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Abstract. In 2011, Császár introduced the concept of weak structure, in the present paper we introduce some new

concepts of Strongly g∗w-closed (g∗w-closed, for short) sets in weak structures. Also, we find the relation between

this class and the classes of wclosed, gw-closed, and gsw-closed sets in weak structures. We also characterize

their basic properties via gw-closed. Finally, we introduce the concepts of ST ∗1
2

spaces by using the concepts of

gw-closed and Sg∗w-closed sets.
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1. INTRODUCTION

Levine [8] introduced the concept of generalized closed sets in topological space Y (A subset

U of Y is called generalized closed (g-closed, for short) set if cl(U)⊆V , whenever U ⊆V and

V is an open).

Császár [5]studied certain ideas, including continuity and generalized open sets, and introduced

the concept of generalized topology in 2002. Moreover, Császár [6] developed the idea of a

weak structure.

Let Y be a non-empty set and P(Y ) its power set. A class w ⊂ P(Y ) is said to be a weak
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structure (WS, for short) on Y if and only if φ ∈ w, a subset U is said to be w-open if U ∈ w and

its complement is called w-closed. He also defined two operations iw(U) and cw(U) in WS on

Y as the union of all w-open subsets contained in U and the intersection of all w− closed sets

containing U . Moreover, he gave some characteristics cw(U) and iw(U). The concept of gw-

closed sets (in the sense of Al Omari and Noiri [1]) is a special case of gw-closed sets presented

here.

In the present paper we introduce some new concepts of Strongly g∗w-closed (Sg∗w-closed, for

short) sets in weak structures. Also, we find the relation between this class and the class of

gw-closed sets and the class of gsw-closed sets in weak structures. We also characterize their

basic properties via gw-closed. Finally, we introduce the concepts of ST ∗1
2

spaces by using the

concepts of gw-closed and Sg∗w-closed sets.

2. PRELIMINARIES

Let WS be a weak structure on a nonempty set Y . For a subset U of Y , cw(U) and iw(U)

represent the closure of U with respect to w, the interior of U with respect to w respectively and

the complement of U in Y is denoted by (U)c.

Theorem 2.1. [7] Let WS be a weak structure on a nonempty set Y and U,V ⊂ Y . Then the

following hold.

(1) cw(U)∪ cw(V ) = cw(U ∪V ).

(2) iw(U ∩V ) = iw(U)∩ iw(V )

(3) H ∩ cw(U)⊂ cw(H ∩U) for every H ∈ w and U ⊂ Y .

(4) cw(G∩ cw(U)) = cw(H ∩U) for every G ∈ w and U ⊂ Y .

(5) cw(H) = cw(H ∩U) for every H ∈ w and U is w-dense.

Theorem 2.2. [6] Let WS be a weak structures on Y and U,V ⊆ Y . Then the following

statements are true:

(1) U ⊆ cw(U)

(2) If U ⊆V , then cw(U)⊂ cw(U),

(3) If U is w-closed, then U = cw(U),

(4) cw(cw(U)) = cw(U),
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(5) y ∈ cw(U) if and only if U ∩V 6= φ for each w-open set V containing y.

Theorem 2.3. [6] Let WS be a weak structures on Y and U,V ⊆ Y . Then the following

statements are true:

(1) U ⊇ iw(U),

(2) If U ⊂V , then iw(U)⊂ iw(V ),

(3) iw(iw(U)) = iw(U),

(4) If U is w-open, then U = iw(U),

(5) cw(Y −U) = Y − iw(U),

(6) iw(Y −U) = Y − cw(U),

(7) iw(cw(iw(cw(U)))) = iw(cw(U)),

(8) cw(iw(cw(iw(U)))) = cw(iw(U)),

(9) y ∈ iw(U) if and only if there is a w-open set V where y ∈V ⊂U,

Definition 2.4. [10] Let WS be a weak structures on Y . The set U is said to be generalized

w-closed (gw-closed, for short) if cw(U)⊂ G, whenever U ⊂ G and G is w-open.

The complement of a generalized w-closed set is said to be generalized w-open (gw-open, for

short). We will be denoted the family of all gw-closed (resp. gw-open) sets in a WS on Y by

gwC(Y ) (resp. gwO(Y )).

Theorem 2.5. [10] Let WS be a weak structures on Y . A subset U is gw-open if and only if

H ⊂ iw(U), whenever H ⊂U and H is w-closd

Definition 2.6. Let WS be a weak structures on Y . A subset U is said to be g∗w-closed if

cw(U)⊂ G, whenever U ⊂ G and G is gw-open

Definition 2.7. [7] Let w be a weak structures on Y . a subset V is called:

(i) a semi-w-open (semi-w-closed) (sw-open (sw-closed), for short) set if V ⊆

cw(iw(V ))(iw(cw(V ))⊆V ).

(ii) a regular w-open (regular w-closed) (rw-open (rw-closed), for short) set if

V = iw(cw(V ))(V = cw(iw(V ))).
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Definition 2.8. [7] Let w be a weak structures on Y . The intersection of all sw-closed sets

containing V is called the sw-closure of V and it is denoted by scw(V ).

3. STRONGLY g∗w-CLOSED AND STRONGLY g∗w-OPEN SETS

Definition 3.1. Let WS be a weak structures on Y . A subset U is said to be strongly g∗w-

closed (Sg∗w-closed, for short) set if cw(iw(U))⊆ G whenever U ⊆ G and G is gw-open.

The complement of a Sg∗w-closed set is said to be Sg∗w-open.

Theorem 3.2. Every w-closed set is Sg∗w-closed set.

Proof. Let WS be a weak structures on Y . Suppose that U be w-closed subset and U ⊂G where

G is gw-open set. Since U is w-closed, then cw(U) = U for every subset U of Y . Therefore,

cw(iw(U))⊆ G and hence U is Sg∗w-closed set. �

Remark 3.3. The converse of the above theorem need not be true, we show that by the

following example.

Example 3.4. Let Y = {r1,r2,r3}, w = {φ ,{r1},{r1,r3}}, and U = {r3} we can see that U

is a Sg∗w-closed set but not a w-closed set.

Theorem 3.5. Let WS be a weak structures on Y . If a subset U is g∗w-closed, then U is

Sg∗w-closed.

Proof. Suppose that U is g∗w-closed and let G be w-open set containing U . Then G contains

cw(U) and G⊇ cw(U)⊇ cw(iw(U)). Thus U is Sg∗w-closed. �

Remark 3.6. The converse of the above theorem need not be true as seen from the following

example.

Example 3.7. Let Y = {r1,r2,r3}, w = {φ ,{r1},{r1,r2}}. Then the set U = {r2} is Sg∗w-

closed but not g∗w-closed set.

Theorem 3.8. Let WS be a weak structures on Y . If a subset U is w-open and Sg∗-closed,

then it is w-closed.
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Proof. Suppose that U be a subset of Y which is both w-open and Sg∗w-closed. Thus U ⊇

cw(iw(U)) ⊇ cw(U) and U ⊇ cw(U). Since cw(U) ⊇ U , we have U = cw(U). Thus U is w-

closed. �

Theorem 3.9. Let WS be a weak structures on Y . If a set U is Sg∗w-closed, then cw(iw(U))−

U contains no non empty gw-closed set.

Proof. Suppose that U is non empty Sg∗w-closed and H be gw-closed subset contained

in cw(iw(U))−U . Now H ⊆ cw(iw(U))−U , this implies H ⊆ cw(iw(U)) ∩Uc. Since

cw(iw(U))−U = cw(iw(U))∩Uc. Thus H ⊆ cw(iw(U)). Now U ⊆ Hc, this implies H ⊆Uc.

Here Hc is gw-open and U is Sg∗w-closed, we have cw(iw(U))⊆ Hc. Thus H ⊆ (cw(iw(U)))c.

Hence H ⊆ (cw(iw(U)))∩ (cw(iw(U)))c = φ . Therefore H = φ implies cw(iw(U))−U contains

no non empty gw-closed sets. �

Remark 3.10. The converse of the above theorem need not be true as seen from the following

example.

Example 3.11. Let Y = {r1,r2,r3}, w = {φ ,{r1},{r1,r2}}. Then the set U = {r2} is Sg∗w-

closed but not g∗w-closed set.

Theorem 3.12. Let H is Sg∗w-closed set relative to V in weak structures WS and that both

w-open and Sg∗w-closed subset of Y where H ⊆V ⊆Y , then H is Sg∗w-closed set relative to Y .

Proof. . Let H ⊆ G and G be a gw-open set. If H ⊆ V ⊆ Y , then H ⊆ V and H ⊆ G. This im-

plies H ⊆ V ∩G and since H is Sg∗w-closed relative to V , cw(iw(H)) ⊆ V ∩G. This mean

V ∩ cw(iw(H)) ⊆ V ∩G and this implies V ∩ (cw(iw(H))) ⊆ G. Thus (V ∩ (cw(iw(H)))) ∪

(cw(iw(H)))c ⊆ G∪ (cw(iw(H)))c implies V ∪ (cw(iw(H)))c ⊆ G∪ (cw(iw(H)))c. Since V is

Sg∗w-closed, we have (cw(iw(V ))) ⊆ G∪ (cw(iw(H)))c. Also H ⊆ V implies cw(iw(H)) ⊆

cw(iw(V )). Thus cw(iw(H)) ⊆ cw(iw(V )) ⊆ G∪ (cw(iw(H)))c. Therefore H is Sg∗w-closed

set relative to Y . �

Corrollary 3.13. Let V be Sg∗w-closed and suppose that U is gw-closed then V ∩U is Sg∗w-

closed set.
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Proof. To show that V ∩U is Sg∗w-closed, we have to show cw(iw(V ∩U)) ⊆ G whenever

V ∩U ⊆ G and G is gw-open. V ∩U is gw-closed in V and so Sg∗w-closed in V . By the above

theorem V ∩U is Sg∗w-closed in Y . Since V ∩U ⊆V ⊆ Y . �

Theorem 3.14. If V is Sg∗w-closed and V ⊆ H ⊆ cw(iw(V )), then H is Sg∗w-closed.

Proof. Suppose that G is gw-open such that H ⊆ G, then V ⊆ G. Since V ⊆ G and V is Sg∗w-

closed, then cw(iw(V ))⊆ G. Now H ⊆ cw(iw(V )), and so cw(iw(H)⊆ cw(iw(V ))⊆V . Thus H

is Sg∗w-closed set. �

Definition 3.15. Let WS be a weak structures on Y . A subset V is called a generalized semi-

w-closed (gsw-closed, for short) set if scw(V ) ⊆ U whenever V ⊆ U and U is w-open. The

complement of gsw-closed set is gsw-open set.

Theorem 3.16. Let WS be a weak structures on Y . Every Sg∗w-closed set in Y is gsw-closed

in Y .

Proof. Let WS be a weak structures on Y and V be a Sg∗w-closed set in Y . Suppose that U

be a w-open set, then V ⊆U . Since V is Sg∗w-closed, and every w-open set is gw-open set,

this implies cw(iw(V )) ⊆ U . Thus V ∪ cw(iw(V )) ⊆ V ∪U, and so scw(V ) ⊆ U . Hence V is

gsw-closed set in Y . �

Remark 3.17. Let WS be a weak structures on Y , gsw-closed set is not always be Sg∗w-

closed set in Y , as we can see in the following example.

Example 3.18. Let Y = {r1,r2,r3} with w = {φ ,{r2}}. Then U = {r2} is gsw-closed sets

but not Sg∗w-closed.

Definition 3.19. Let WS be a weak structures on Y . A subset V is called a regular

generalized-w-closed (rgw-closed, for short) set if cw(V ) ⊆U whenever V ⊆U and U is rw-

open. The complement of rgw-closed set is rgw-open set.

Theorem 3.20. Let WS be a weak structures on Y . Every Sg∗w-closed set in Y is rgw-closed

in Y .
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Proof. The proof is obvious since every gw-closed set is rgw-closed set. �

Remark 3.21. Let WS be a weak structures on Y , rgw-closed set is not always be Sg∗w-

closed set in Y , as we can see in the following example.

Example 3.22. Let Y = {r1,r2,r3} with w = {φ ,{r1},{r2},{r1,r2}}. Then U = {r2} is rgw-

closed set but it is not Sg∗w-closed.

Remark 3.23. Let WS be a weak structures on Y . The intersection of two Sg∗w-closed sets

need not be Sg∗w-closed set as seen from the following example.

Example 3.24. Let Y = {r1,r2,r3,r4} with w = {φ ,{r1,r2,r3},{r1,r2,r4},{r1,r3,

r4},{r3,r4}}. Then U = {r3} and V = {r1,r2} are Sg∗w-closed sets but U ∪V = {r1,r2,r3} it

is not Sg∗w-closed.

Remark 3.25. Let WS be a weak structures on Y . The intersection of two Sg∗w-closed sets

need not be Sg∗w-closed set as seen from the following example.

Example 3.26. Let Y = {r1,r2,r3} with w = {φ ,{r2},{r3},{r1,r3},{r2,r3}}. Then U =

{r1,r3} and V = {r2,r3} are Sg∗w-closed sets but U ∩V = {r3} it is not Sg∗w-closed.

Theorem 3.27. Let WS be a weak structures on Y . For each y ∈ Y , the singleton {y} is

gw-closed set or {y}c is Sg∗w-closed set.

Proof. Let WS be a weak structures on Y and {y} is not gw-closed, then {y}c will not be gw-

open. Then Y is the only gw-open set containing {y}c and cw(iw({y}c))⊆ Y . Therefore {y}c is

Sg∗w-closed set and {y} is gw-open set. �

Theorem 3.28. Let WS be a weak structures on Y . If V is Sg∗w-closed set, then cw(yi)∩V 6=

φ for each yi ∈ cw(iw(V )).

Proof. Let WS be a weak structures on Y . Suppose that yi ∈ cw(iw(V )) and V is Sg∗w-closed

set. If cw({yi})∩V = φ , then V ⊂ Y − cw(yi) such that Y − cw(yi) is gw-open set. Thus yi ∈

Y − cw(yi) which is contradiction. �
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Remark 3.29. Let WS be a weak structures on Y . The converse of Theorem 3. 26, is not true

in general. If a subset V = {r2} in Example 4.11 is not Sg∗w-closed. However cw(yi)∩V 6= φ

for each yi ∈ cw(iw(V )).

4. SEPARATION AXIOMS ON WEAK STRUCTURES

Definition 4.1. Let WS be a weak structures on Y . A WS is said to be w-ST ∗1
2

if each Sg∗w-

closed set V of Y , cw(iw(V )) =V .

Remark 4.2. Let WS be a weak structures on Y . If WS is w-ST ∗1
2

, then there exists a singleton

{y} ∈ Y such that {y} is neither gw-closed nor {y} 6= cw(iw({y}).

Example 4.3. Let WS be a weak structures on Y and let Y = {r1,r2,r3}, w =

{φ ,{r2},{r3},{r2,r3}}. Clear that each singleton is gw-open or gw-closed. But we have

V = {r1,r2} and V is Sg∗w-closed and cw(iw(V ) = Y 6=V . So, w is not w-ST ∗1
2

.

Theorem 4.4. Let WS be a weak structures on Y . A WS on Y is w-ST ∗1
2

-space if and only if

each singleton {y} is either w-open or gw-closed.

Proof. Let WS be a weak structures on Y . Let y ∈ Y. Suppose that {y} is not gw-closed. Then

{y}c is not gw-open set. Thus {y}c is Sg∗w-closed, by Theorem 3.27. Since Y is w−ST ∗1
2

-space,

{y}c is gw-closed set of Y , i.e {y} is w-open set of Y .

Conversely, suppose that V be a Sg∗w-closed set of Y . Now, put y ∈ cw(iw(V ), then by the fact

in the first side, {y} is either w-open or gw-closed, so we have two cases:

case (i) Let {y} be a w-open. Since y ∈ cw(iw(V )), {y}∩V 6= φ . This shows that y ∈V.

case (ii) Let {y} be a gw-open. Now, we suppose that y /∈V, then we would have y ∈ cw(iw(V ))

- V, which is contradiction with Theorem 3.9. Hence y ∈ V. Therefore, in both cases we have

that {y}c is w-closed. Hence Y is a w-ST ∗1
2

-space. �

Definition 4.5. A weak structure WS on Y is said to be gw -T1 if for any points r1,r2 ∈Y with

r1 6= r2, there exist two gw-open sets U and V such that r1 ∈U,r2 6∈U,r1 6∈V and r2 ∈V .

Theorem 4.6. Let WS be a weak structures on Y and every gw-closed in Y is w-closed. A

WS on Y is gw-T1 if every singleton in Y is gw-closed.
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Remark 4.7. The converse of the above theorem need not be true in general, and the follow-

ing example show that.

Example 4.8. Let Y = {r1,r2,r3}, w = {φ ,{r1},{r2},{r3}}. It is clear that:

WS is gw - T1, but the singleton {r2} is not gw-closed.
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