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Abstract. In this paper, we study the null controllability of switched positive systems and periodic positive sys-

tems. We solve this problem by a technique based on the graph theory.
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1. INTRODUCTION

Switched systems, which are a type of hybrid dynamical systems, have piqued the interest

of engineers and applied mathematicians in recent years. A switched system is made up of

a finite number of differential or difference subsystems and a switching law that determines

which subsystem is active at any given time. Switched systems are of particular importance

because they are useful for mathematical modeling of a variety of systems, including network

control systems, near-space vehicle control systems [1], biological systems [2], ac/dc convert-

ers, oscillators [3], chaos generators [4], and so on. The early research on this type of system

concentrated almost entirely on the concepts of stability and stabilization [5, 6]. So far, several
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issues regarding switched systems have been addressed, for example, the problems of reacha-

bility and controllability [7, 8, 9, 10].

In this paper we deal with positive discrete-time linear control systems in the state-space model,

i.e., systems whose states and inputs are nonnegative. Such systems can be found in a variety of

real-world systems, including engineering, economics, pharmacology and medicine, biology,

and other disciplines (see Farina and Rinaldi [11], Kaczorek [12], and Luenberger [13]).

The periodic system, possibly the most basic class of time-varying system, has attracted a lot

of attention in recent decades. The study of periodic systems is motivated by the fact that

many practical systems possess periodic characteristics. A periodic system, for example, can

be used to model a multirate sampled data system [14], a pendulum system with cyclic behavior

[15]. Positive and periodic linear systems have been investigated in a variety of applications,

including biology and chemistry. Indeed, periodic processes occur frequently in nature and en-

gineering, and hence, linear periodic systems can be found in a wide range of domains. A lot

of different results on linear periodic systems have been published in the literature. Bougatef

et al. [16] and Rami and Napp [17] studied the stability and stabilization problems of discrete-

time periodic positive systems. [18] studied periodic positive systems with time delays for the

stability analysis problem. See also [19, 20] for those interested in periodic systems research

results. The concept of controllability has gotten a lot of attention in control theory. It has been

studied by several researchers. Among the most recent studies on controllability [21, 22, 23].

In this paper, we introduce the characterization of the null controllability property in digraph

form for two classes (switched and periodic) of discrete-time positive linear systems. The paper

is organized as follows. Section 2 contains some definitions and reminders about the digraph

of positive matrices. In section 3, the null controllability characterization for switched positive

systems is presented in subsection 1, and for periodic positive systems in subsection 2. Some

examples are given to verify the theoretical results.

Notation : The notations used in this work are : Z+ set of nonnegative integers, Z0
+ set

of positive integers,R set of real numbers, Rn set of n-dimensional real vectors, Rm×n set of

m× n real matrices, Rn
+ positive orthant of Rn, Rn×m

+ set of m× n nonnegative real matrices,

σ k
s = {s,s+1, ...,k} the finite subset of Z+ with s≤ k .
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2. PRELIMINARIES

In this section we will give some definitions and reminders on digraph of positive matrices :

Definition 1. Let A ∈ Rn×n
+ . The directed graph G = (N,U), with the set of vertices N = σn

1

and U the set of arcs defined by:

an arc (i, j) ∈U if and only if ai j > 0,

is called digraph of the matrix A and denoted by D(A).

• A path in D(A) is an alternating sequence of vertices and arcs of D(A),

i.e. (i1,(i1, i2), i2, ...,(ik, ik+1), ik+1).

• The path length is defined to be equal to the number of arcs in the path.

• Let D1 = (N1,U1) and D2 = (N2,U2) be two digraphs. The operation union D1 ∪D2

produces the digraph (N1∪N2,U1∪U2).

• Let Ak ∈ Rn×n
+ , for k ∈ σm

1 . We define a joint digraph D(A1,A2, ...,Am) as D(A1)∪

D(A2)∪ ...∪D(Am) in which each arc is labelled (coloured) with a subset of σm
1 de-

pending upon which of the digraphs D(A1),D(A2), ...,D(Am) includes that arc.

Lemma 1. The digraph D(A1A2...Am) contains an arc (i, j) if and only if there is a path of

length m from i to j in the joint digraph D(A1,A2, ...,Am) coloured with 1,2, ...,m, in that or-

der(The arcs that correspond to Ai are coloured with i).

Proof. Denote Ak =
(

a(k)i, j

)
i, j∈σn

1

. There is an arc (i, j) ∈ D(A1A2...Am) if and only if

(A1A2...Am)i, j =
n
∑

k1=1

n
∑

k2=1
...

n
∑

km−1=1
a(1)i,k1

a(2)k1,k2
...a(m)

km−1, j
> 0. This, in its turn, is verified if and only

if there exist k1,k2, ...,km−1 ∈ σn
1 such that a(1)i,k1

> 0, a(2)k1,k2
> 0, ..., a(m)

km−1, j
> 0. Finaly, this is

equivalent to the existence of a path of length m from i to j, namely (i,(i,k1),k1, ...,(km−1, j))

in D(A1,A2, ...,Am) coloured with 1,2, ...,m in that order. �

3. MAIN RESULTS

3.1. Switched positive system.
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Consider the discrete-time switched linear system described by :

(1)

 xt+1 = Aψ(t)xt +Bψ(t)ut , t ∈ Z+

x0 ∈ Rn

where xt ∈Rn is the state vector, ut ∈Rm is the control input, and ψ : Z+ −→ σM
1 is a switching

sequence, M ≥ 1 is the number of subsystems. Subsystem (Ai,Bi) , i ∈ σM
1 , is activated if and

only if ψ(t) = i.

The solution of system (1), with the initial condition x0, at time k, is given by:

(2) xk = ∆
k
ψ,0x0 +

k−1

∑
t=0

∆
k
ψ,t+1Bψ(t)ut

where

(3) ∆
t
ψ,s =

 In, t = s≥ 0

Aψ(t−1)Aψ(t−2) · · ·Aψ(s), t > s.
.

The definition of positivity for system (1) is given by :

Definition 2. System (1) is said to be positive if for any initial condition x0 ∈ Rn
+ and for any

control ut ∈ Rm
+, t ∈ Z+, we have xt ∈ Rn

+ for t ∈ Z+ under arbitrary switching sequence.

Now, we introduce the characterization of positivity for a switched system :

Proposition 2. System (1) is positive if and only if, Ai ∈ Rn×n
+ ,Bi ∈ Rn×m

+ for all i ∈ σM
1 .

Proof. We assume that system (1) is positive. Let ψ(t) = i ∈ σM
1 , so the system (1) can be

written in the form :

(4) xt+1 = Aixt +Biut

Let ut = 0 for t ∈ Z+. Then for t = 0 we have x1 = Aix0 ∈Rn
+. That implies Ai ∈Rn×n

+ , since

x0 ∈ Rn
+ may be arbitrary. Assuming x0 = 0, then for t = 0, we obtain x1 = Biu0 ∈ Rn

+, which

implies that Bi ∈ Rn×m
+ since u0 ∈ Rm

+ is arbitrary. So Ai ∈ Rn×n
+ ,Bi ∈ Rn×m

+ for all i ∈ σM
1 .

Conversely, if Ai ∈ Rn×n
+ ,Bi ∈ Rn×m

+ for all i ∈ σM
1 . then (2) implies that for all x0 ∈ Rn

+ and

ut ∈ Rm
+, t ∈ Z+, we have xt ∈ Rn

+ for t ∈ Z+.

�
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In the rest of this paper, we assume that system (1) is positive. The definition of null control-

lability for system (1) will be formulated as follows :

Definition 3. The positive switched system (1) is said to be null controllable if, for any x0 ∈

Rn
+, there exist k ≥ 1, a switching sequence ψ : σ

k−1
0 −→ σM

1 , and nonnegative control inputs

ut ∈ Rm
+ , t ∈ σ

k−1
0 , such that xk = 0.

The aim of the following is to establish a necessary and sufficient condition for the null

controllability of system (1) based on the graph theory :

Proposition 3. System (1) is null controllable if and only if there exists T ∈ Z0
+ and

k1,k2, ...,kT ∈ σM
1 such that there is no path of length T in D(Ak1,Ak2 ...,AkT ) coloured with

k1,k2, ...,kT in that order.

Proof. (Necessity) Let the system (1) be null controllable. Then for x0 = (1, · · · ,1)T , there

exists T ∈ Z0
+, a switching sequence ψ : σ

T−1
0 −→ σM

1 , and control inputs ut ∈ Rm
+ , t ∈ σ

T−1
0

such that xT = 0. From (2), we get Aψ(T−1)Aψ(T−2)...Aψ(0) = 0. By posing ki = ψ(T − i),

i ∈ σT
1 . we obtain

T
∏
i=1

Aki = 0, and by lemma 1 there is no path of length T in D(Ak1,Ak2...,AkT )

coloured with k1,k2, ...,kT in that order.

(Sufficiency) Conversely, we assume that there exists T ∈Z0
+ and k1,k2, ...,kT ∈ σM

1 such that

there is no path of length T in D(Ak1,Ak2...,AkT ) coloured with k1,k2, ...,kT in that order. From

lemma 1, we get
T
∏
i=1

Aki = 0. Let ψ : i ∈ σ
T−1
0 −→ kT−i ∈ σM

1 and ui = 0, i ∈ σ
T−1
0 . Then, for

any x0 ∈ Rn
+, we have : xT = ∆T

ψ,0x0 =
T
∏
i=1

Aψ(T−i)x0 =
T
∏
i=1

Akix0 = 0. �

Remark 1. The null controllability of system (1) does not depend on the Bi, i ∈ σM
1 .

Example 1. Consider a switched system composed of three subsystems with state matrices

given by :

A1 =


0 0 0

1 0 0

1 1 0

 , A2 =


0 0 0

1 0 1

1 1 0

 , A3 =


0 0 0

0 0 0

1 1 1


There exists no path of length 2 in D(A1,A3) (Fig. 1) coloured with 1, 3 in that order, so the

system is null controllable.
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FIGURE 1. D(A1,A3)

3.2. Periodic positive system.

Consider the discrete-time periodic linear system described by:

(5)

 xt+1 = Atxt +Btut , t ∈ Z+

x0 ∈ Rn
+

where xt ∈ Rn is the state vector, ut ∈ Rm is the control input, At and Bt are real matrices with

appropriate dimensions and we assume that there exists T ∈ Z0
+ such that, for all t ∈ Z+, we

have At = At+T and Bt = Bt+T .

The solution of system (3), with the initial condition x0, at time k, is given by :

(6) xk = ∆
k
0x0 +

k−1

∑
t=0

∆
k
t+1Btut

where

(7) ∆
t
s =

 In, t = s≥ 0

At−1At−2 · · ·As, t > s.

Definition 4. System (3) is said to be positive if for any initial condition x0 ∈ Rn
+ and for any

control ut ∈ Rm
+, t ∈ Z+, we have xt ∈ Rn

+ for all t ∈ Z+.

Remark 2. System (3) is positive if At ∈ Rn×n
+ ,Bt ∈ Rn×m

+ for all t ∈ σ
T−1
0 .

In the rest of this paper, we assume that system (3) is positive.
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Definition 5. The positive periodic system (3) is said to be null controllable if, for all x0 ∈ Rn
+,

there exist k ≥ 1, and control inputs ut ∈ Rm
+ , t ∈ σ

k−1
0 such that xk = 0

The following result gives a characterization of the null controllability for system (3):

Proposition 4. The system (3) is null controllable if and only if there exists r ∈ σ
T−1
1 , and

l ∈ Z0
+ , such that there is no path of length r+ 1 in the joint diagraph D(A0, ...,Ar−1,

(
∆T

0
)l
)

coloured with 0,1, . . . ,r−1,r in that order(The arcs that correspond to Ai are coloured with i,

and those that correspond to
(
∆T

0
)l are coloured with r).

Proof. System (3) is null controllable if and only if there exist t ∈ Z0
+ such that ∆t

0 = 0. Using

the periodicity of At we can write :

∆
t
0 = At−1At−2...A0

= Ar−1...A0 (AT−1...A1A0) ...(AT−1...A1A0)

= Ar−1...A0
(
∆

T
0
)l

where l ∈ Z+, r ∈ σ
T−1
0 such that t = lT + r. By lemma 1 the matrix Ar−1...A0

(
∆T

0
)l is null if

and only if there is no path of length r+1 in the joint diagraph D(A0, ...,Ar−1,
(
∆T

0
)l
) coloured

with 0,1, . . . ,r−1,r in that order. �

Example 2. Consider system (3) with period T=3 and:

A0 =


1 0 1

0 0 0

0 0 0

 , A1 =


0 0 0

0 1 0

1 0 0

 , A2 =


0 0 0

1 0 1

0 0 0



We have : ∆3
0 =


0 0 0

1 0 1

0 0 0

.
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FIGURE 2. D(A0,∆
3
0)

In digraph D(A0,∆
3
0)(Fig. 2) there is no path of length 2 coloured with 0 and 1 in that order

so the system (3) is null controllable. Indeed the matrix ∆4
0 = A0∆3

0 is null.

CONCLUSION

In this work, we have established the characterization of the null controllability for positive

switched system (Proposition 2), and for positive periodic system (Proposition 3). Examples

have been used to verify the theoretical results.
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