

class before becoming infected. Cassava plants can be infected with CMV, CBSV or both; the 

susceptible whitefly vector acquires viruses by inoculating the infected cassava plants and 

becomes infected. Due to the finite size of the cassava field, we assume logistic growth for the 

cassava population, with a net growth rate r  and carrying capacity 
1K . The Farmer can replant 

both susceptible and exposed cassava cuttings stem without knowing. Therefore, 𝜃 specifies the 
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frequency to which exposed cassava is selected relative to susceptible cassava replanting material. 

Hence susceptible cassava plant population can be described by the following logistic population 

growth term 
1

1
N

rp
K

 
− 

 
  and by replanting exposed cuttings materials is 

1

1
N

r E
K


 
− 

 
  where 

E  is the number of cassava material replanted with the viruses. The cassava plant moves to the 

exposed class after acquiring viruses through contact with the infective whitefly vector at a rate 

  . After developing the symptoms of one disease, the cassava plant infected with the single 

disease will become dually infected with the other Cassava Virus disease. The circumstance of a 

cassava plant being infected by both viruses simultaneously will be referred to as CVD co-infection. 

The CMV infectious class can move to the CBSV infectious class to form the CVD class at a rate 

𝜔, and the CBSV infectious class can move to the CMV infectious class to create the CVD class 

at the rate 𝜏 since each disease is joining the CVD class in a different time. All cassava classes 

are harvested at a rate 𝛿 during the harvesting cassava tubers period. 

The exposed cassava plants can move to the CMD infectious class by acquiring CMV with 
M  

transmission rate or CBSD infectious by acquiring CBSV with 
S  transmission rate. The 

transmission rates are defined as follows  

M

M B

N


 

+ 
=  

 
 and 

S

S B

N


 

+ 
=  

 
      

where    and  are the infectious rate of CMD and CBSD, respectively, while   and  are 

the transmission coefficient for the dually infected concerning CMD and CBD, respectively [27]. 

The whitefly vector population increases due to birth and immigration/movement from one field 

to another. The whitefly vectors (Bemicia tabaci) population dynamics that transmit the viruses 

from infected to the susceptible cassava plants grow logistically with the vector birth rate 𝑏 with 

carrying capacity K2. Both classes of Whitefly vectors will leave the population due to the natural 

death rate   because the virus does not affect the whitefly. We consider the new whitefly vectors 

that flow into the population through immigration or movement among nearby cassava fields that 
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are either healthy or infective. The flow-through immigration/movement is assumed to occur 

constantly at the rate   with the infected whitefly vector fraction   and the remaining fraction 

( )1 − . The healthy whitefly vector became an infected whitefly vector by acquiring viruses with 

V  the force of infection. That depends on the availability of healthy whitefly vectors and the 

abundance of the infected cassava plants. The force of infection described as 

V

E M S B

N
 

+ + + 
=  

 
 where   is the whitefly virus acquisition rate. 

The awareness level among farmers about the CMD, CBSD and CVD co-infection increases with 

the rate f  through global sources. The local awareness rate about diseases g is proportional to 

the infected cassava plants. However, due to the fall in importance, the level of understanding of 

the CVD co-infection may decrease at the rate h [28], [29]. 

Aware farmers keep the cassava plant under observation. Thus, removing infected cassava plants 

from the field can be modelled via the following nonlinear term 
1

aAM

A+
  with the maximum 

activity rate a  in diseased plants [30], [31]. Aware farmers' activities to eliminate infected and 

susceptible whitefly vectors can be implemented at a rate c with the nonlinear term 
1

cAM

A+
 [30], 

[31].  

2.1 Equations of the model 

Now using the model assumptions given above, the co-dynamics of CVD are described by the 

following systems of nonlinear differential equations: 

1

1
dP N P

rP I P
dt K N

 
   

= − − −   
  

 

1

1 M S

dE N P
r E I E E E

dt K N
    

   
= − + − − −   

  
 

1
M S

dM aAM
E M M

dt A
  = − − −

+
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1
S M

dS aAS
E S S

dt A
  = − − −

+
                                                           

1
S M

dB aAB
M S B

dt A
  = + − −

+
                             (1)                     

( )
( )

( )
2

1 1
1

V

V IdV cAV
b V I V V

dt K A
  

 +
= + − + − − − − 

+ 
 

1
V

dI cAI
V I

dt A
  = + − −

+
 

( )
dA

f g M S B I hA
dt

= + + + + −  

2.2 Invariant Region of the Solution 

The CVD dynamic model system (1) has three subpopulations where all parameters and variables 

are nonnegative  0t  . 

Lemma 1:  

Given the model of the system (1) 8

+
  with initial conditions 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0, 0, 0, 0, 0, 0, 0, 0P t E t M t S t B t V t I t A t        , its solution enters the 

invariant region  

5 2 1

C V A + + +=   =     where; 

( ) ( ) ( ) ( ) ( ) ( ) 5, , , , :C P E M S B P t E t M t S t B t N+ =  + + + + =               (2)                                    

( ) ( ) ( ) 2, :V VV I V t I t N+ =  + =  

 1

A A + =   

Proof 

We use the box invariant method to establish the feasible region of the CVD co-infection model 

solution [32]–[35]. In the co-infection dynamical system (1) ( ), , nX Q X t X
•

=  , we assume its 

solution's continuity and Lipschitz properties. The model system (1) is reduced to the form  

 ( )
dX

L x X Q
dt

= +                                  (3) 

    where ( ), , , , , , ,
T

X P E M S B V I A=  and a column vector ( ),0,0,0,0, ,0,
T

VQ N N A=  thus 
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     ( )

1

2

3

4

5

1 2

3 4

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

M

S

S M

a

I
a

N

a

aL x

a

b b

b b

g g g g h







 

− 
 
 −
 
 −
 

− =
 −
 

− 
 

− 
 − 

              (4) 

where: 1

1

1
I N

a r
N K




 
= + + − 

 
, 2

1

1 M S

N
a r

K
   

 
= + − + + 

 
, 3

1
S

aA
a

A
 = + +

+

4
1

M

aA
a

A
 = + +

+
, 5

1

aA
a

A
= +

+
,

( )
1

2 2

1
1

V

b V IV I cA
b b

K K A
 

+ +
= + + − + + 

+ 

( )
2

2

2

1

b V I cA
b b

K A

+
= − −

+
,

3 Vb = , 4
1

cA
b

A
= +

+
 

In a reduced Metzler matrix ( )L x  , the principal diagonal has only negative values, and the 

remaining off-diagonal values are all positive. Thus, all variables enter and remain feasible in the 

invariant region  . This demonstrates the epidemiological significance and well-posedness of 

the CVD co-infection model system (1) in the invariant region  . 

2.3 Positivity of the Solutions 

Theorem 1 

Let the initial values of the state variables of the model system be  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 0 , 0 , 0 , 0 , 0 , 0 , 0 , (0) 0P E M S B V I A   .                                                   

Then, the solution set ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , , , , , , ,P t E t M t S t B t V t I t A t   of the model system (1)  

is nonnegative 0t  .  

Proof 

We consider the first equation of model (1), representing our susceptible cassava plants. We 

develop the inequality as 
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1

1
dP N I

r P
dt K N




    
 − − +        

                        (5) 

By solving differential inequality, we get 

( ) ( )0

I
t

NP t P e




 
− + 
                                                           

Thus as t →  then, it follows that ( ) ( )0 0

I
t

NP t P e




 
− + 
   . Hence ( ) 0P t   

Applying the same procedures for the remaining state variables 

( ) ( ) ( ) ( ) ( ) ( ) ( ) , , , , , ,E t M t S t B t V t I t A t  are positive for all time 0t  . As a result, the CVD 

co-infection transmission model stated in the system (1) is epidemiologically significant and 

mathematically well-posed. 

 

3. THEORETICAL ANALYSIS OF THE MODEL 

3.1 CVD co-infection free equilibrium point 0C (CVDCFEP) 

The state in which there are no diseased plants in the cassava population and no infected whitefly 

in the whitefly vector population is known as CVD co-infection-free equilibrium. We get the 

CVDCFEP ( )0 0 0 0 0 0 0 0 0, , , , , , ,C P E M S B V I A= . Thus  

( )
( ) ( )1 20 0 0 0 0 0 0 0 0, , , , , , , ,0,0,0,0, ,0,

K r K b f
C P E M S B V I A

r b h

  − −
= =  

 
              (6) 

The basic reproduction number 
0  of the model (1), obtained using the next-generation method 

as 

( )( )

( ) ( )( )
2

0

1

r K b f h

b K r cf f h

 

  

− +
 =

− + +
     

3.2 Local stability of CVD co-infection free equilibrium point (CVDCFE) 

Theorem 2 

The CVD co-infection free equilibrium point is locally asymptotically stable if 
0 1    and 

unstable if 
0 1  . 
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Proof. To prove this theorem, let us first find the Jacobian matrix of system (1) at the CVD co-

infection free equilibrium point: we get 

( )

( )

1

2

30

4

5 8

7 7 7 7 6

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0

0 0 0

z

z

z
J C

z

z b z

z z z z z

g g g g h



 



− 
 

−
 
 −
 

− =
 −
 

− − − 
 −
 

−  

                           (7) 

Where: 
1z r = −  ,

2

af
z

f h
= +

+
 ,

3

af
z

f h
= +

+
 ,

4

af
z

f h
= +

+
 ,

5

cf
z b

f h
= − +

+
 ,

6

cf
z

f h
= +

+
,

( )
( )

2

7

1

rK b
z

bK r

 



−
=

−
,

( )( )2

8

K f h b
z

bh

+ −
=         

By using the basic properties of matrix algebra and from the characteristic polynomial of ( )0J C

the following are the eigenvalues 
1 1z = −  , 

2 2z = −  ,
3 3z = −  , 

4 4z = −  ,
5 5z = −   and  

6 h = − have a negative real part, and the remaining reduced matrix is   

( ) ( )
( )

0

21

1

rK bJ C cf

bK r f h

 

 




− 
 

−=   − +  − +  

                               (8) 

Here, we employ the determinant and trace method to examine the local stability of the CVD co-

infection-free equilibrium point. However, first, we must prove that the determinant and trace of 

the matrix (8) are positive and negative, respectively. 

The determinant of the matrix (8) is then calculated using the software Mathematica; we get  

 ( )( )
( )

( )0 2

1 01
cf f h

Det J C
f h




 + +
= − 

+ 
                    (9) 

As we can see 
( )

0
cf f h

f h




 + +
 

+ 
 , it is the product of positive parameters and the 
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( )( )0

1Det J C  to-be 0  we should have 
0 1  .  

 Also, it is clear that the trace of the matrix (20) is negative, which is 

( )( )0

1 0
cf

Trace J C
f h

 
 

= − + +  
+ 

                               (10) 

Hence, the CVD co-infection-free equilibrium point is locally asymptotically stable if  
0 1  .  

3.3 Global stability of CVD co-infection free equilibrium point (CVDCFE).  

To investigate the issue of the global stability of CVD co-infection free equilibrium point, we use 

the Metzler matrix method, as stated by [36]. So, we pose the following theorem: 

Theorem 2 

The CVDCFEP ( )0C  of the model system (1) is globally asymptotically stable (GAS) if
0 1   

and unstable if 
0 1  . 

Proof: 

We separate the model system (1) into compartments for transmitting ( ), , , ,E M S B I  and non-

transmitting ( ), ,P V A  individuals. Therefore, we let 
nX   be the vector for non-transmitting 

compartments, 
iX  the vector for transmitting compartments, and  0 ,C n

X the vector of diseases 

free equilibrium point. Then 

 
( )01 2,

3

n
n iC n

i
i

dX
C X X C X

dt

dX
C X

dt


= − +


 =


                        (11) 

To prove the global stability of the CVDCFEP, we are required to show that matrix 𝐶1 has real 

negative eigenvalues and 
3C is a Metzler matrix containing all nonnegative off-diagonal entries. 

Based on the model system (1), we will have  ( ) ( ), , , , , , ,
T

n iX P V A X E M S B I= =  

( ) ( )
0

1 2

,
, ,

C n

K r K b f
X

r b h

  − −
=  
 

                      (12) 



13 

CO-DYNAMICS OF CASSAVA VIRUS DISEASE 

( )

( )
0

1

2

,n C n

K r
P

r

K b
X X V

b

f
A

h





 −
− 

 
 −

− = − 
 
 

− 
 

                      (13) 

We will now have the matrices below employing the general system non-transmitting and 

transmitting compartments. 

( )

( )

1

1 2

2

1 0 0

2
0

1 1

0 0

N IB
r

K N

b V I cA cAV
C b

K A A

h



 

  
− − −  

  
 +
 = − − − − −
 + +
 

− 
 
 

       (14)                                          

Eigenvalues of 
1C  are 

( )

1 2

2
, ,V

b V IrN I
r b h

K N K


  

  + 
− + + − − + + − −    
    

             (15) 

(16) 

                                      

 

1

3

1 0 0 0

0 0 0
1

0 0 0
1

0 0
1

1

M S

M S

S M

S M

N P
r

K N

aA

A

aAC
A

aA

A

V V V V cA

N N N N A


   

  

  

  

   


   
− + − + +    
   
 

  − + +  + 
 

  = − + +  + 
 

  − +  + 
 

  
− +  +  

      (17) 

( )
2

2

0 0 0 0

2

0

P

N

b V IV V V V
C b

N N N N K

g g g g



   

 
 
 

+ 
= − − − − − 
 
 
 
 
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Now when we calculate eigenvalues for the matrix 𝐶1The results indicate that the eigenvalues are 

negative and real, proving that the system ( )01 2,

n
n iC n

dX
C X X C X

dt
= − +   is globally 

asymptotically stable at 0C
X  . Furthermore, considering the matrix, 

3C   we find it is a Metzler 

stable matrix since all of its off-diagonal elements are positive. Therefore, CVDCFEP for system 

(1) is globally asymptotically stable. 

 

4. OPTIMAL CONTROL 

This section aims to introduce the control mechanisms that possibly reduce the burden on farmers 

of cassava. Historically, most local farmers have insufficient knowledge about farming practices, 

especially the proper implication of the control strategies in cassava disease management. This 

study considers farmers' awareness levels intending to educate local farmers to gain in-depth 

knowledge and accurate information about a cassava disease to help set up correct control 

strategies during an epidemic eruption. The model system (1) is modified by introducing three 

time-dependent controls ( )1u t , ( )2u t  and ( )3u t  reducing or eliminating the CVD co-infection 

transmission. The first control ( )1u t   aims to stop infection of the vector by the plant, which 

involves immediate removal of the infected plants by uprooting and burning. The second control 

( )2u t proposed to reduce the transmission of CVD co-infections from the infected whitefly vector 

to the cassava plants in the field. It involves killing the whitefly vectors through spraying pesticides 

and other means. The third control ( )3u t   aimed to increase farming awareness through the 

education campaign among cassava farmers through media. The goal is to reduce the number of 

cases of infected cassava plants at the minimum possible cost, compare the controls, and determine 

their cost-effectiveness. Therefore the following modifications were made to the system (1);                                        

( )3

1

1 1
dP N P

rP u I P
dt K N

 
   

= − − − −   
  
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( ) ( ) ( )3 3 3

1

1 1 1 1M S

dE N P
r E u I u E u E E

dt K N
    

   
= − + − − − − − −   

  
 

( ) ( ) ( )3 3 11 1
1

M S

dM AM
u E u M M u a

dt A
  = − − − − − +

+
            (18) 

( ) ( ) ( )3 3 11 1
1

S M

dS AS
u E u S S u a

dt A
  = − − − − − +

+
                                                           

( ) ( ) ( )3 3 11 1
1

S M

dB AB
u M u S B u a

dt A
  = − + − − − +

+
                                                               

( )
( )

( ) ( )2

2

1 1
1

V

V IdV AV
b V I V V u c

dt K A
  

 +
= + − + − − − − + 

+ 
 

( )2
1

V

dI AI
V I u c

dt A
  = + − − +

+
 

( )3

dA
u f g M S B hA

dt
= + + + −  

These control strategies need to be adjusted to minimise the number of infectious cassava plants, 

whitefly vectors and the cost of implementing the control strategies. It is ought to consider the 

optimal control problem with objective functional of the form 

3
2

1 2 3 4

10
2

tf

i
i

u
i

G
J Min W M W S W B W I u

=

 
= + + + + 

 
                         (19)    

where tf  is the final time, and , 1 4jW j =  are the positive weight constants associated with 

the number of CMD, CBSD, CVD infectious cassava plants and infected whitefly vectors. In 

contrast, , 1,2,3iG i =   there are positive control weights relative to its cost implications. The 

quadratic expressions 2 21 2
1 2,

2 2

G G
u u , and 23

3
2

G
u  represent the costs of control efforts on removing 

the infected cassava plants by uprooting and burning, killing the whitefly vectors by spraying 

pesticides and farming awareness campaigns, respectively. In this article, the objective functional 

of controls ; 1,2,3iu i =   are quadratic because these interventions' costs are nonlinear. This 

assumption follows studies that propose nonlinear relationships between the effects of 

interventions and the cost of interventions for infective populations. Moreover, several authors 

have often used such quadratic costs, e.g. Kinene et al. [11]. The purpose is to minimise the 
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objective function J ; consequently, it is required to find the optimal control such that  

 ( ) ( )min |J u J u u U =                               (20) 

where ( ) 1 2 3, , | iU u u u u=   is Lebesgue measurable with 0 1U   , for 0, , 1,2,3ft t i  =   is 

the set of admissible controls. Note that in all cases, setting the control to zero indicates that no 

effort is being made to control the disease, and setting it to one indicates that the most effort 

possible is being made. Now we apply the following theorem to show the existence of optimal 

control for systems (18) and (19). 

Theorem 3. 

Give ( )J u  subject to the system (18) with  ( ) ( )0 0 0 0 0 0 0 0, , , , , , , 0,0,0,0,0,0,0,0P E M S B V I A   

then there exists an optimal control u   and corresponding ( ), , , , , , ,P E M S B V I A         that 

minimises ( )J u over U . 

Proof 

Since the set of controls and state variables are nonnegative and the measurable control set is 

convex and closed. Each right-hand side of the state system is continuous, bounded above by a 

sum of the bounded control and the state, and can be written as a linear function of u  with 

coefficients depending on time and the state. The integrand ( ),z q u  of the objective functional is 

convex. There exist constants 
1 2, 0,C C   and 1   such that the integrand of the objective 

functional satisfies ( )2 2 2 2

1 1 2 3 2z C u u u C



 + + −  

The existence results in Lukes (1982) [Theorem 9.2.1 page 182] for the state system to verify that 

the first property is satisfied. The control set is convex and closed from the definition of a convex 

set U ; thus, the second property also holds. Given that the state solutions of a linear state system 

in 
iu  are bounded, then the right-hand side is bounded by a linear function. Finally, there are 

1 2, 0C C  and 1  satisfying 

( )2 2 22 2 2 2

1 2 3 4 1 1 2 2 3 3 1 1 2 3 2( ) ( ) ( )W M W S W B W I G u t G u t G u t C u u u C



+ + + + + +  + + −        (21) 
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since the state variables are bounded. Hence, the existence of optimal control follows from the 

existing results [37]. 

4.1 CHARACTERISATION OF THE OPTIMAL CONTROLS 

The representation of the optimal controls depends on Pontryagin's Maximum Principle [38]. To 

achieve this, one needs to transform the optimal control problem into the problem of minimising 

point-wise a Hamiltonian H with respect to 
iu . Let x  be the set of state variables, U be the set 

of controls, L  be the set of adjoint variables, and z  be the right-hand side of the differential of 

the thi  state variable. Then Our problem's Lagrangian function is the integrand of the objective 

functional, the inner product of the right-hand side of the state equations, and the adjoint variables 

( )1 2 3 4 5 6 7 8, , , , , , ,L L L L L L L L .  

In more compact, the Lagrangian is defined by 

( ) ( )( )
3

2

1 2 3 4

1

, ,
2

i
i i

i

G
H W M W S W B W I u Lz t x t u t

=

= + + + + +            (22) 

Then, the expanded form of the Lagrangian is given by 

( )2 2 22 2 2 2

1 2 3 4 1 1 2 2 3 3 1 1 2 3 2

1 3

1

2  3 3 3

1

3 3 3

( ) ( ) ( )

    1 (1 )

  1 (1 ) (1 ) (1 )  

(1 ) (1

M S

M S

H W M W S W B W I G u t G u t G u t C u u u C

N P
L rP u I P

K N

N P
L r E u I u E u E E

K N

L u E u



 

    

 



= + + + + + +  + + −

    
+ − − − −        

    
+ − + − − − − − −        

+ − − − ( )

( )

( )

( )
( )

( ) ( )

( )

1

4 3 3 1

5 3 3 1

6 2

2

7 2

8 3

)  
1

(1 ) (1 )   
1

(1 ) (1 )  
1

1 1
1

1

S M

S M

V

V

AM
M M u a

A

AS
L u E u S S u a

A

AB
L u M u S B u a

A

V I AV
L b V I V V u c

K A

AI
L V I u c

A

L u f g M S



  

  

  

  

 
− − + 

+ 

 
+ − − − − − + 

+ 

 
+ − + − − − + 

+ 

  +
+ + − + − − − − +   +  

 
+ +  − − + 

+ 

+ + + +( )( )                                                                                                             B hA−

    

(23) 
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where , 1,2,3,4,5,6,7,8iL i =  are the co-state variables associated by , , , , , , ,P E M S B V I A . 

Theorem 4.  

Since 
iu   is the set of optimal control and x  the corresponding set of solutions for the state 

system (18) that minimises J  over  ; then there exist adjoint variables L  such that 

,
dL dH

dt dx
= − adjoint conditions and     (24) 

( ) 0,fL t = transversality conditions. Furthermore;     (25) 

0,
dH

dt
= at uoptimality conditions:    (26) 

Proof.  

We are taking the partial derivative of the Lagrangian H with respect to state variables. That is, 

( ) ( )* *

3 3 21
1

1

1 1
1

u I u I LdL N
L r

dt K N N

 

    − − 

= + − − +          
      

 

( )( ) ( )( )

( )( ) ( )( )

* * * * * *
3 3 6 72

2

1

* * * *

3 3 4 3

1 1

1 1

S B u M B u V L V LdL N
L r

dt K N N N N

L M B u L S B u

N N

     
 

   

   + − + −    
   = + − − + −                 

   + − + −
   + +
   
   

 

( ) ( ) ( ) ( )

( )( ) ( ) ( )

* ** * *

1 3 33
3 8 1 5*

* * * ** *
3 3 2 3 46 7

1 1

1

1 1 1

S Bu a A u E u SdL
L gL W L

dt A N N N

S B u u L E u L SL V L V

N N N N N

  


     

   +     + − −
 = + + + − − +              +        

 + −    − − 
 + + − − −                

 

( ) ( ) ( )( ) ( )

( )( ) ( )

* ** * *
31 3 34

4 8 2 5*

* * ** * *
3 3 26 7 3

11 1

1

1 1

M B uu a A u E u MdL
L gL W L

dt A N N N

M B u u E LV L V L M L

N N N N N

  


    

   + −   + − −
 = + + − − − +          +      

 + − −
 + + − + −
 
 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

* * * *

1 3 3 35
5 8 3 4*

* * * * * * *
3 3 3 3 3 6 7

3 2

1 1 1

1

1 1 1 1 1

u a A u M u S u EdL
L gL W L

dt A N N N

u S u M u E u E u E L V L V
L L

N N N N N N N

     


           

      + − − −
= + + + − − +            +      

   − − − − −
− + + − + + −      

   

 

( ) ( ) ( ) ( )

( )

* * * * * * * **

26
6 8*

2 2

* * * *

7

1
1

V I V I E M S Bu c AdL
L b b hL

dt K K A N

L E M S B

N






      + + + + ++
      = + − + + + −

      + 
      

 + + +
 −
 
 

 

( ) * * ** * * *
27 3 1 3 2

7 8 4 6*

2 2

( 1) ( 1)
1

1

u c AdL u P L u P LV I V I
L gL W L b b

dt A K K N N

 

   +     − −+ +

= + − − + − + − +         +       

 

 

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

* * *

1 1 1 1 2 2* * *8
8 5 3 72 2 2* * *

* * *

* *

1 1 2 2* *

4 62 2* *
* *

1 1 11 1 1

1 11 1

u a u a A u a u a A u c u c AdL
hL B L M L I L

dt A A AA A A

u a u a A u c u c A
S L V L

A AA A

     
+ + + + + +     = + − + − + −

     + + ++ + +
     

   
+ + + +   + − + −

   + ++ +
   

 

        (27) 

with transversality conditions (or final time conditions) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5 6 70, 0, 0, 0, 0, 0, 0L T L T L T L T L T L T L T= = = = = = =  and  ( )8 0L T =  

The characterisations of the optimal controls ( )*u t  and corresponding ( )1u t ( )2u t
, ( )3u t

that is, 

the optimality equations, are based on the conditions: 

1 2 3

0
H H H

u u u

  
= = =

  
 

Thus, using the bounds of the control ( ); 1,2,3iu t i = , its optimal control is given by 

                             (28) 

                                                            

* * * * * *

5 3 4

* * *

*

1

1

1 1 1
max 1,min 0,

L A B L A M L A S

A A A
u

G

   
+ +   

+ + +   =   
  
  

  
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                                       (29)                                                                     

 

( ) ( ) ( ) ( )

( ) ( ) ( )

* * * * * * * * * * * *

8 4 2

* * * * * * * * ** ** *
31

5

*

3

3

L f +L + -L -

+L -

max 1,min 0,
G

S B E M B S M B E S B E

N N N N

M B S S B M L M B EL P IP I

N N N N N
u

       

     

         + + + +
         −

        
        

      + + +
      + − +

      
      = 

 
 
  
  
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  (30) 

The optimality system consists of the state system (18) coupled with the adjoint system with initial 

and transversal conditions and the characterisation of optimal control. It can be noticed that 
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3
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
= 


     (31) 

which implies that the second partial derivative of the Hamiltonian H  with respect to controls 

1u ,
2u and 

3u  are positive. Therefore, the optimal problem is minimum at controls 
1u ,

2u , and 
3u . 

 

5. NUMERICAL SIMULATIONS AND DISCUSSION 

5.1 Parameter estimation of CVD co-infection model 

This section presents the numerical analysis using the data obtained from ten district councils in 

two regions (Mwanza and Geita) in Tanzania for 2014-2018, as summarised in Tables 1 and 2. The 

maximum likelihood estimation (MLE) approach was used to estimate parameters and actual data 

of infected CMD and CBSD plant cases from Magu, Kwimba, Misungwi, Sengerema, Ukerewe, 

Chato, Geita rural, Geita Town, Mbogwe and Nyang'hwale districts councils were used. 
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Table 1: Average CMD infected plants cases per hectare per district council for 2014-2018 

 

District Council 

Year 

2014 2015 2016 2017 2018 

Magu 3100 3238 3100 3322 3319 

Kwimba        3238 3315 3097 3168 3017 

Misungwi    3295 3018 2937 3044 3105 

Sengerema     3274 3323 2840 3014 3182 

Ukerewe 3183 3127 3287 3306 3418 

Geita  Town            3134 3283 2907 2851 3129 

Geita   3319 3144 3242 3363 2837 

Chato 3218 2828 3428 3043 3071 

Nyang’hwale      3167 3039 3115 3228 3055 

Bukombe 3152 2962 3148 3313 3273 

 

Table 2: Average CBSD infected plants cases per hectare per district council for 2014-2018 

 

District Councils 

Year 

2014 2015 2016 2017 2018 

Magu 2190 2215 2199 2314 2288 

Kwimba        2094 2292 2073 2241 2416 

Misungwi    2149 2082 2132 2245 2342 

Sengerema     2227 2223 2028 2317 2131 

Ukerewe 2331 2443 2451 2263 2319 

Geita  Town            2035 2124 2088 2259 2252 

Geita   2227 2123 2328 2262 2128 

Chato 2313 2195 2071 2228 2326 

Nyang’hwale      2196 2139 2045 2157 2291 

Bukombe 2315 2221 2239 2418 2491 
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 The maximum-likelihood estimator (MLE) 

The maximum likelihood estimation (MLE) was used to estimate the model's parameters. The goal 

of the maximum likelihood technique is to maximise the likelihood function, and we do so in this 

paper by minimising the sum of squares of residuals (SSR), which defined as 

( ) ( )
2

1

N
est

i i

i

L y y
=

= −  

where  
 

1

N

i i
y

=   is the actual data, and 
 

1

N
est

i
i

y
=  is the solution of model equations (1) at a given 

parameter value. Some of the initial parameter values were derived from a variety of sources in 

the literature, such as Holt et al. [39], Kinene et al. [11], Magoyo et al. [40], Chapwanya et al. [41] 

and Jittama et al.,  [42], while others were assumed based on the environmental implications. The 

numerical results for MLE for the CVD co-infection model parameters are 

summarised in Table 3. 

 

 

Figure2. The Average CMD and CBSD infected plant cases per hectare per district council for 

2014-2018 and the best-fitted solution of the model (1). 
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 Table 3: Parameter values that give the best fit to the data in the model 

Parameter Literature value Estimated 

Parameter value  

Parameter Literature 

value 

Estimated 

Parameter 

value 

K1 10000 10000 a  0.022 0.00899444 

K2 2510 3600 c  0.025 0.024362 

r  0.07 0.0768663 f  0.001 0.00128288 

  0.0024 0.0026751 h  0.024 0.0223494 

  
0.024 0.0216701 g  0.05 0.0418727 

  0.042 0.051725   0.0029 0.00735984 

  0.032 0.0312163 b  0.192 0.229256 

  0.62 0.607043   0.82 0.279803 

  0.04 0.0337999   0.081 0.0559998 

  0.06 0.0430805   0.06 0.0575963 

  0.035 0.0321168   0.0062 0.00809025 

 

5.2 Sensitivity Analysis of Model Parameters 

Sensitivity analysis was obtained on the fundamental parameters to check and identify parameters 

influencing the basic reproductive number. We used the approach specified by Blower, S. M. and 

Dowlatabadi, H. [43] to conduct sensitivity analysis, as described in [44]. The sensitivity indices 

are given as 

 0 0

0

p

p

p

 
 = 

 
    where p  is the model parameter. (29)                                                             

The sensitivity indices of the model are presented in figure 3 below 
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Figure 3: Sensitivity analysis of 
0 with respect to each model parameter 

5.3 Impact of Farmer's Awareness toward cassava virus disease 

The impact of the farmers' awareness is evaluated through model (1) with the variables a  : a 

maximum activity rate in diseased plants and c  a maximum activity rate in infected whitefly 

vectors. Whereby the graphs of the variables against time with different values of farmers' activity 

rate due to the farmers' awareness of infected cassava plants and infected whitefly vector 

populations. For example, Figure 4(a)- (c) shows that CMD, CBSD and CVD co-infection 

incidence in the cassava plants population decrease with an increase in farmers' awareness 

activities on the infected plants due to the farmers' awareness. On the other hand, the number of 

infective whitefly vectors initially decreases with time due to the small number of infected plants 

that reduce is associated with the increase of the farmers' awareness activities in infected plants, 

as displayed in figure 4(d). 
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Figure 4. The impact of different values of the farmers' activity rate a  in infected cassava plants 

due to Farmer's awareness of (a)CMD, (b) CBSD, (c)CVD co-infection, (d) infected whitefly 

vectors, (e)susceptible plants and (f) susceptible whitefly vectors populations with respect to time. 

Furthermore, figure 4 (e) shows that the susceptible cassava plants subpopulation increases slowly 

as the Farmer's activities increases due to the Farmer's awareness level. On the other hand, figure 

4(f) shows that the infective whitefly population decreases with time due to the Farmer's awareness 

activities associated with the Farmer's awareness level. Similarly, from figure 5(a)- (c), we see that 

CMD, CBSD CVD co-infection in the cassava population decreases as the Farmer's activity on 
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infected whitefly vectors increases due to Farmer's awareness. The same applied to the infected 

whitefly vectors is reduced as the Farmer's activities increase due to the Farmer's awareness level, 

as depicted in figure 5(d). 

 

 

Figure 5. The impact of different values of the farmers' activity rate c  in infected whitefly vectors 

due to Farmer's awareness of (a)CMD, (b) CBSD, (c)CVD co-infection, (d) infected whitefly 

vectors, (e)susceptible plants and (f) susceptible whitefly vectors populations with respect to time. 
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Moreover, figure 5(e) shows that farmers' activities on infected whitefly vectors increase the 

number of susceptible cassava plants due to farmers' awareness. In addition, figure 5(f) illustrates 

that farmers' activities due to awareness of infected whitefly vectors significantly contribute to 

reducing or eliminating susceptible whitefly vectors.  

5.2 Control Scenarios 

The following four combination optimal control strategies were considered and evaluated for their 

impact on the eradication of CMD, CBSD and CVD-coinfection: 

Strategy A: Control by uprooting and burning, and spraying pesticides (
1 2 30, 0, 0u u u  = ). 

Strategy B: Control with uprooting and burning and farming awareness (
1 2 30, 0, 0u u u =  ). 

Strategy C: Control by spraying pesticides and farming awareness (
1 2 30, 0, 0u u u=   ). 

Strategy D: Control with all three controls: uprooting and burning, spraying pesticides and farming 

awareness (
1 2 30, 0, 0u u u   ). 

The parameter used in the simulation is shown in Table 3. However, the following initial values 

were employed to model optimal control: P (0) = 2000, E (0) = 1000, M (0) = 3000, S (0) = 2000, 

B (0) =1000, V (0) = 1500 and I (0) = 1000. Furthermore, the coefficients of the state variables 

and controls are W1 = 0.2, W2 = 0.4, W3 = 0.7, W4 = 0.3, G1 = 10000, G2 = 3000 and G3 = 5000. 

The weight values used in the simulations are entirely theoretical, chosen randomly to illustrate 

the control mechanisms suggested in this paper.  

Strategy A: Control by uprooting and burning, and spraying pesticides 
1 2 3( 0, 0, 0)u u u  =  

Figures 6(a) and 6(b) show that the number of CMD and CBSD infectious plants decreases when 

applying strategy D. Furthermore, Figure 6(c) indicates that the CVD co-infectious plants reduced 

suggestively with the implementation of the same technique. Figure 6(d) shows that implementing 

this strategy affects infected whitefly vectors. This is because the number of infected whitefly 

vectors tends to decrease with this strategy. This approach significantly reduces the number of 
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CMD, CBSD, and CVD co-infectious populations and infected whitefly vectors. However, 

additional control measures are required to limit the disease. 

 

Figure 6: Impacts of uprooting and burning, and spraying pesticides controls on CVD co-infection 

transmission dynamics. 

Strategy B: Control by uprooting and burning and farming awareness 
1 2 3( 0, 0, 0)u u u =   

Figures 7(a)-(c) show a marked decrease in the number of CMD, CBSD and CVD co-infectious 

cassava plant populations at any given moment. Furthermore, Figure 7(d) indicates that applying 

the strategy is also more helpful in reducing the population of infected whitefly vectors from the 

field. Finally, it should be noted that uprooting and burning diseased cassava plants along with 

farmer awareness campaigns greatly reduce infections by minimising the transmission of the virus 

to another plant through whitefly vectors. 
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Figure 7: Impacts of uprooting and burning and farming awareness controls on CVD co-infection 

transmission dynamics. 

Strategy C: Control by spraying pesticides and farming awareness 
1 2 3( 0, 0, 0)u u u=    

It can be noted from Figure 8(a)-(c) that there is no decrease in the number of CMD, CBSD and 

CVD co-infectious, respectively, as a result of the spraying pesticides and farming awareness 

application. It means that spraying pesticides and farming awareness measures are not intended to 

remove infected cassava plants within the field. However, from Figure 8(d), applying such efforts 

may reduce the infected whitefly vectors from the environment. Therefore, other strategies 

targeting CMD, CBSD, and CVD co-infectious populations should be attempted to eradicate these 

diseases. 
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Figure 8: Impacts of spraying pesticides and farming awareness controls on CVD-coinfection 

transmission dynamics. 

Strategy D: Control by uprooting and burning, spraying pesticides and farming awareness        

1 2 3( 0, 0, 0)u u u    

The results show that uprooting and burning infected cassava plants in the system, spraying 

pesticides and farming awareness will reduce the spread of the disease. We can observe this 

tendency from 9(a)-(c), which displays that the CMD, CBSD and CVD co-infected cassava 

decreases by intensifying the removal of the infected plants and the infected whitefly vector 

decreases by strengthening pesticides application due to the increase of farmers awareness. 

Moreover, Figure 9(d) shows that the infected whitefly vector decreases when applied control. The 

combination of strategies 
1 2,u u and 

3u  gives the best results to optimise the objective function 

(𝐽). 
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Figure 9: Impacts of uprooting and burning, spraying pesticides and farming awareness controls 

on CVD-coinfection transmission dynamics. 

6. COST-EFFECTIVENESS ANALYSIS 

The Incremental Cost-Effectiveness Ratio (ICER), as suggested by Kinene et al. [11], is a more 

formal approach to evaluating the cost-effectiveness of the strategies. The ICER compares two 

competing alternative strategies using limited resources and limited resources. When comparing 

two intervention strategies in ICER, one strategy should be compared incrementally with the next-

less-effective alternative. It is termed additional costs per additional health outcome. In other 

words, ICER can be defined as the ratio of the cost difference between two strategies to the averted 

difference between the total number of infections. That is, 

𝐼𝐶𝐸𝑅(𝑋) =
𝐶𝑜𝑠𝑡 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑋−𝐶𝑜𝑠𝑡 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑌

𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑋−𝐸𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 𝑌
=

∆𝐶𝑇

∆𝐸
           (46) 

where X  and Y  are the two intervention strategies compared. The incremental cost is denoted 

by 
TC while the incremental effect is represented by E . Furthermore,

TC it indicates the total 

costs incurred by implementing a specific strategy, whereas E  it means the effectiveness of a 
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particular strategy. Finally, the total number of infections averted  ( )E  is estimated for each 

strategy by subtracting total infections with control from those without control. 

An ICER is calculated based on the strategies: A, B, C and D. Parameter values from Table 3 were 

used to estimate the total cost and infections averted presented in Table 4. For example, consider 

strategy A: where the estimated total number of infections is 713610. Furthermore, the total 

number of infections was calculated as 3901500 when there was no control strategy. To attain the 

total number of averted infections for Strategy A, deduct the total number of infections when there 

was no control strategy (status quo) from the number of infections when strategy A was considered, 

i.e. 3901500 713610 3187890− = . Therefore, for Strategy A, the number of averted infections is 

3187890, and the total cost is $17912, whereas the cost of a status quo strategy is $0.  

 

Table 4: Number of infections averted and total cost of each strategy. 

Strategies Infections Infection averted ( E ) Cost ($ ) (
TC ) 

 
3901500   0 

A 713610 3187890 17912.00 

B 1120400 2781100 15553.00 

C 3602600 298900 2406.40 

D 1105500 2796000 15913.00 

 

First, reorder the control strategies in Table 4 in increasing order of effectiveness ( )E  . Next, 

compute incremental effectiveness ( )E   and incremental cost ( )TC  . Finally, the ICER is 

calculated by dividing incremental costs ( )TC  by incremental effectiveness ( )E . 

2406.4
ICER(C)= 0.008051

298900
=  

13146.6
ICER(B)= 0.005296

2482200
=  
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Table 5: Incremental cost-effectiveness ratios of different optimal control strategies. 

Strategies  E  E  TC  
TC  ICER ( / )TC E  

C 298900 298900 2406.4 2406.4 0.008051 

B 2781100 2482200 15553 13146.6 0.005296 

D 2796000 14900 15913 360 0.024161 

A 3187890 391890 17912 1999 0.005101 

Comparing strategies C and B, strategy B's ICER is less than strategy C's ICER. Therefore, strategy 

C is more costly and less effective than strategy B. Thus, strategy C is excluded from alternatives, 

and ICER is recalculated for the remaining strategies. With Strategy C dropped, Table 5 deduced 

the ICER, which was determined as 

15553
ICER(B)= 0.005592

2781100
=  

360
ICER(D)= 0.024161

14900
=  

 

Table 6: Incremental cost-effectiveness ratios of different optimal control strategies excluding 

strategy C. 

Strategies E  E  TC  
TC  ICER ( / )TC E  

B 2781100 2781100 15553 15553 0.005592 

D 2796000 14900 15913 360 0.024161 

A 3187890 391890 17912 1999 0.005101 

 

Also, this comparison shows that Strategy B is cheaper than Strategy D. Strategy D is thus 

excluded, and proceeds to compare Strategy B to Strategy A. 

From Table 7, one attains 

15553
ICER(B)= 0.005592

2781100
=  

2359
ICER(A)= 0.005799

406790
=  
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Table 7: Incremental cost-effectiveness ratios for optimal control strategies B and A. 

 

Finally, the findings show that strategy B is less expensive than strategy A. Strategy B (uprooting 

and burning infected plants and a farmer's awareness campaign) is the best of all possible strategies 

due to its cost-effectiveness and health benefits. 

 

7. CONCLUSION  

This work develops and discusses a mathematical model tracing the impact of farming awareness 

on CVD co-infection. In the first place, basic properties of the model, such as boundedness of the 

biological feasibility and positivity of the solution of the model, proved that all variables that enter 

and remain feasible in the invariant region were positive. Then, the basic reproduction number is 

computed with respect to the CVD co-infection-free equilibrium point using the next-generation 

matrix approach. The Jacobian and Metzler matrices were used to check CVD co-infection-free 

equilibrium local and global stability. The model's CVD co-infection-free equilibrium points are 

locally and globally asymptotically stable if the basic reproduction number is less than one. The 

sensitivity analysis of the basic reproduction numbers was obtained, and their biological 

interpretation was provided. The effect of the farming awareness level in the CVD co-infection 

model was performed numerically. Then the later mathematical model was modified to incorporate 

three time-dependent control to obtain an optimal control problem. The existence of optimal 

control is proved and later analysed. Finally, the optimality system is numerically solved, and its 

results are presented. The findings suggest that a strategy that includes a combination of two 

controls (uprooting and burning and a farmer's awareness campaign) is effective and plays a 

significant role in minimising the epidemic. 

Similarly, it was found that any strategy under consideration, combined with awareness campaigns, 

appeared to be more effective than that ignored awareness. Finally, the cost-effectiveness of the 

Strategies E  E  TC  
TC  ICER ( / )TC E  

B 2781100 2781100 15553 15553 0.005592 

A 3187890 406790 17912 2359 0.005799 
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control strategies was developed and analysed using the ICER method. It was noted that the most 

cost-effective strategy was integrating the combination of two control efforts uprooting and 

burning, and an awareness campaign. Thus, uprooting and burning infected plants and Farmer's 

awareness campaigns about the CVD co-infection is the cost-effective optimal control strategy and 

is sufficient to combat the epidemic of Cassava virus diseases with limited resources. 
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