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Abstract. This paper studies the bifurcation of positive solutions for a boundary-value problem of nonlinear

fractional differential equations with integral boundary conditions. Using the topological degree theory and the
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1. INTRODUCTION

Since fractional-order models are found to be more adequate than integer-order models in

some real-world problems. In fact, fractional derivatives provide an excellent tool for the de-

scription of memory and hereditary properties of various materials and processes. For details,

see [16], [17], [18]. Consequently, in the last two decades, the study of fractional differential

equations has attracted many scientists’ interest due to their applications in chemical process,

physics, biology, and so on. It have been given considerable attention by many authors, see

[20], [21], [22] and the references therein.
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Owing to various applications of integral boundary value problems in applied fields such

as blood flow problems, chemical engineering, thermo-elasticity, undergroundwater flow, and

population dynamics, the existence of solutions for fractional differential equations with integral

boundary conditions has been extensively studied in recent years (see [3], [4], [5], [6] and the

referencres therein).

In this paper, we aim to study the following boundary value problem of fractional differential

equations with integral boundary conditions:

(1)


cDαu(t)+η f (t,u(t)) = 0 0 < t < 1,

u(0) = u
′′
(0) = 0, u(1) = β

∫ 1
0 u(s)ds,

where 2 < α < 3, 0 < β < 2, cDα is the Caputo fractional derivative, η > 0 is a given constant,

and f : [0,1]× [0,+∞)→ [0,+∞) is continuous function. We make the following assumptions:

(H1) ∃(r,R) ∈ R2 satisfying 0 < r < R, and there exist the functions a0,a0,b∞,b∞ ∈

C(J,R+) with a0(.),a0(.),b∞(.),b∞(.) 6≡ 0 in any subinterval of J := [0,1] and functions

ζ1,ξ1,ζ2,ξ2 ∈C(J,R+) such that

a0(t)(v−ξ1(t,v))≤ f (t,v)≤ a0(t)(v+ξ2(t,v)) ∀(t,v) ∈ J× [0,r],

and

b∞(t)(v−ζ1(t,v))≤ f (t,v)≤ b∞(t)(v+ζ2(t,v)) ∀(t,v) ∈ J× [R,+∞),

where for i ∈ {1,2} and uniformly with respect t we have

ξi(t,v) = o(v) as v→ 0 and ζi(t,v) = o(v) as v→+∞.

We use a bifurcation techniques and topology degree theory under the condition (H1) and other

conditions to investigate the problem (1) and to obtain the existence of positive solutions.

Some special cases of (1) have been investigated. For example, Cabada and Wang [3] studied

the existence of positive solutions of (1) with η = 1, by using Guo-Krasnoselskii’s fixed point

theorem, and they proved the following:

Theorem 1. Assume that one of the two following conditions is fulfilled:

(i) (Sublinear case) f0 = ∞ and f∞ = 0.
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(ii) (Superlinear case) f0 = 0, f∞ = ∞ and there exist µ > 0 and θ > 0 for which f (t,κx)≥

µκθ f (t,x) for all κ ∈ (0,1].

Then, the problem (1) with η = 1 has at least one solution that belongs to the cone

P = {u ∈C([0,1]) : u(t)≥ tβ (α−2)
2α

‖u‖, ∀t,s ∈ [0,1]}.

Where f0 := lim
u→0+
{ min

t∈[0,1]

f (t,u)
u
} and f∞ := lim

u→∞
{ max

t∈[0,1]

f (t,u)
u
} both uniformly with

respect to t ∈ [0,1].

Remark 1. Obviously, the condition (H1) means that the nonlinearity f (., .) is asymptotically

linear at 0 and ∞, not necessarily linearizable or super-linear or sub-linear, then the conditions

of Theorem (1) are differents then the condition (H1) and the method used in [3] is not helpful

any more in this case.

Remark 2. Unfortunately, there have been a few papers studying such fractional differential

equations using bifurcation ideas and to the best of our knowledge, there is no paper study-

ing such fractional differential equations with integral boundary conditions using bifurcation

techniques. The purpose of present paper is to fill this gap and the main method used here

is bifurcation techniques and topological degree, not fixed point theorem on cone, upper and

lower solutions technique, which is different from the references.

The bifurcation technique was firstly proposed by Rabinowitz and then was extensively ap-

plied to the study of positive solutions for BVPs of integer order differential equations [11],[12].

For fractional differential equations, Liu and Yu [9] applied the bifurcation technique to the ex-

istence of positive solutions for a class of BVPs of fractional differential inclusions.

The rest of this paper is organized as follows. Section 2 contains some preliminary results.

Section 3 presents the main results of this paper. In Section 4, two illustrative examples are

worked out to support our obtained new results. In some sense, the proves given in this work

follow similar steps to the ones obtained in [1], [8], [19].

2. BACKGROUND MATERIALS AND PRELIMINARIES

Firstly, we recall some well known results about fractional calculus. For details, please refer

to [2], [10], [17] and references therein.
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Definition 1. For a function f : [0,∞)→ R, the Caputo derivative of fractional order α is

defined as

cDα f (t) =
1

Γ(n−α)

∫ t

0
(t− s)n−α−1 f (n)(s)ds, n = [α]+1,

where [α] denotes the integer part of the real number α .

Definition 2. The Riemann-Liouville fractional integral of order α for a function f is defined

as

Iα f (t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, α > 0,

provided that such integral exists.

Definition 3. The Riemann-Liouville fractional derivative of order α for a function f is defined

by

Dα f (t) =
1

Γ(n−α)
(

d
dt
)n

∫ t

0
(t− s)n−α−1 f (s)ds, n = [α]+1,

provided that the right-hand side of the previous equation is pointwise defined on (0,∞).

Lemma 1. Let α > 0, then the fractional differential equation

cDαu(t) = 0

has a unique solution given by the expression

u(t) =
[α]

∑
j=0

u( j)(0)
j!

t j.

Lemma 2. Let α > 0, then

IαcDαu(t) = u(t)−
[α]

∑
j=0

u( j)(0)
j!

t j.

Secondly, we recall some useful properties of Green’s functions for BVP (1), which were

proved in [3]. Throughout this paper, the Banach space is C([0,1]) with the norm ‖v‖ =

max
t∈[0,1]

|v(t)|, ∀v ∈C([0,1]).
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To solve BVP (1), we first consider the following linear boundary problem of fractional differ-

ential equation:

(2)


cDαu(t)+g(t) = 0 0 < t < 1,

u(0) = u
′′
(0) = 0, u(1) = β

∫ 1
0 u(s)ds,

where g ∈C([0,1]) we cite the following two lemmas from reference [3].

Lemma 3. (see[3]). Given g ∈ C([0,1]), then u(t) =
∫ 1

0 G(t,s)g(s)ds is a solution of (2),

where

(3) G(t,s) =


2t(1−s)α−1(α−β+β s)−(2−β )α(t−s)α−1

(2−β )Γ(α+1) , 0≤ s≤ t ≤ 1,
2t(1−s)α−1(α−β+β s)

(2−β )Γ(α+1) , 0≤ t ≤ s≤ 1.

Lemma 4. (see[3]). Let 2 < α < 3 and 0 < β < 2. For all t,s ∈ [0,1], the function G(t,s)

defined by (3) has the following properties:

tβ (1− s)α−1(α−2+2s)
(2−β )Γ(α +1)︸ ︷︷ ︸

=tG(1,s)

≤ G(t,s)≤ 2α(1− s)α−1(α−2+2s)
(α−2)(2−β )Γ(α +1)

,︸ ︷︷ ︸
= 2α

β (α−2)G(1,s)

(4)

and

(5) G(t,s)> 0 for all t,s ∈ (0,1) if and only if β ∈ [0,2).

Thirdly, we list the following results on the topological degree of completely continuous

operators.

Theorem 2. (Schmitt and Thompson [14]. Let E be a real reflexive Banach space, G :

R×E→ E be completely continuous such that G(λ ,0) = 0, ∀λ ∈R, and a,b ∈R (a < b) be

such that u = 0 is an isolated solution of the equation

u−G(λ ,u) = 0, u ∈ E,(6)

for λ = a and λ = b, where (a,0),(b,0) are not bifurcation points of (6). Furthermore, assume

that

deg(I−G(a, .),Br(0),0) 6= deg(I−G(b, .),Br(0),0),
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where Br(0) is an isolating neighborhood of the trivial solution.

Let

Σ = {(λ ,u) : (λ ,u) is a solution of (6) with u 6= 0}∪ ([a,b]×{0}).

Then there exists a connected component C (i.e. maximal closed connected subset) of Σ con-

taining [a,b]×{0} in R×E and either

(i) C is unbounded in R×E or

(ii) C ∩ [(R\ [a,b])×{0}] 6= /0.

Theorem 3. (Schmitt [13]). Let E be a real reflexive Banach space. Let G : R×E → E

be completely continuous, and let a,b ∈ R (a < b) be such that the solution of (6) is, a priori,

bounded in E for λ = a and λ = b; that is, there exists an R > 0 such that

G(a,u) 6= u 6= G(b,u)(7)

for all u with ‖u‖ ≥ R. Furthermore, assume that

deg(I−G(a, .),BR(0),0) 6= deg(I−G(b, .),BR(0),0),

for sufficiently large R > 0. Then there exists a closed connected set C of solutions to (6) that

is unbounded in [a,b]×E, and either

(i) C is unbounded in λ direction or

(ii) there exists an interval [c,d] such that (a,b)∩ (c,d) = /0 and C bifurcates from infinity

in [c,d])×E.

Lemma 5. (Guo [15]). Let Ω be a bounded open set of real Banach space E, let θ denotes

the zero element of E and let G : Ω→ E be completely continuous. If there exists y0 ∈ E, y0 6= θ

such that

x ∈ ∂Ω, τ ≥ 0⇒ x−Gx 6= τy0.

Then

deg(I−G,Ω,θ) = 0.
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Finally, in order to prove the main results, we choose the basic space

E := {v ∈C(J,R+) : v(0) = v
′′
(0) = 0, v(1) = β

∫ 1

0
v(s)ds}.

Clearly, E is a Banach space with norm ‖v‖= max
t∈J
|v(t)| (for all v ∈ E).

Let

(8) Q := {v ∈ E : v(t)≥ tβ
2α

(α−2)v(s)≥ 0, ∀t,s ∈ J}.

One can easily see that Q is a cone of E. In addition, from (8) we have

(9) v(t)≥ tβ
2α

(α−2)||v||, ∀v ∈ Q, ∀t ∈ J.

In order to use the bifurcation technique to investigate BVP (1), we deal with the following

fractional boundary value problem with the parameter λ :

(10)


cDαu(t)+λ f (t,u(t)) = 0 0 < t < 1,

u(0) = u
′′
(0) = 0, u(1) = β

∫ 1
0 u(s)ds.

We note that (λ ,u) is said to be a solution of fractional BVP (10) if it satisfies (10). In addition,

if λ > 0 and u(t)> 0 for t ∈ (0,1), then (λ ,u) is said to be a positive solution of BVP (10). It

becomes apparent that if λ > 0 and u ∈ Q\{θ} such that (λ ,u) is a solution of fractional BVP

(10), then by (9) we know that (λ ,u) is a positive solution of BVP(10), where θ denotes the

zero element of E. Define

f (t,v) =


f (t,v), (t,v) ∈ J×R+,

f (t,0), (t,v) ∈ J× (−∞,0).

Then f (t,v)≥ 0 on J×R.

Lemma 6. Set Aλ : Q→C([0,1]) such that

(11) Aλ v(t) := λ

∫ 1

0
G(t,s) f (s,v(s))ds.

Assume that (H1) is satisfied, then Aλ : Q→ Q is completely continuous.

Proof. By assumption (H1) and using a similar process of the proof of Lemma 4.1 in [7] , we

know Aλ : Q→ Q is completely continuous. �
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Let

Σ := {(λ ,v) ∈ R+×C([0,1]) : v = Aλ v,v 6= θ},(12)

where θ is the zero element of C(J,R+). From Lemma (6) and the definitions of f and the cone

Q, one can see that (λ ,u) ∈ Σ⇒ u ∈ Q. Moreover, we have the following conclusion.

Lemma 7. From Lemma (3), if u ∈ E is a fixed point of the operator Aλ , then (λ ,u) is a

solution of

(13)


cDαv(t)+λ f (t,v(t)) = 0 t ∈ (0,1),

v(0) = v
′′
(0) = 0, v(1) = β

∫ 1
0 v(s)ds.

Furthermore, (λ ,u) is a positive solution of BVP (13) if and only if (λ ,u) is a positive solution

of BVP (10).

For a ∈C(J,R+) with a(t) 6≡ 0 in any subinterval of J, define the linear operator La : C(J)→

C(J) by

Lav(t) =
∫ 1

0
G(t,s)a(s)v(s)ds.(14)

where G(t,s) is defined by Lemma (3). From Lemma (3) and (4) and the well-known Krein-

Rutman Theorem, one can obtain the following lemma.

Lemma 8. The operator La defined by (14) is completely continuous and has a unique char-

acteristic value λ1(a), which is positive, real and simple, and the corresponding eigenfunction

φ(t) is of one sign in (0,1), that is,

φ(t) = λ1(a)Laφ(t), for all t ∈ J.

One can show that the operator La can be regarded as La : L2[0,1]→ L2[0,1]. This together

with Lemma (8) guarantees that λ1(a) is also the characteristic value of L∗a , where L∗a is the

conjugate operator of La. Denote ϕ∗ by the nonnegative eigenfunction of L∗a corresponding to

λ1(a). Then, we have

ϕ
∗(t) = λ1(a)L∗aϕ

∗(t), ∀t ∈ J.
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3. MAIN RESULTS

The main results of present paper are the following two theorems.

Theorem 4. Suppose that (H1) holds and suppose either

(i) λ1(a0)< η < λ1(b∞) or

(ii) λ1(b∞)< η < λ1(a0)

holds. Then BVP (1) has at least one positive solution.

Theorem 5. Suppose the following.

(H2) There exist R > 0 and h ∈ L(J,R+) such that

∀t ∈ J,∀v∈ [0,R], f (t,v)≤ h(t)v and max{λ1(a0),λ1(b∞)}<η <
(α−2)(2−β )Γ(α +1)

6
∫ 1

0 (2s+1)(1− s)α−1h(s)ds
.

Then BVP (1) has at least two positive solutions.

To prove Theorems (4) and (5), we first prove the following lemmas.

Lemma 9. Suppose that (H1) holds. Let λ1(a0) and λ1(a0) be the unique characteristic value

of La0,La0 , respectively. Then we have

(i) Let [c,d]⊂R+ be a compact interval with [λ1(a0),λ1(a0)]∩ [c,d] = /0. Then there exists

δ1 ∈ (0,r) such that

v 6= Aλ v, ∀λ ∈ [c,d], ∀v ∈ E with 0 < ‖v‖ ≤ δ1;

(ii) For µ ∈ (0,λ1(a0)), there exists δ1 ∈ (0,r) such that

deg(I−Aµ ,Bδ ,0) = 1, ∀δ ∈ (0,δ1];

(iii) For λ > λ1(a0), there exists δ2 ∈ (0,r) such that

deg(I−Aλ ,Bδ ,0) = 0, ∀δ ∈ (0,δ2].

Proof. •: Firstly, we prove conclusion (i). If this is not true, then

(15) ∃{(µn,vn)} ⊂ [c,d]×C([0,1]) : ‖vn‖→ 0+(n→+∞) and vn = Aµnvn.
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Without loss of generality, assume that µn→ µ ∈ [c,d] and ‖vn‖ < r for all n. Notice

that vn ∈Q. From (8), we know that vn(t)> 0 in (0,1). Set wn =
vn
‖vn‖ . Then wn =

Aµnvn
‖vn‖ .

From the definition of f (t,u), it is easy to obtain that {wn} is relatively compact in

C([0,1]). Taking a subsequence and relabeling if necessary, then wn→ w in C([0,1]),

‖w‖= 1 and w ∈ Q.

On the other hand, by (15) and the first part of (H1) we have

a0(s)(vn(s)−ξ1(s,vn(s)))≤ f (s,vn(s))≤ a0(s)(vn(s)+ξ2(s,vn(s))), ∀s ∈ J.(16)

Therefore, from (5) and (11) we know

wn(t)≤ µn

∫ 1

0
G(t,s)a0(s)[wn(s)+

ξ2(s,vn(s))
‖vn‖

]ds(17)

and

wn(t)≥ µn

∫ 1

0
G(t,s)a0(s)[wn(s)−

ξ1(s,vn(s))
‖vn‖

]ds.(18)

Let ψ∗ and ψ∗ be the positive eigenfunctions of L∗a0,L∗a0
corresponding to λ1(a0) and

λ1(a0), respectively. Then from (17), it follows that

〈wn,ψ
∗〉 ≤ µn〈La0wn,ψ

∗〉+µn

∫ 1

0
ψ
∗(t)[

∫ 1

0
G(t,s)a0(s)

ξ2(s,vn(s))
‖vn‖

ds]dt.

Letting n→+∞ and using condition (H1) again, we have

〈w,ψ∗〉 ≤ µ〈La0w,ψ∗〉= µ〈w,L∗a0ψ
∗〉= µ〈w, ψ∗

λ1(a0)
〉,

which implies µ ≥ λ1(a0). Similarly, one can obtain from (18) that µ ≤ λ1(a0). Summa-

rizing the above, λ1(a0)≤ µ ≤ λ1(a0), which is a contradiction with µ ∈ [c,d]. There-

fore, there exists δ1 ∈ (0,r) such that

v 6= Aλ v, ∀λ ∈ [c,d], ∀v ∈ E with 0 < ‖v‖ ≤ δ1.

•: Secondly, we prove conclusion (ii). Notice that [0,µ]∩ [λ1(a0),λ1(a0)] = /0. From (i),

there exists δ1 ∈ (0,r) such that

v 6= Aλ v, ∀λ ∈ [0,µ], ∀v ∈C([0,1]), with 0 < ‖v‖ ≤ δ1.
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Let τ = λ

µ
, which means

v 6= τAµv, ∀τ ∈ [0,1], ∀v ∈C([0,1]), with 0 < ‖v‖ ≤ δ1.

One can obtain from the homotopy invariance of topological degree that

deg(I−Aµ ,Bδ ,0) = deg(I,Bδ ,0) = 1, ∀δ ∈ (0,δ1].

•: Finally, we prove conclusion (iii). From the Lemma (5), one needs to prove that for

λ > λ1(a0), there exists δ2 ∈ (0,r) such that

v−Aλ v 6= τϕ0, ∀τ ≥ 0, ∀v ∈C([0,1]), with ‖v‖= δ2,(19)

where ϕ0 is the positive eigenfunction of La0 corresponding to λ1(a0). Suppose on the

contrary that there exist vn ∈C([0,1]) with ‖vn‖ → 0 (n→+∞) and τn ≥ 0 such that

vn−Aλ vn = τnϕ0.

Set wn =
vn
‖vn‖ . Then

(20) wn =
Aλ vn

‖vn‖
+

τn

‖vn‖
ϕ0.

By virtue of Aλ vn ∈ Q, we know wn ≥ τn
‖vn‖ϕ0. As a result, τn

‖vn‖ is bounded. On the

other hand, from (11), condition (H1), and Ascoli-Arzela theorem, it is easy to see

that {Aλ vn
‖vn‖ } is relatively compact. This together with (20) guarantees that {wn} is also

relatively compact. No loss of generality, suppose wn→ w as n→+∞.

Consequently, it follows from (11) and (20) that

(21) wn(t)≥ λ

∫ 1

0
G(t,s)a0(s)[wn(s)−

ξ1(s,vn(s))
‖vn‖

]ds.

Also let ψ∗ be the positive eigenfunction of L∗a0
corresponding to λ1(a0). Then by (21),

we know

〈wn,ψ∗〉 ≥ λ 〈La0wn,ψ∗〉−λ

∫ 1

0
ψ∗(t)[

∫ 1

0
G(t,s)a0(s)

ξ1(s,vn(s))
‖vn‖

ds]dt

= λ 〈wn,L∗a0
ψ∗〉−λ

∫ 1

0
ψ∗(t)[

∫ 1

0
G(t,s)a0(s)

ξ1(s,vn(s))
‖vn‖

ds]dt.
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Similar as in the proof of conclusion (i), we have ξ1(s,vn(s))
‖vn‖ → 0 as n→+∞ uniformly

with respect to s ∈ (0,1), so we obtain that

〈w,ψ∗〉 ≥ λ 〈w,L∗a0
ψ∗〉= λ 〈w, ψ∗

λ (a0)
〉.

This means λ ≤ λ1(a0), which is a contradiction. Consequently, (19) holds. By virtue

of Lemma (5), for each λ > λ1(a0), there exists δ2 > 0 such that

deg(I−Aλ ,Bδ ,0) = 0, ∀δ ∈ (0,δ2].

�

Theorem 6. [λ1(a0),λ1(a0)] is a bifurcation interval of positive solutions from the trivial so-

lution for BVP (10); that is, there exists an unbounded component C0 of positive solutions of

BVP (10), which meets [λ1(a0),λ1(a0)]×{0}. Moreover, there exists no bifurcation interval of

positive solutions from the trivial solution which is disjointed with [λ1(a0),λ1(a0)].

Proof. By virtue of (12) and Lemma (7), we need only to prove that there exists an unbounded

component C0 of Σ, which meets [λ1(a0),λ1(a0)]×{0}, and there exists no bifurcation interval

of Σ from the trivial solution which is disjointed with [λ1(a0),λ1(a0)]. For fixed n ∈ N with

λ1(a0)− 1
n > 0, by the assertions (ii) and (iii) of Lemma (9) and their proof, there exists r > 0

such that such that all of the conditions of Theorem (2) are satisfied with

G(λ ,u) = Aλ u, a = λ1(a0)− 1
n
, and b = λ1(a0)+

1
n
.

This together with Lemma (7) guarantees that there exists a closed connected set Cn of Σ con-

taining [λ1(a0)− 1
n ,λ1(a0)+

1
n ]×{0} in R+×C([0,1]).

From the conclusion (i) of Lemma (9), the case (ii) of Theorem (2) cannot occur. Thus, Cn

bifurcates from [λ1(a0)− 1
n ,λ1(a0)+

1
n ]×{0} and is unbounded in R+×C([0,1]). In addition,

for any closed interval [c,d]⊂ [λ1(a0)− 1
n ,λ1(a0)+

1
n ]\[λ1(a0),λ1(a0)], by the conclusion (i)

of Lemma (9), there exists δ1 > 0 such that

{v ∈C([0,1]) : (λ ,v) ∈ Σ,0 < ‖v‖< δ1,λ ∈ [c,d]}= /0.

Therefore, Cn must be bifurcated from [λ1(a0),λ1(a0)]×{0}, which implies that Cn can be

regarded as C0. In addition, using the conclusion (i) of Lemma (9) again, there exists no
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bifurcation interval of positive solutions from the trivial solution which is disjointed with

[λ1(a0),λ1(a0)]. �

By a process similar to the above, one can obtain the following conclusions.

Lemma 10. Let λ1(b∞) and λ1(b∞) be the unique characteristic value of Lb∞
,Lb∞ , respectively.

Suppose that (H1) holds. Then we have

(i) Let [c,d] ⊂ R+ be a compact interval with [λ1(b∞),λ1(b∞)]∩ [c,d] = /0. Then there

exists R1 > R such that

u 6= Aλ u, ∀λ ∈ [c,d], ∀u ∈C([0,1]) with ‖u‖ ≥ R1;

(ii) For µ ∈ (0,λ1(b∞)), there exists R1 > R such that

deg(I−Aµ ,BR,0) = 1, ∀R≥ R1;

(iii) For λ > λ1(b∞), there exists R2 > R such that

deg(I−Aλ ,BR,0) = 0, ∀R≥ R2.

Theorem 7. [λ1(b∞),λ1(b∞)] is a bifurcation interval of positive solutions from infinity for

BVP (10), and there exists no bifurcation interval of positive solutions from infinity which is

disjointed with [λ1(b∞),λ1(b∞)]. More precisely, there exists an unbounded component C∞ of

solutions to BVP (10), which meets [λ1(b∞),λ1(b∞)]×∞ and is unbounded in λ direction.

Now we are in position to prove Theorems (4) and (5).

3.1. Proof of Theorem (4). Certainly the solution of the form (η ,u) (u 6= θ) of (10) is a

positive solution of BVP (1). So by Lemma (7), it is sufficient to show that there is a component

C of Σ that crosses the hyperplane {η}×C([0,1]), where Σ⊂R+×C([0,1]) is defined by (12).

Case (i). λ1(a0)< η < λ1(b∞)

From Theorem (6) there exists an unbounded component C0 of positive solutions

to BVP (10), which bifurcates from [λ1(a0),λ1(a0)]× {θ}. Therefore, there exists

(µn,vn) ∈ C0 such that

µn +‖vn‖→+∞ (n→+∞).(22)
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If there exists n ∈ N such that µn ≥ η , the result follows. If this is false, we have

µn < η for all n ∈ N. Notice that (0,θ) is the only solution of (10) with λ = 0. By

the conclusion (i) of Lemma (9) and the conclusion (i) of Lemma (10), we have

C0∩ ({0}×C([0,1]) = /0. Therefore, µn ∈ (0,η) for all n ∈ N.

Taking a subsequence and relabeling if necessary, suppose µn → µ∗ as (n→ +∞).

Then µ∗ ∈ [0,η ]. This together with (22) guarantees that ‖vn‖ → +∞. Choose [c,d] =

[0,λ1(b∞)− 1
m ] for m ∈ N. By the conclusion (i) of Lemma (10), it follows that µ∗ >

λ1(b∞)− 1
m for each m ∈ N, which means η < λ1(b∞) ≤ µ∗.This is a contradiction.

Then BVP (1) has a positive solution u with (η ,u) ∈ C0.

Case (ii). λ1(b∞)< η < λ1(a0)

By Theorem (7), there exists an unbounded component C∞ of solutions to (10)

which bifurcates from [λ1(b∞),λ1(b∞)]× ∞, and is unbounded in λ direction. If

C∞ ∩ (R+ × {0}) = /0, using the fact that C∞ ∩ ({0} ×C([0,1]) = /0 and C∞ is un-

bounded in λ direction, we know that C∞ must cross the hyperplane {η}×C([0,1]).

If C∞ ∩ (R+×{0}) 6= φ , from Theorem (6) and C∞ ∩ ({0}×C([0,1]) = /0, we have

C∞ ∩ (R+ × {0}) ∈ [λ1(a0),λ1(a0)]× {0}. So C∞ joins [λ1(a0),λ1(a0)]× {0} to

[λ1(b∞),λ1(b∞)]×∞. This together with λ1(b∞) < η < λ1(a0) guarantees that C∞

crosses the hyperplane {η}×C([0,1]). Then BVP (1) has a positive solution u with

(η ,u) ∈ C∞.

3.2. Proof of Theorem (5). First we show that there exists ε > 0 such that

Σ∩ ([0,η + ε]×∂BR) = /0,(23)

where BR = {v ∈C([0,1]) : ‖v‖ < R}, and Σ ⊂ R+×C([0,1]) is defined by (12). In fact, from

assumption (H2), it follows that there exists ε > 0 such that

6(η + ε)

(α−2)(2−β )Γ(α +1)

∫ 1

0
(2s+1)(1− s)α−1h(s)ds < 1.

If there is a solution (λ ,u) of u = Aλ v, such that 0≤ λ ≤ η + ε and ‖v‖= R, then

0≤ u(t)≤ ‖v‖= R for t ∈ J.
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By virtue of (11) and Lemma (4), we have

R = ‖v‖ = max
t∈J

λ

∫ 1

0
G(t,s) f (s,u(s))ds

≤ (η + ε)Rmax
t∈J

∫ 1

0
G(t,s)h(s)ds

≤ 6(η + ε)R
(α−2)(2−β )Γ(α +1)

∫ 1

0
(2s+1)(1− s)α−1h(s)ds

< R.

which is a contradiction. Thus, Σ∩ ([0,η + ε]×∂BR) = /0.

Next, from Theorem (6), there exists an unbounded components C0 of solutions to (10),

which meet [λ1(a0),λ1(a0)]×{0}. By (23) we know C0∩ ([0,+ε]× ∂BR) = /0. This together

with the fact that C0 is unbounded, λ1(a0)< η , and C0∩ ({0}×C([0,1])) = /0 guarantees that

C0 crosses the hyperplane {η}×C([0,1]). Then BVP (1) has a positive solution u1 with

(η ,u1) ∈ C0 and ‖u1‖< R.

Similarly, by Theorem (7) and (23), the BVP (1) has a positive solution u2(t) with

(η ,u2) ∈ C∞ and ‖u2‖> R.

Consequently, BVP (1) has at least two positive solutions.

Immediately, from the proof of Theorem (5), we have the following Corollary.

Corollary 1. Suppose that assumption (H2) holds. In addition, suppose that one of the follow-

ing two conditions holds:

(i) λ1(a0)< η ; or

(ii) λ1(b∞)< η .

Then BVP (1) has at least one positive solution.

Remark 3. Corollary (1) is different from Theorem (5) though their results are similar.
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4. EXAMPLES

Example 1. Let ρ be the unique characteristic value of L corresponding to positive eigenfunc-

tion with a(t)≡ 3
2 in (2.11). From Lemma 2.10 it follows that ρ exists and we have

∃φ : φ(t) = ρ

∫ 1

0
G(t,s)

3
2

φ(s)ds, for all t ∈ J.

We consider the following BVP

(24)


cD

5
2 u(t)+η f (t,u(t)) = 0 0 < t < 1,

u(0) = u
′′
(0) = 0, u(1) = β

∫ 1
0 u(s)ds,

where β ∈ (0,2) and

(25) f (t,u) =


ρ(u+ tu2), t ∈ J,u ∈ [0,1],

ρ(4u−3+ t), t ∈ J,u ∈ [1,3],

ρ(3u+ t
√u

3), t ∈ J,u ∈ [3,+∞).

Then BVP (24) has at least one positive solution.

Proof. There is no doubt that f0, f∞ /∈ {0,∞}. Consequently, from theorem (1) we cannot affirm

that BVP (24) with (η ,β ) = (1,1) has a positive solution. Otherwise, BVP (24) can be regarded

as the form (1) and from (25), one can see that the condition (H1) of theorem (4) is satisfied with

a0(t) = a0(t) = ρ, b∞(t) = b∞(t) = 3ρ and ξ1(t,u) = ξ2(t,u) = tu2,ζ1(t,u) = ζ2(t,u) = t
3

√u
3 .

By the definition of ρ , it is easy to see that 1
2 = λ1(b∞)< 1 < λ1(a0) = 3

2 .

Therefore, BVP (24) has at least one positive solution as η ∈ (1
2 ,

3
2),β ∈ (0,2). �

Example 2. Let ρ be the unique characteristic value of L corresponding to positive eigenfunc-

tion with a(t)≡ 1
2 in (2.11). From Lemma 2.10 it follows that ρ exists and we have

∃φ : φ(t) = ρ

∫ 1

0
G(t,s)

1
2

φ(s)ds, for all t ∈ J.

We consider the following BVP

(26)


cD

5
2 u(t)+η f (t,u(t)) = 0 0 < t < 1,

u(0) = u
′′
(0) = 0, u(1) = β

∫ 1
0 u(s)ds,
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where β ∈ (0,2) and

f (t,u) = ρu(3+ sin(tu)+ sin(
t
u
))

Then BVP (26) has at least two positive solutions.

Proof. BVP (26) can be regarded as the form (1). Choose a0(t) = b∞(t) = 2ρ, a0(t) = b∞(t) =

4ρ and ξ1(t,u) =−1
2usin(tu), ξ2(t,u) = 1

4usin(tu), ζ1(t,u) =−1
2usin( t

u), ζ2 =
1
4usin( t

u). It is

easy to see ξi(t,u) = o(|u|) as |u| → 0, and ξi(t,u) = o(|u|) as |u| → +∞ both uniformly with

respect to t ∈ J (i = 1,2). Therefore, (H1) is satisfied.

Choose h(t) = 5ρ, thus f (t,u)≤ h(t)u.

By the definition of ρ , it is easy to see that

max{λ1(a0),λ1(b∞)}︸ ︷︷ ︸
= 1

4

< η︸︷︷︸
=1

<
(α−2)(2−β )Γ(α +1)

6
∫ 1

0 (2s+1)(1− s)α−1h(s)ds︸ ︷︷ ︸
= 3
√

π

8ρ

As a result, by Theorem (5), BVP (26) has at least two positive solutions. Otherwise, from

theorem (1) we cannot affirm that BVP (24) with (η ,β ) = (1,1) has a positive solution because

it is clear that f0, f∞ /∈ {0,∞}.

�
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