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2Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Université Sultan Moulay Slimane, BP 523,
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Abstract. In this paper, we establish the existence and uniqueness of solutions to impulsive nonlinear hybrid

fractional differential equations, considering both linear and nonlinear perturbations. Our approach relies on the

nonlinear alternative of Leray-Schauder type, in conjunction with Banach’s fixed-point theorem. Additionally, we

provide an illustrative example to showcase the applicability of our results.
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1. INTRODUCTION

During the last three decades fractional calculus and its applications become diversified more

and has materialize as a significant tool for the comprehensive applications in mathematical

modeling of nonlinear systems. The nonlocal nature of fractional order operators accounts the

hereditary properties involved in various systems in terms of fractional differential operator. For
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further reference see [16, 17, 19, 20]. and the references cited therein.

The definitions like Riemann-Liouville (1832), Grunwald-Letnikov(1867), Hadamard

(1891,[21]) and Caputo(1997) are used to model problems in engineering and applied sciences

and the formulations are used to model the physical systems and has given more accurate results.

The study of impulsive differential equations has served as a cornerstone in the micro world of

biology, leading to a reevaluation of our understanding of nature. Furthermore, the implications

of these equations are of significant importance in a range of fields, including bioinformatics

and biotechnology. Through the use of impulsive differential equations, we can gain a deeper

insight into the behavior of biological systems and develop more effective tools for practical

applications in the field of biotechnology [6, 18].

these as examples of impulsive systems. The study of impulsive differential equations has sig-

nificant implications across a range of fields, including physics, engineering, economics, and

biology. By incorporating the effects of sudden changes or impulses into mathematical models,

we can better understand the behavior of these systems and make more accurate predictions.

In particular, the study of impulsive differential equations has provided invaluable insights into

the functioning of the heart and other biological systems. Therefore, impulsive differential

equations are a powerful tool for understanding and modeling complex systems that experience

abrupt changes we refer [4] for an introduction to the theory of impulsive differential equations.

It is well known that in the evolution processes the impulsive phenomena can be found in many

situations. For example, disturbances in cellular neural networks [8], operation of a damper

subjected to the percussive effects [5], change of the valve shutter speed in its transition from

open to closed state [7], fluctuations of pendulum systems in the case of external impulsive

effects [9],percussive systems with vibrations [1], relaxational oscillations of the electrome-

chanical systems [2], dynamic of system with automatic regulation [3], control of the satellite

orbit, using the radial acceleration [3] and so on.

Hybrid differential equations is a rich field of differential equations. It is quadratic perturba-

tions of non linear differential equations. It has lately years been an object of increasing interest

because of its vast applicability in several fields. For more details about hybrid differential

equations, we refer to [22], [24], [26], [27], [28].
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The authors of [12], S. Melliani, A. El Allaoui, and L. S. Chadli, examined a boundary value

problem involving nonlinear hybrid differential equations with both linear and nonlinear pertur-

bations.
d
dt

(
ϑ(κ̂)η(κ̂,ϑ(κ̂))−χ(κ̂,ϑ(κ̂))

)
= ξ (κ̂,ϑ(κ̂)), κ̂ ∈ I = [0,a],a > 0

ϑ(0)η(0,ϑ(0))+ ν̂ϑ(a)η(a,ϑ(a)) = ϑ(0)χ(0,ϑ(0))+ ν̂χ(a,ϑ(a))+β ,

(1)

where η ∈C(I×R,R\{0}) and χ,ξ ∈C(I×R,R) are given functions and ν̂ , β ∈R such that

ν̂ 6=−1.

Motivated by the good effect of model (1), we consider the following problem of impulsive

hybrid fractional differential equation:

Dν̂

(
ϑ(κ̂)η(κ̂,ϑ(κ̂))−χ(κ̂,ϑ(κ̂))

)
= ξ (κ̂,ϑ(κ̂)), κ̂ ∈ Ĵ= [0,1], κ̂ 6= κ̂i,

i = 1,2, . . . ,n,0 < ν̂ < 1,

ϑ(κ̂+
i ) = ϑ(κ̂−i )+ Ii(ϑ(κ̂−i )), κ̂i ∈ (0,1), i = 1,2, . . . ,n,

ϑ(0)η(0,ϑ(0))−χ(0,ϑ(0)) = φ(ϑ),

(2)

where Dν̂ , denote the Caputo fractional derivative of order ν̂ , η ∈ C (Ĵ×R,R \ {0}), χ ∈

C (Ĵ×R,R), and ξ ∈ C (Ĵ×R,R), and φ : C (Ĵ,R) −→ R are continuous functions de-

fined by φ(ϑ) = ∑
n
i=1 λiϑ(ξi), where ξi ∈ (0,1) for i = 1,2, ...,n, and Ii : R −→ R and

ϑ(κ̂+
i ) = lim

ε→0+
ϑ(κ̂i + ε) and ϑ(κ̂−i ) = lim

ε→0−
ϑ(κ̂i + ε) represent the right and left limits of

ϑ(κ̂) at κ̂ = κ̂i .

The paper is organized as follows. Section 2 provides a concise overview of fundamental con-

cepts, fractional calculation laws, and introduces preliminary results. In Section 3, we examine

the existence and uniqueness of solutions to the initial value problem (2), employing both the

Banach contraction mapping principle (BCMP) and Leray-Schauder fixed point theorem. In

Section 4, we present an example that serves to illustrate the findings of our study. Lastly,

Section 5 contains concluding remarks and proposes potential avenues for future research.

2. PRELIMINARIES

In this section, we provide a concise review of the fundamental concepts and properties of

fractional calculus theory. Additionally, we introduce several preparatory results that will be
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used in our subsequent analysis. Throughout this paper denotes Ĵ0 = [0, κ̂1], Ĵ1 = (κ̂1, κ̂2], . . . ,

Ĵn−1 = (κ̂n−1, κ̂n], Ĵn = (κ̂n,1],n ∈ N,n > 1.

For κ̂i ∈ (0,1) such that κ̂1 < κ̂2 < .. . < κ̂n, we define the following spaces:

I′ = I \{κ̂1, κ̂2, ..., κ̂n},

X = {ϑ ∈ C (Ĵ,R) : ϑ ∈C(I′) and left ϑ(κ̂+
i ) and right limit ϑ(κ̂−i )) exist and

ϑ(κ̂−i ) = ϑ(ti),1≤ i≤ n}.

Then, clearly (X ,‖.‖) is a Banach space under the norm ‖ϑ‖= max
κ̂∈[0,1]

|ϑ(κ̂)|.

Definition 2.1. [10] The fractional integral of the function ξ ∈ L1([a,b],R+) of order ν̂ ∈R+

is defined by

Iν̂
a ξ (κ̂) =

∫ κ̂

a

(κ̂− s)ν̂−1

Γ(ν̂)
ξ (s)ds,

where Γ is the gamma function.

Definition 2.2. [10] For a function ξ defined on the interval [a,b], the Riemann-Liouville

fractional-order derivative of h, is defined by

(RDν̂

a+ξ )(κ̂) =
1

Γ(n− ν̂)

(
d
dt

)n ∫ κ̂

a

(κ̂− s)n−ν̂−1

Γ(ν̂)
ξ (s)ds,

where n = [ν̂ ]+1 and [ν̂ ] denotes the integer part of ν̂ .

Definition 2.3. [10] For a function h given on the interval [a,b], the Caputo fractional-order

derivative of ξ , is defined by

(cDν̂

a+ξ )(κ̂) =
1

Γ(n− ν̂)

∫ κ̂

a

(κ̂− s)n−ν̂−1

Γ(ν̂)
ξ
(n)(s)ds,

where n = [ν̂ ]+1 and [ν̂ ] denotes the integer part of ν̂ .

In this section, we introduce the notation, definitions, and lemmas that will be utilized in our

proofs later.

Lemma 2.1. [11] Let n ∈ N and n−1 < ν̂ < n. If η is a continuous function, then we have

Iν̂ cDν̂
η(κ̂) = η(κ̂)+a0 +a1κ̂+a2κ̂2 + ...+an−1κ̂n−1.
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Lemma 2.2. ( Leray-Schauder alternative see [15]). Let F̂ : Ĝ −→ Ĝ be a completely con-

tinuous operator (i.e., a map that is restricted to any bounded set in Ĝ is compact). Let

P̂(F̂) = {ϑ ∈ Ĝ : ϑ = λ F̂ϑ for some 0 < λ < 1}. Then either the set P̂(F̂) is unbounded

or F̂ has at least one fxed point.

3. MAIN RESULTS

In this section, we will prove the existence of a mild solution for problem (2) .

To obtain the existence of a mild solution, we will need the following assumptions:

(H1) The function ϑ −→ ϑη(κ̂,ϑ) is increasing in R for every κ̂ ∈ [0,1].

(H2) i) The functions η and χ are continuous and bounded, that is, there exist positive num-

bers νη > 0 and µχ > 0, such that

|η(κ̂,ϑ)| ≥ νη and |χ(κ̂,ϑ)| ≤ µχ for all (κ̂,ϑ) ∈ [0,1]×R.

ii) There exist positive numbers Mη > 0 and Mχ > 0, such that

|η(κ̂,ϑ)−η(κ̂, ϑ̄)| ≤Mη |ϑ − ϑ̄ |,

and

|χ(κ̂,ϑ)−χ(κ̂, ϑ̄)| ≤Mχ |u− ϑ̄ |.

for all ϑ , ϑ̄ ∈ R and κ̂ ∈ [0,1].

(H3) There exist positive number Mξ > 0, such that

|ξ (κ̂,ϑ)−ξ (κ̂, ϑ̄)| ≤Mξ |ϑ − ϑ̄ |.

for all ϑ , ϑ̄ ∈ R and κ̂ ∈ [0,1].

(H4) There exists constant A > 0, such that for all

|Ii(ϑ)− Ii(ϑ̄)| ≤ A|ϑ − ϑ̄ |, i = 1,2, ...,n,∀ϑ , ϑ̄ ∈ R.

(H5) There exist constant Kφ , such that

|φ(ϑ)| ≤ Kφ‖ϑ‖, for all ϑ ∈C([0,1],R),

(H6) There exist constant Mφ ,Nϑ > 0, such that

|φ(ϑ)| ≤Mφ‖ϑ‖, for all ϑ ∈C([0,1],R),

|Ii(ϑ)| ≤ Nϑ‖ϑ‖, i = 1,2, ...,n, for all ϑ ∈ R,
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(H7) There exists constant C > 0, such that

|Ii(ϑ)| ≤C, i = 1,2, . . . ,n, for all ϑ ∈ R.

(H8) There exists constant ρ > 0, such that

|φ(ϑ)| ≤ ρ, ∀ϑ ∈C([0,1],R).

(H9) There exist constants ρ0,ρ1 > 0, such that

|h(κ̂,ϑ)| ≤ ρ0 +ρ1‖ϑ‖, for all ϑ ∈ X and κ̂ ∈ [0,1].

For brevity, let us set

π =
1

νη

(
Mχ +Kφ +Mη +nA+

Mξ

Γ(α +1)

)
.(3)

Lemma 3.1. : Let ν̂ ∈ (0,1) and ξ : [0,a]−→ R be continuous. A function ϑ ∈ C ([0,a],R) is

a solution to the fractional integral equation

ϑ(κ̂) = ϑ0−
∫ a

0

(κ̂− s)ν̂−1

Γ(α)
ξ (s)ds+

∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
ξ (s)ds

)
,

if and only if ϑ is a solution to the following fractional Cauchy problem:
Dν̂ϑ(κ̂) = ξ (κ̂), κ̂ ∈ [0,a]

ϑ(a) = ϑ0, a > 0,
(4)

Lemma 3.2. Let’s assume that hypotheses (H1) and (H3) hold. Let ν̂ ∈ (0,1) and ξ : J −→ R

be continuous. A function ϑ is a solution to the fractional integral equation

ϑ(κ̂) =
1

η(κ̂,ϑ(κ̂))

(
φ(ϑ)+χ(κ̂,ϑ(κ̂))+θ(κ̂)

n

∑
i=1

Ii(ϑ(κ̂−i ))η(κ̂i,ϑ(κ̂i))

+
∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
ξ (s)ds

)
, κ̂ ∈ [κ̂i, κ̂i+1](5)

where

θ(κ̂) =


0, κ̂ ∈ [κ̂0, κ̂1]

1, κ̂ /∈ [κ̂0, κ̂1[
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if and only if ϑ is a solution of the following impulsive problem:


Dν̂

(
ϑ(κ̂)η(κ̂,ϑ(κ̂))−χ(κ̂,ϑ(κ̂))

)
= ξ (κ̂), κ̂ ∈ J = [0,1], κ̂ 6= κ̂i, i = 1,2, . . . ,n, 0 < ν̂ < 1

ϑ(κ̂+
i ) = ϑ(κ̂−i )+ Ii(ϑ(κ̂−i )), κ̂i ∈ (0,1), i = 1,2, . . . ,n

ϑ(0)η(0,ϑ(0))−χ(0,ϑ(0))) = φ(ϑ),

(6)

Proof. Assume that u satisfies (6). If κ̂ ∈ [κ̂0, κ̂1[, then

Dν̂

(
ϑ(κ̂)η(κ̂,ϑ(κ̂))−χ(κ̂,ϑ(κ̂))

)
= ξ (κ̂), κ̂ ∈ [κ̂0, κ̂1[(7)

ϑ(0)η(0,ϑ(0))−χ(0,ϑ(0)) = φ(ϑ),(8)

Applying Iν̂ on both sides of (7), we obtain

ϑ(κ̂) f (κ̂,ϑ(κ̂))−χ(κ̂,ϑ(κ̂)) = ϑ(0)ζ (0,ϑ(0))−χ(0,ϑ(0))+
∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
ξ (s)ds

= φ(ϑ)+
∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
ξ (s)ds,

Then we get

ϑ(κ̂) = 1
η(κ̂,ϑ(κ̂))

(
χ(κ̂,ϑ(κ̂))+φ(ϑ)+

∫ κ̂
0

(κ̂−s)ν̂−1

Γ(ν̂) ξ (s)ds
)
.

If κ̂ ∈ [κ̂1, κ̂2[, then

Dν̂

(
ϑ(κ̂)η(κ̂,ϑ(κ̂))−χ(κ̂,ϑ(κ̂))

)
= ξ (κ̂), κ̂ ∈ [κ̂1, κ̂2[(9)

ϑ(κ̂+
1 ) = ϑ(κ̂−1 )+ I1(ϑ(κ̂−1 )),(10)

According to Lemma 3.1 and the continuity of κ̂ −→ η(κ̂,ϑ(κ̂)), we have

ϑ(κ̂)η(κ̂,ϑ(κ̂))−χ(κ̂,ϑ(κ̂)) = ϑ(κ̂+
1 )η(κ̂1,ϑ(κ̂1))−χ(κ̂1,ϑ(κ̂1))−

∫ κ̂1

0

(κ̂1− s)ν̂−1

Γ(ν̂)
ξ (s)ds

+
∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
ξ (s)ds

= (ϑ(κ̂−1 )+ I1(ϑ(κ̂−1 )))η(κ̂1,ϑ(κ̂1))−
∫ t1

0

(κ̂1− s)ν̂−1

Γ(α)
ξ (s)ds

+
∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
ξ (s)ds.
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Since

ϑ(κ̂−1 ) = 1
η(κ̂1,ϑ(κ̂1))

(
χ(κ̂1,ϑ(t1))+φ(ϑ)+

∫ κ̂
0

(κ̂−s)ν̂−1

Γ(ν̂) ξ (s)ds
)
,

then we get

ϑ(κ̂)η(κ̂,ϑ(κ̂))−χ(κ̂,ϑ(κ̂))

=
[ 1

η(κ̂1,ϑ(κ̂1))

(
χ(κ̂1,ϑ(κ̂1)))+φ(ϑ)+

∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
ξ (s)ds

)
+ I1(ϑ(κ̂−1 ))

]
η(κ̂1,ϑ(κ̂1))−

∫ κ̂1

0

(κ̂1− s)ν̂−1

Γ(ν̂)
ξ (s)ds+

∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
ξ (s)ds

= φ(ϑ)+ I1(u(κ̂−1 ))η(κ̂1,ϑ(κ̂1))+
∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
ξ (s)ds,

So, one has

ϑ(κ̂) = 1
η(κ̂,ϑ(κ̂))

(
φ(ϑ)+χ(κ̂,ϑ(κ̂))+ I1(ϑ(κ̂−1 ))η(κ̂1,ϑ(κ̂1))+

∫ κ̂
0

(κ̂−s)ν̂−1

Γ(ν̂) ξ (s)ds
)
.

If κ̂ ∈ [κ̂2, κ̂3[, we have

ϑ(κ̂)η(κ̂,ϑ(κ̂))−χ(κ̂,ϑ(κ̂))

= ϑ(κ̂+
2 )η(κ̂2,ϑ(κ̂2))−χ(κ̂2,ϑ(κ̂2))−

∫ κ̂2

0

(t2− s)ν̂−1

Γ(ν̂)
ξ (s)ds

+
∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
ξ (s)ds

= (ϑ(κ̂−2 )+ I2(ϑ(κ̂−2 )))η1(κ̂2,ϑ(κ̂2))−
∫ κ̂2

0

(t2− s)ν̂−1

Γ(ν̂)
ξ (s)ds

+
∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
ξ (s)ds,

and

ϑ(κ̂−2 ) = 1
η(κ̂2,ϑ(κ̂2)

(
φ(ϑ)+χ(κ̂2,ϑ(κ̂2))+ I1(ϑ(κ̂−1 ))η(κ̂1,ϑ(κ̂1))+

∫ κ̂2
0

(κ̂−s)ν̂−1

Γ(ν̂) ξ (s)ds
)
.

Therefore, we obtain

ϑ(κ̂)η(κ̂,ϑ(κ̂))−χ(κ̂,ϑ(κ̂)) =
[ 1

η(κ̂2,ϑ(κ̂2))

(
φ(ϑ)+χ(κ̂2,ϑ(κ̂2))

+ I1(ϑ(κ̂−1 ))η(κ̂1,ϑ(κ̂1))+
∫ κ̂2

0

(κ̂− s)α−1

Γ(α)
ξ (s)ds

)]
η(κ̂2,ϑ(κ̂2))

+ I2(ϑ(κ̂−2 )))η(κ̂2,ϑ(κ̂2))
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−
∫ κ̂2

0

(κ̂2− s)ν̂−1

Γ(ν̂)
ξ (s)ds+

∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
ξ (s)ds,

= φ(ϑ)+ I1(ϑ(κ̂−1 ))η(κ̂1,ϑ(κ̂1))+ I2(θ(κ̂−2 ))η(κ̂2,ϑ(κ̂2))

+
∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
ξ (s)ds,

Consequently, we get

ϑ(κ̂) = 1
η(κ̂,u(κ̂))

(
χ(κ̂,ϑ(κ̂))+φ(ϑ)+∑

2
i=1 Ii(ϑ(κ̂−i ))η(κ̂i,ϑ(κ̂i))+

∫ κ̂
0

(κ̂−s)ν̂−1

Γ(ν̂) ξ (s)ds
)
.

If κ̂ ∈ [κ̂i, κ̂i+1[(i = 3,4, ...,n), using the same method, one has

ϑ(κ̂) = 1
η(κ̂,ϑ(κ̂))

(
χ(κ̂,ϑ(κ̂))+φ(ϑ)+∑

n
i=1 Ii(ϑ(κ̂−i ))η(κ̂i,ϑ(κ̂i))+

∫ κ̂
0

(κ̂−s)ν̂−1

Γ(ν̂) ξ (s)ds
)
.

Conversely, assume that u satisfies (5). If κ̂ ∈ [κ̂0, κ̂1[, we have

ϑ(κ̂) = 1
η(κ̂,ϑ(κ̂))

(
χ(κ̂,ϑ(κ̂))+φ(ϑ)+

∫ κ̂
0

(κ̂−s)ν̂−1

Γ(ν̂) ξ (s)ds
)
.(11)

Then, we multiplied by η(κ̂,ϑ(κ̂)) and applying Dν̂ on both sides of (11), we get equation (7).

Again, substituting κ̂= 0 in (11), we obtain ϑ(0)ζ (0,ϑ(0))−χ(0,ϑ(0)) = φ(ϑ). Since ϑ −→

ϑη(κ̂,ϑ) is increasing in R for κ̂ ∈ [κ̂0, κ̂1[, the map ϑ −→ ϑη(κ̂,ϑ) is injective in R. Then

we get (8).

Similarly, for κ̂ ∈ [κ̂1, κ̂2[, we get

ϑ(κ̂) = 1
η(κ̂,ϑ(κ̂))

(
φ(ϑ)+χ(κ̂,ϑ(κ̂))+ I1(ϑ(κ̂−1 ))η(κ̂1,ϑ(κ̂1))+

∫ κ̂
0

(κ̂−s)ν̂−1

Γ(ν̂) ξ (s)ds
)
.(12)

Then, we multiplied by η(κ̂,ϑ(κ̂)) and applying Dν̂ on both sides of (12), we get equation

(13) . Again by (H3), substituting κ̂ = κ̂1 in (11) and taking the limit of (12), then (12) minus

(11) gives (14).

If κ̂ ∈ [κ̂i, κ̂i+1[(i = 2,3, ...,n), similarly we get

Dν̂

(
ϑ(κ̂)η(κ̂,ϑ(κ̂))−χ(κ̂,ϑ(κ̂))

)
= ξ (κ̂), κ̂ ∈ [κ̂k, κ̂k+1[(13)

ϑ(κ̂+
1 ) = ϑ(κ̂−1 )+ I1(ϑ(κ̂−1 )),(14)

�

This completes the proof.
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Lemma 3.3. Let ξ be continuous, then ϑ ∈ X is a solution of (2) if and only if ϑ is the solution

of the integral equations

ϑ(κ̂) =
1

η(κ̂,ϑ(κ̂))

(
χ(κ̂,ϑ(κ̂))+φ(ϑ)+θ(κ̂)

n

∑
i=1

Ii(ϑ(κ̂−i ))η(κ̂i,ϑ(κ̂i))

+
∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
ξ (s)ds

)
, κ̂ ∈ [κ̂i, κ̂i+1]

where

θ(κ̂) =


0, κ̂ ∈ [κ̂0, κ̂1]

1, κ̂ /∈ [κ̂0, κ̂1[

We define an operator Θ : X −→ X by

Θ(ϑ)(κ̂) =
1

η(κ̂,ϑ(κ̂))

(
η(κ̂,ϑ(κ̂))+φ(ϑ)+θ(κ̂)

n

∑
i=1

Ii(ϑ(κ̂−i ))η(κ̂i,ϑ(κ̂i))(15)

+
∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
ξ (s)ds

)
.(16)

FIRST RESULT

Now, we are ready to present our first result, which addresses the existence and uniqueness

of solutions for problem (2). This result is established using Banach’s contraction mapping

principle.

Theorem 3.1. Assume that conditions (H1)− (H7) holds and the function h : [0,1]×R2 −→R

is continuous functions. Then problem (2) has an unique solution provided that π < 1, π is the

constant given in equation (3).

Proof. Let us set sup
κ̂∈J

ξ (κ̂,0) = κ < ∞, and define a closed ball B̄ as follows

B̄ = {ϑ ∈ X : ‖ϑ‖ ≤ r},

where

r ≥
µχ +

κ

Γ(ν̂+1)

νη − (Mφ +nNu +
1

Γ(ν̂+1)Mξ )
.(17)
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We show that ΘB̄⊂ B̄. For u ∈ B̄, we obtain

|Θ(ϑ)(κ̂)| ≤ 1
|η(κ̂,ϑ(κ̂))|

∣∣∣(χ(κ̂,ϑ(κ̂))+φ(ϑ)+θ(κ̂)
n

∑
i=1

Ii(ϑ(κ̂−i ))η(κ̂i,ϑ(κ̂i))

+
∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
ξ (s)ds

)∣∣∣
≤ 1

νη

(
µχ +Mφ‖ϑ‖+nNϑ‖ϑ‖+

∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
(|ξ (s,ϑ(s)))−ξ (s,0)|+ |ξ (s,0)|)ds

≤ 1
νη

(
µχ +Mφ‖ϑ‖+nNϑ‖ϑ‖+

1
Γ(α +1)

(
λ‖ϑ‖+κ

))
≤ 1

νη

(
µχ +(Mφ +nNϑ )r+

1
Γ(ν̂ +1)

(
λ r+κ

))
,

Hence, we get

‖Θ(ϑ)‖ ≤ 1
νη

(
µχ +(Mφ +nNϑ )r+

1
Γ(ν̂ +1)

(
λ r+κ

))
.(18)

From (18), it follows that ‖Θ(ϑ)‖ ≤ r.

Next, for (ϑ , ϑ̄) ∈ X2and for any κ̂ ∈ [0,1], we have

|Θ(ϑ)(κ̂)−Θ(ϑ̄)(κ̂)|=
∣∣∣ 1
η(κ̂,ϑ(κ̂))

(
χ(κ̂,ϑ(κ̂))+φ(ϑ)+θ(κ̂)

n

∑
i=1

Ii(ϑ(κ̂−i ))η(κ̂i,ϑ(κ̂i),))

+
∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
ξ (s)ds

)
− 1

η(κ̂, ϑ̄(κ̂))

(
χ(κ̂, ϑ̄(κ̂))+φ(ϑ)+θ(κ̂)

n

∑
i=1

Ii(ϑ̄(κ̂−i ))η(κ̂i, ϑ̄(κ̂i))

+
∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
ξ (s)ds

)∣∣∣
≤ 1

νη

(
Mχ |ϑ − ϑ̄ |+Kφ |ϑ − ϑ̄ |+Mη |ϑ − ϑ̄ |+nA|ϑ − ϑ̄ |

+
Mh

Γ(ν̂ +1)
|ϑ − ϑ̄ |

)
,

which implies that

‖Θ(ϑ)−Θ(ϑ̄)‖ ≤ 1
νη

(
Mχ +Kφ +Mη +nA+

Mξ

Γ(α +1)

)
(‖ϑ − ϑ̄‖)

= π‖ϑ − ϑ̄‖.(19)

From (19), we deduce that

‖Θ(ϑ)−Θ(ϑ̄)‖ ≤ π‖ϑ − ϑ̄‖
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�

Due to the condition π < 1, we can conclude that Θ is a contraction operator. As a result,

Banach’s fixed point theorem is applicable, ensuring that the operator Θ possesses a unique

fixed point. This unique fixed point serves as the unique solution to the Cauchy problem (2).

This completes the proof.

SECOND RESULT

Our second result focuses on establishing the existence of solutions for the problem (2) using

the Leray-Schauder alternative. For brevity, let us set

Λ1 =
1

νηΓ(ν̂ +1)
,(20)

Λ0 = 1−Λ1ρ1.(21)

Theorem 3.2. Assume that conditions (H1)− (H3) and (H8)− (H9) hold. Furthermore, it is

assumed that Λ1ρ1 < 1, where Λ1 isgiven by (20). Then the boundary value problem (2) has at

least one solution.

Proof. We will show that the operator Π : X −→ X satisfes all the assumptions of Lemma 2.2.

Step 1: We will prove that the operator Π is completely continuous.

Clearly, it follows by the continuity of functions η ,χ,ξ that the operator Π is continuous.

Let S⊂ X be bounded. Then we can find positive constant Ω such that:

|ξ (κ̂,ϑ)| ≤Ω, ∀ϑ ∈ S.

Thus, for any ϑ ∈ S, we can get

|Π(ϑ)(κ̂)| ≤ 1
νη

(
µχ +ρ +

n

∑
i=1

C+
∫ κ̂

0

(κ̂− s)ν̂−1

Γ(ν̂)
Ωds

)
≤ 1

νη

(
µχ +ρ +nC+

Ω

Γ(α +1)
)
.

which yields

‖Π(ϑ)‖ ≤ 1
νη

(
µχ +ρ +nC+

Ω

Γ(ν̂ +1)
)
.(22)
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From the inequalities (22), we deduce that the operator Π is uniformly bounded.

Setep 2: Now we show that the operator Π is equicontinuous.

We take τ1,τ2 ∈ J with τ1 < τ2 we obtain

|Π(ϑ(τ2))−Π(ϑ(τ1))|

≤
∣∣∣ 1
η(τ2,ϑ(τ2))

(
φ(ϑ)+χ(τ2,ϑ(τ2))+θ(τ2)

n

∑
i=1

Ii(ϑ(κ̂−i ))η(κ̂i,ϑ(κ̂i))

+Ω

∫
τ2

0

(τ2− s)ν̂−1

Γ(ν̂)
ds
)

− 1
η(τ1,ϑ(τ1))

(
φ(ϑ)+χ(τ1,ϑ(τ1))+θ(τ1)

n

∑
i=1

Ii(ϑ(κ̂−i ))η(κ̂i,ϑ(κ̂i))

+Ω

∫
τ1

0

(τ1− s)ν̂−1

Γ(ν̂)
ds
)∣∣∣

≤ 1
νη

(∣∣∣(χ(τ2,ϑ(τ2))−χ(τ1,ϑ(τ1))+(θ(τ2)−θ(τ1))
n

∑
i=1

Ii(ϑ(κ̂−i ))η(κ̂i,ϑ(κ̂i))
∣∣∣

+Ω

∣∣∣∫ τ2

0

(τ2− s)ν̂−1

Γ(ν̂)
ds−

∫
τ1

0

(τ1− s)ν̂−1

Γ(µ̂)
ds
∣∣∣)

≤ 1
νη

(∣∣∣(χ(τ2,ϑ(τ2))−χ(τ1,ϑ(τ1))+(θ(τ2)−θ(τ1))
n

∑
i=1

Ii(ϑ(κ̂−i ))η(κ̂i,ϑ(κ̂i))
∣∣∣

+Ω

∣∣∣∫ τ1

0

(τ1− s)ν̂−1− (τ2− s)ν̂−1

Γ(ν̂)
ds−

∫
τ2

τ2

(τ2− s)ν̂−1

Γ(ν̂)
ds
∣∣∣).

Which tend to 0 independently of ϑ . This implies that the operator Π(ϑ) is equicontinuous.

Thus, by the above fndings, the operator Π(ϑ) is completely continuous.

In the next step, it will be established that the set P = {ϑ ∈ X/ϑ = λΠ(ϑ),0 < λ < 1} is

bounded.

Let ϑ ∈P . We have ϑ = λΠ(ϑ). Thus, for any κ̂ ∈ [0,1], we can write

ϑ(κ̂) = λΠ(κ̂)(κ̂),

Hence, we get

‖ϑ‖ ≤ 1
νη

(
µχ +ρ +nC+

1
Γ(ν̂ +1)

(ρ0 +ρ1‖ϑ‖)
)

≤ 1
νη

(µg +ρ +nC)+Λ1(ρ0 +ρ1‖ϑ‖),
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which, in view of (21), can be expressed as

‖ϑ‖ ≤
1

νη

(
µχ +ρ +nC

)
+Λ1ρ0

Λ0
.

This demonstrates that the set P is bounded. As a result, all the conditions of Lemma 2.2 are

satisfied. Therefore, the operator Π has at least one fixed point, which corresponds to a solution

of problem (2). This completes the proof. �

4. EXAMPLE

Consider the following impulsive hybrid fractional differential equation::
D

1
2

(
ϑ(κ̂)η(κ̂,ϑ(κ̂))−χ(κ̂,ϑ(κ̂))

)
= ξ (κ̂,ϑ(κ̂)), κ̂ ∈ [0,1]\{κ̂1},

ϑ(κ̂+
1 ) = ϑ(κ̂−1 )+(−2u(κ̂−1 )), κ̂1 6= 0,1

ϑ(0)η(0,ϑ(0)))−χ(0,ϑ(0)) = ∑
n
i=1 ciϑ(κ̂i),

(23)

Here, we have

η(κ̂,ϑ(κ̂)) =
arctan κ̂

3
|ϑ(κ̂)|,

χ(κ̂,ϑ(κ̂)) =
1
7
+

1
9

ϑ(κ̂),

ξ (κ̂,ϑ(κ̂)) =
1

4κ̂2 (ϑ(κ̂)+
√

2),

Note that

|χ(κ̂,ϑ1)−χ(κ̂,ϑ2)| ≤
1
9
| ϑ2−ϑ1 |,

κ̂ ∈ [0.1],ϑ1,ϑ2 ∈ R.

and

|ξ (κ̂,ϑ1)−ξ (κ̂,ϑ2)| ≤
1
4
| ϑ2−ϑ1 |, κ̂ ∈ [0.1],ϑ1,ϑ2 ∈ R.

π =
1

νη

(
Mχ +Kφ +Mη +nA+

Mξ

Γ(ν̂ +1)

)
= 0.12345678 < 1,

As all of the assumptions in Theorem 3.2 are satisfied, our results can be directly applied to the

problem (23).
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5. CONCLUSION

The main focus of this paper is to explore the existence of solutions for impulsive nonlinear

hybrid fractional differential equations involving both linear and nonlinear perturbations. Our

results not only improve upon existing findings in this research area but also provide a more

generalized perspective. Furthermore, we anticipate that the theory we have developed can

be extended to address broader problems related to impulsive fractional differential equations

featuring both linear and nonlinear perturbations. The fixed-point theorems employed in our

analysis can also be applied to investigate the existence of solutions for other types of impul-

sive fractional differential equations, including those involving alternative forms of fractional

derivatives such as Hilfer’s and Hadamard’s derivatives. By contributing to the advancement

of more comprehensive and efficient tools for studying these problems, we aim to enhance our

understanding of the dynamics of complex systems and their behavior in impulsive conditions.
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