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Abstract: The main goal of this work is to minimize the expected total cost for a multi-item, multi-source (MIMS) 

probabilistic continuous review inventory model with constraint on the expected decreasing holding cost utilizing the 

Lagrange multiplier technique. The demand is a continuous random variable. The optimal order quantity and the 

optimal reorder point for the ith  item and sth  source which achieve the objective are obtained when lead time 

demand follows Weibull and Lindley-Weibull distributions. Also, an application is analyzed and reach the goal of 

minimizing the expected total cost. 
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1. INTRODUCTION 

   The system is continuous review, so the stock level is always known and the demands are 

recorded as they arise. When the stock level hits a certain reorder point r, an order quantity of size 

Q is placed once each cycle. (Q and r are two independent decision variables). Hadley and Whitin 

[15] discussed probabilistic (Q,r) models with constant units of cost and lead-time demand is a 
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random variable. Azoury and Brill [3] studied an application of the system-point method to 

inventory models under continuous review. MIMS inventory management system is the most 

common sort of procurement system, which can be explained as follows: To fulfil average demand 

rates, a specific amount of items are kept in inventory. D1 ,  D2 ,  D3 , . . .,  Di . Unrestricted 

probabilistic (MIMS) inventory system was investigated by Fabrycky and Banks [8]. Gupta and 

Hira [14] explained Lagrange multipliers method. The majority of probabilistic inventory model 

assume that either one of these units of cost is variable or that all of these units are constant. Models 

for achieving this under numerous conditions and presumptions have been presented in hundreds 

of papers and books. With two constraints, Abuo-EL-Ata et al. [1] explored the probabilistic MISS 

inventory model with variable order cost. Cruz et al. [7] explained Analysis of second order 

properties of production–inventory systems with lost sales. With two linear constraints, Fergany 

and Elwakeel [10] determined a probabilistic single-item inventory problem with variable order 

cost. MISS mixture inventory model with random lead time and demand, as well as a budget 

limitation and surprise function, was described by Bera et al. [4]. Geometric programming was 

used to study the multi-item EOQ model with changing holding costs in [17]. Singer and 

Khmelnitsky [21] introduced a production-inventory model with price-sensitive demand. Fergany 

and Gomaa [12] provided a model of shortfall multi-source inventory with probabilistic mixtures 

and changing holding costs under constraint. Probabilistic multi-item inventory model with 

variable mixture shortage cost under constraints is solved by Fergany [9]. Fergany and El-Saadani 

[11] considered the Constrained Probabilistic inventory model with continuous distributions and 

varying holding cost. Inventory–forecasting: Mind the gap derived by Goltsos et al. [13]. 

Kourentzes et al. [18] examined Optimising forecasting models for inventory planning. Cordeiro 

et al. [6] explained The Lindley Weibull distribution: properties and applications. Selen and Gamze 

[20] examined The Lindley family of distributions: properties and applications. Statistical 

inference of the lifetime performance index for Lindley distribution under progressive first-failure 

censoring scheme applied to HPLC data derived by Hassanein [16]. Metiri et al. [19] considered 

On the Characterization of X-Lindley Distribution by Truncated Moments: Properties and 

Application. Reliability Models Using the Composite Generalizers of Weibull Distribution 

described by Aryal et al. [2]. The Weibull-G family of probability distributions first described by 

Bourguignon [5]. 

     Here, we study the multi-item, multi-source (MIMS) probabilistic (Q, r) with mixture deficit 
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and decreasing holding cost, subject to the expected constraint of decreasing holding cost. Three 

elements make up the expected overall cost of the inventory system (the expected setup cost, the 

expected decreasing holding cost, and the expected mixture penalty cost). The order quantity (Q∗
is) 

and the reorder point (r∗
is) are the optimal solutions that minimize the expected total cost E(TC(Qis, 

ris)), utilizing Lagrange method, are deduced mathematically. Additionally, these ideal values are 

introduced when the lead time demand is governed by the Weibull and Lindley-Weibull 

distributions. The model is illustrated with an application. 

 

2. ASSUMPTIONS AND NOTATIONS 

  The following notations are used to construct our model: 

Di 
The ith item's average annual demand. 

Qis The decision variable for the ith  item and sth  source's order quantity each 

cycle. 

Qis
∗
 The optimal cycle order quantity for the ith item and sth source. 

ris The decision variable for the ith  item and sth  source's reorder point each 

cycle. 

ris
∗ The ith item and sth source's optimal ordering point per cycle. 

Cois The ith item and sth source's order cost each cycle per unit. 

Chis The holding cost for the ith item and sth source per unit every cycle. 

Chis(Qis) The decreasing holding cost each cycle per unit for the ith  item and sth 

source = ChisQis
−β, β is a constant real number selected to provide the best fit 

of estimated expected total cost function. 

Cbi The ith item's backorder cost per unit per cycle. 

Cli The ith item's lost sales cost per unit per cycle. 

ki The restriction on the ith item's expected decreasing annual holding cost. 

λis Multiplier of Lagrange for the ith item and sth source. 

λis
∗
 The 𝑖𝑡ℎ item and 𝑠𝑡ℎ source's ideal Lagrange multiplier values. 

ɤ𝑖 The 𝑖𝑡ℎ item's backorder fraction, 0 < ɤ𝑖 < 1. 

𝐸𝑖𝑠(𝑂𝐶) The expected order cost for the 𝑖𝑡ℎ item and 𝑠𝑡ℎ source. 

𝐸𝑖𝑠(𝐻𝐶) The expected decreasing holding cost for the 𝑖𝑡ℎ item and 𝑠𝑡ℎ source. 
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𝐸𝑖𝑠(𝐵𝐶) The expected backorder cost for the 𝑖𝑡ℎ item and 𝑠𝑡ℎ source. 

𝐸𝑖𝑠(𝐿𝐶) The expected lost sales cost for the 𝑖𝑡ℎ item and 𝑠𝑡ℎ source. 

𝐸𝑖𝑠(𝑆𝐶) The expected shortage cost = 𝐸𝑖𝑠(BC) + 𝐸𝑖𝑠(LC) for the 𝑖𝑡ℎ item and 𝑠𝑡ℎ             

 source. 

𝑆̅(r) The quantity of a cycle's expected shortage. 

𝑚𝑖𝑛𝑠 𝐸(𝑇𝐶𝑖𝑠)  Minimum expected total cost for 𝑠𝑡ℎ sources of 𝑖𝑡ℎ item. 

min E(TC) The minimum projected annual total cost for all item and 𝑠𝑡ℎ sources where 

min E(TC) =  ∑ 𝑚𝑖𝑛𝑠 𝐸(𝑇𝐶𝑖𝑠)𝑚
𝑖=1 . 

 

3. THE MODEL ANALYSIS 

For the purpose of creating the mathematical model, the following presumptions are made: 

 (1) The expected order cost is given by: 

   𝐸𝑖𝑠(𝑂𝐶) = 𝐶𝑜𝑖𝑠
𝐷𝑖

𝑄𝑖𝑠
 

 (2) The expected decreasing holding cost is given by: 

   𝐸𝑖𝑠(𝐻𝐶) = 𝐶ℎ𝑖𝑠 (𝑄𝑖𝑠)𝑛𝑖𝐻𝑖 

          = 𝐶ℎ𝑖𝑠𝑄𝑖𝑠
−𝛽 [ 

𝑄𝑖𝑠

2
+ 𝑟𝑖𝑠 − 𝜇 + (1 − ɤ𝑖)𝑆̅(𝑟𝑖𝑠)] 

   where, 𝐻𝑖 reflects the average stock level throughout the cycle. 𝐻𝑖 =
𝐻𝑖

𝑛𝑖
 , 𝑛𝑖 is annual cycle 

average and 𝑛𝑖 =
𝐷𝑖

𝑄𝑖𝑠
  

(3) The following are the mixture of the expected backorder cost, expected lost sales cost, and 

expected shortage cost: 

    𝐸𝑖𝑠(𝑆𝐶) = 𝐸𝑖𝑠(𝐵𝐶) + 𝐸𝑖𝑠(𝐿𝐶) 

Where, 

𝐸𝑖𝑠(𝐵𝐶)= 𝐶𝑏𝑖 ɤ𝑖
𝐷𝑖

𝑄𝑖𝑠
 𝑆(𝑟𝑖𝑠)   and  𝐸𝑖𝑠(𝐿𝐶) = 𝐶𝑙𝑖(1 − ɤ𝑖) 

𝐷𝑖

𝑄𝑖𝑠
𝑆(𝑟𝑖𝑠) 

  Minimizing the applicable expected total cost function is the goal (i.e., the sum of the expected 

order cost, the expected decreasing holding cost, and the expected mixture shortage cost) which, 

based on the model's earlier assumptions is: 

E(TC(𝑄𝑖𝑠, 𝑟𝑖𝑠)) =∑ [ 𝐸𝑖𝑠
𝑚
𝑖=1 (𝑂𝐶) + 𝐸𝑖𝑠(𝐻𝐶) + 𝐸𝑖𝑠(𝑆𝐶)] 

min E (TC) = ∑ 𝑚𝑖𝑛𝑠 𝐸(𝑇𝐶𝑖𝑠)𝑚
𝑖=1  
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          = ∑ [

𝐶𝑜𝑖𝑠𝐷𝑖

𝑄𝑖𝑠
+ 𝐶ℎ𝑖𝑠𝑄𝑖𝑠

−𝛽 [
𝑄𝑖𝑠

2
+ 𝑟𝑖𝑠 − 𝜇 +

(1 − ɤ𝑖)𝑆(𝑟𝑖𝑠)] + 𝐶𝑏𝑖
ɤ𝑖𝐷𝑖

𝑄𝑖𝑠
𝑆(𝑟𝑖𝑠) + 𝐶𝑙𝑖(1 − ɤ𝑖)

𝐷𝑖

𝑄𝑖𝑠
 𝑆(𝑟𝑖𝑠)

]𝑚
𝑖=1               (1)                                                                                                                                                                                                                                                                                              

Depending on how the expected decreasing holding cost limitation plays out: 

 ∑  [𝐸𝑖𝑠(𝐻𝐶)𝑚
𝑖=1 ≤  𝑘𝑖]                                                         (2)                                            

 Then to solve equation (1), under the constraint of equation (2), the Lagrange multipliers method 

ought to be utilized as follows: 

L =∑ [𝑚
𝑖=1 𝐸(𝑇𝐶𝑖𝑠) +  𝜆𝑖𝑠 {𝐸𝑖𝑠(𝐻𝐶) − 𝑘𝑖}],   𝜆𝑖𝑠  > 0 

  = ∑ [
𝐶𝑜𝑖𝑠𝐷𝑖

𝑄𝑖𝑠
+ 𝐶ℎ𝑖𝑠𝑄𝑖𝑠

−𝛽  {
𝑄𝑖𝑠

2
+ 𝑟𝑖𝑠 − 𝜇 + (1 − ɤ𝑖)𝑆(𝑟𝑖𝑠)}  +  

𝐶𝑏𝑖 ɤ𝑖𝐷𝑖

𝑄𝑖𝑠
𝑆(𝑟𝑖𝑠) +𝑚

𝑖=1

       
𝐶𝑙𝑖(1−ɤ𝑖)𝐷𝑖

𝑄𝑖𝑠
𝑆(𝑟𝑖𝑠) + 𝜆𝑖𝑠[𝐶ℎ𝑖𝑠𝑄𝑖𝑠

−𝛽  {
𝑄𝑖𝑠

2
+ 𝑟𝑖𝑠 − 𝜇 + (1 − ɤ𝑖)𝑆(𝑟𝑖𝑠)}  − 𝑘𝑖]  ]              (3) 

Set the appropriate initial partial derivatives of (3) with respect to the two variables of decisions 

equate to zero, it is possible to compute (𝑄𝑖𝑠
∗) and (𝑟𝑖𝑠

∗) that will reduce E(TC) for the 𝑖𝑡ℎ item 

and the 𝑠𝑡ℎ source: 

𝜕𝐿

𝜕𝑄𝑖𝑠
= −

𝐶𝑜𝑖𝑠𝐷𝑖

𝑄𝑖𝑠
2 −β 𝐶ℎ𝑖𝑠𝑄𝑖𝑠

−(𝛽+1) [ 𝑟𝑖𝑠 − 𝜇 + (1 − ɤ𝑖)𝑆(𝑟𝑖𝑠)] +  
(1−𝛽)𝐶ℎ𝑖𝑠𝑄𝑖𝑠

−𝛽

2
  

           −  
𝐶𝑏𝑖 ɤ𝑖𝐷𝑖

𝑄𝑖𝑠
2 𝑆(𝑟𝑖𝑠) −

𝐶𝑙𝑖(1−ɤ𝑖)𝐷𝑖

𝑄𝑖𝑠
2 𝑆(𝑟𝑖𝑠) −𝛽𝜆𝑖𝑠 𝐶ℎ𝑖𝑠𝑄𝑖𝑠

−(𝛽+1)[ 𝑟𝑖𝑠 − 𝜇  

           + (1−ɤ𝑖)𝑆(𝑟𝑖𝑠)] +  
(1−𝛽)𝜆𝑖𝑠𝐶ℎ𝑖𝑠𝑄𝑖𝑠

−𝛽

2
 , 

Hence, 

(1-β)A(𝑄𝑖𝑠
∗)(2−𝛽) = 2Aβ { 𝑟𝑖𝑠

∗ −  𝜇 +  (1 − ɤ𝑖)𝑆(𝑟𝑖𝑠
∗)}(𝑄𝑖𝑠

∗)1−𝛽  + 2(𝐵 + 𝑀𝑆̅(𝑟𝑖𝑠
∗))  

where     A = (1 +  𝜆𝑖𝑠)𝐶ℎ𝑖𝑠 , B = 𝐶𝑜𝑖𝑠𝐷𝑖 ,  M = [𝐶𝑏𝑖ɤ𝑖𝐷𝑖 +  𝐶𝑙𝑖(1 − ɤ𝑖)𝐷𝑖]     

i.e. 

(1-β)A(𝑄𝑖𝑠
∗)2−𝛽 - 2Aβ { 𝑟𝑖𝑠

∗ −  𝜇 +  (1 − ɤ𝑖)𝑆(𝑟𝑖𝑠
∗)}(𝑄𝑖𝑠

∗)1−𝛽 − 2(𝐵 + 𝑀𝑆̅(𝑟𝑖𝑠
∗)) = 0       (4)                                                                                            

also, 

   
𝜕𝐿

𝜕𝑟𝑖𝑠
=  𝑐ℎ𝑖𝑠𝑄𝑖𝑠

−𝛽[1 − (1 − ɤ𝑖)𝑅(𝑟𝑖𝑠)] −
𝑐𝑏𝑖ɤ𝑖�̅�𝑖

𝑄𝑖𝑠
𝑅(𝑟𝑖𝑠) 

        −
𝐶𝑙𝑖(1−ɤ𝑖)�̅�𝑖

𝑄𝑖𝑠
R(𝑟𝑖𝑠) +𝜆𝑖𝑠[𝑐ℎ𝑖𝑠𝑄𝑖𝑠

−𝛽{1 − (1 − ɤ𝑖)𝑅(𝑟𝑖𝑠)}] 

𝑅(𝑟𝑖𝑠
∗) =

𝐴(𝑄𝑖𝑠
∗)1−𝛽

[𝑀+𝐴(1−ɤ𝑖)(𝑄𝑖𝑠
∗)1−𝛽]

                                                      (5)                                                                      

and we can prove that:   
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          {
[

𝜕2𝐿

𝜕𝑄𝑖𝑠
2] [

𝜕2𝐿

𝜕𝑟𝑖𝑠
2
] −  [

𝜕2𝐿

𝜕𝑄𝑖𝑠𝜕𝑟𝑖𝑠
]

2

    > 0

𝜕2𝐿

𝜕𝑄𝑖𝑠
2    𝑜𝑟,   

𝜕2𝐿

𝜕𝑟𝑖𝑠
2                   > 0

          

     It is obvious that there is no closed form solution for equations (4) and (5). So, we can use 

the iteration procedure below to calculate min E(TC). 

Algorithm I: 

1: Input all of the inventory model data, such as order unit cost, holding unit cost, value of expected 

demand, mean, etc. at a single value of β and assumption value of λ, respectively, setting 𝑟0= µ as 

an initial value to make 𝑆0= 0. Then, determine the first 𝑄1 by computing 𝑆0= 0.  

2: Use the values determined in step 1 to determine 𝑟1 and 𝑆1. 

3: Utilise the calculated 𝑟1 and 𝑆1 in step 2 to calculate a new 𝑄2. 

4: Repetition of steps 1 and 2 When two computed order quantity values are equivalent, the Q* 

and r* are at their optimum. 

5: Determining the minimum expected total cost using both calculated  𝑄∗and 𝑟∗. 

6: Repeat each step whenever the value of λ changes to indicate that the condition is met. If the      

condition holds true, min E(TC) at this value of β is true. 

7: Repeat each step for different values of β. 

 

4. THE MODEL WITH CONTINUOUS DISTRIBUTIONS 

Assume for the purposes of our model that the demand for lead time satisfies the following Weibull 

and Lindley-Weibull distributions: 

4.1 The model with Weibull distribution:    

If x follows the Weibull distribution with parameters a, b, the density function is: 

 𝑓(𝑥; 𝑎, 𝑏) =
𝑎

𝑏
 (

𝑥

𝑏
)𝑎−1 𝑒−(

𝑥

𝑏
)𝑎

,    𝑥 > 0 ,     𝑎,   𝑏 > 0                                   (6) 

Moreover, the reliability function is provided by: 

 𝑅(𝑟) = ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑟
=  𝑒−(

𝑟

𝑏
) 𝑎

                                                    (7) 

and the expected shortage quantity is given by: 

 𝑠(𝑟) = ∫ (𝑥 − 𝑟)𝑓(𝑥)𝑑𝑥 =
∞

𝑟
 𝑏 ( 

1

𝑎
 ) ! 𝑒−(

𝑟

𝑏
)

 𝑎

∑
[(𝑟

𝑏⁄ )
 𝑎

]
 𝑘

𝑘!

1

𝑎
𝑘=0 − 𝑟𝑒−(

𝑟

𝑏
) 𝑎

                   (8)                                                                                                                                                                                                             

   It is achievable to determine (𝑄𝑖𝑠
∗) and (𝑟𝑖𝑠

∗) that will minimize E(TC) for the 𝑖𝑡ℎ item and 

the 𝑠𝑡ℎ source by inserting from (8) and (7) in to (4) and (5), respectively. It is realized that the 
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optimal values of 𝑄𝑖𝑠
∗ and 𝑟𝑖𝑠

∗ are given by: 

(1-β)A(𝑄𝑖𝑠
∗)2−𝛽 - 2Aβ { 𝑟𝑖𝑠

∗ −  𝜇 +  (1 − ɤ𝑖){𝑏 ( 
1

𝑎
 ) !  𝑒−(

𝑟

𝑏
)

 𝑎

∑
[(𝑟

𝑏⁄ )
 𝑎

]
 𝑘

𝑘!

1

𝑎
𝑘=0   

 −𝑟𝑒−(
𝑟

𝑏
) 𝑎

}}(𝑄𝑖𝑠
∗)1−𝛽 − 2(𝐵 + 𝑀{𝑏 ( 

1

𝑎
 ) !  𝑒−(

𝑟

𝑏
) 𝑎

∑
[(𝑟

𝑏⁄ )
 𝑎

] 𝑘

𝑘!
− 𝑟𝑒−(

𝑟

𝑏
) 𝑎

}) = 0
1

𝑎
𝑘=0           (9) 

𝑅(𝑟𝑖𝑠
∗) =

𝐴(𝑄𝑖𝑠
∗)1−𝛽

[𝑀+𝐴(1−ɤ𝑖)(𝑄𝑖𝑠
∗)1−𝛽]

= 𝑒−(
𝑟

𝑏
) 𝑎

                                             (10)  

 4.2 The model with Lindley-Weibull distribution: 

   When x follows the Lindley-Weibull distribution with parameters θ, a, b, the density function 

is: 

 𝑓(𝑥; 𝜃, 𝑎, 𝑏) =  
𝑎𝜃2

𝑏(𝜃+1)
(

𝑥

𝑏
)

𝑎−1

(1 + (
𝑥

𝑏
)

𝑎

)  𝑒−(
𝑥

𝑏
)

𝑎
𝜃, 𝑥 > 0,      𝑎, 𝑏, 𝜃 > 0                (11)                                                         

as well as the reliability role being provided by: 

 𝑅(𝑟) = ∫ 𝑓(𝑥)𝑑𝑥 = (1 +
∞

𝑟

𝜃

𝜃+1
(

𝑟

𝑏
)𝑎) 𝑒−(

𝑟

𝑏
)

𝑎
𝜃
                                     (12)                                                                           

and the expected shortage quantity is given by: 

𝑆̅(r) = ∫ (𝑥 − 𝑟)𝑓(𝑥)𝑑𝑥
∞

𝑟
  

    =  
𝜃

𝜃+1
[

𝑏

𝜃
1
𝑎

(
1

𝑎
) !  𝑒−(

𝑟

𝑏
)

𝑎
𝜃 ∑

((
𝑟

𝑏
)

𝑎
𝜃)

𝑘

𝑘!

1

𝑎
𝑘=0 +

𝑏

𝜃
1
𝑎

+1
(

1

𝑎
+ 1) !  𝑒−(

𝑟

𝑏
)

𝑎
𝜃 ∑

((
𝑟

𝑏
)

𝑎
𝜃)

𝑘

𝑘!

1

𝑎
+1

𝑘=0  

      −
𝑟

𝜃
 𝑒−(

𝑟

𝑏
)

𝑎
𝜃 (1 + (

𝑟

𝑏
)

𝑎

𝜃) − 𝑟 𝑒−(
𝑟

𝑏
)

𝑎
𝜃]                                     (13) 

So, for every 𝑖𝑡ℎ item and 𝑠𝑡ℎ source, it is possible to mathematically reduce the expected total 

cost by inserting from (13) and (12) in to (4) and (5), respectively. It is discovered that the ideal 

values for 𝑄𝑖𝑠
∗ and 𝑟𝑖𝑠

∗ are given by: 

(1-β)A(𝑄𝑖𝑠
∗)2−𝛽 - 2Aβ { 𝑟𝑖𝑠

∗ −  𝜇 +  (1 − ɤ𝑖){ 
𝜃

𝜃+1
[

𝑏

𝜃
1
𝑎

(
1

𝑎
) !  𝑒−(

𝑟

𝑏
)

𝑎
𝜃 ∑

((
𝑟

𝑏
)

𝑎
𝜃)

𝑘

𝑘!

1

𝑎
𝑘=0 + 

𝑏

𝜃
1
𝑎

+1
(

1

𝑎
+

1) !  𝑒−(
𝑟

𝑏
)

𝑎
𝜃 ∑

((
𝑟

𝑏
)

𝑎
𝜃)

𝑘

𝑘!

1

𝑎
+1

𝑘=0 −
𝑟

𝜃
 𝑒−(

𝑟

𝑏
)

𝑎
𝜃 (1 + (

𝑟

𝑏
)

𝑎

𝜃) − 𝑟 𝑒−(
𝑟

𝑏
)

𝑎
𝜃]}}(𝑄𝑖𝑠

∗)1−𝛽 − 2(𝐵 + 𝑀{ 

𝜃

𝜃+1
[

𝑏

𝜃
1
𝑎

(
1

𝑎
) !  𝑒−(

𝑟

𝑏
)

𝑎
𝜃 ∑

((
𝑟

𝑏
)

𝑎
𝜃)

𝑘

𝑘!

1

𝑎
𝑘=0 +

𝑏

𝜃
1
𝑎

+1
(

1

𝑎
+ 1) !  𝑒−(

𝑟

𝑏
)

𝑎
𝜃 ∑

((
𝑟

𝑏
)

𝑎
𝜃)

𝑘

𝑘!

1

𝑎
+1

𝑘=0 −
𝑟

𝜃
 𝑒−(

𝑟

𝑏
)

𝑎
𝜃 (1 +

(
𝑟

𝑏
)

𝑎

𝜃) − 𝑟 𝑒−(
𝑟

𝑏
)

𝑎
𝜃]}) = 0                                                       (14)                                                                    

𝑅(𝑟𝑖𝑠
∗) =

𝐴(𝑄𝑖𝑠
∗)1−𝛽

[𝑀+𝐴(1−ɤ𝑖)(𝑄𝑖𝑠
∗)1−𝛽]

= (1 +
𝜃

𝜃+1
(

𝑟

𝑏
)𝑎) 𝑒−(

𝑟

𝑏
)

𝑎
𝜃

                              (15) 
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5. APPLICATION 

According to the model assumptions, a manager of an electronics a firm in Egypt chose to order 

three electronic gadgets (three goods) from three distinct vendors. To reduce the anticipated total 

cost, he wants to obtain the best possible policy. Its problem is identical to the model being studied. 

The parameters for multi-item, multi-source are given in Table 1 and Table 2. We consider the 

parameters (a = 1, b = 3) for Weibull distribution and (θ = 2.84, a = 1, b = 3) for Lindley-Weibull 

distribution (see [6]). 

TABLE 1. The parameters of the model which independent on the sources 

 Item 1 Item 2 Item 3 

𝐷�̅� 20 20 20 

𝐶𝑏𝑖 5 9 11 

𝐶𝑙𝑖 8 12 14 

ɤ𝑖 0.7 0.7 0.56 

𝐾𝑖 7 11 16 

 

TABLE 2. The order cost and the holding cost per unit 

Cost Item Source 1 Source 2 Source 3 

 

𝐶𝑜𝑖𝑠 

1 10 13 16 

2 14 17 20 

3 18 21 24 

 

𝐶ℎ𝑖𝑠 

1 0.5 0.6 0.7 

2 0.9 1 1.1 

3 1.3 1.4 1.5 

 

   Consider  0.01 ≤ β  ≤ 0.1 which is appropriate in the case of the distributions under study 

for equations (9) and (10) applied for Weibull distribution as well as (14) and (15) for Lindley-

Weibull distribution. Tables 1, 2, 3 and 5 are used to obtain about 𝜆∗,𝑄∗, 𝑟∗ and 𝑚𝑖𝑛𝑠 𝐸(𝑇𝐶𝑖𝑠) 

using the Mathematica program V 12.3. Tables 4 and 6 show the results for Weibull and Lindley-

Weibull distributions respectively assuming for various values of the parameter β. The best 

minimum projected overall cost for the 𝑖𝑡ℎ item and 𝑠𝑡ℎ source when β = 0.1 for Weibull and 

Lindley-Weibull distributions which displayed in Table 7. Also, the minimum expected total cost 

can be illustrated against different values of β for each item and three sources for Weibull and 

Lindley-Weibull distributions as shown in Figure 1 and 2 respectively. 
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TABLE 3. The value of 𝜆∗ for Item 1 and the first Source  

    at β = 0.01 for the Weibull distribution 

𝜆 E(HC) E(𝑇𝐶𝑖) 

0 9.749 0.543 

1 7.202 0.787 

1.131 7.001 0.818 

1.1317 7.000 0.818 

1.1318 6.999 0.818 

 

TABLE 4. The results for the Weibull distribution 

 

𝜷 

S
o

u
rc

e 

Item 1 Item 2 Item 3 

 

 𝝀𝟏 

 

𝑸𝟏 

 

𝒓𝟏 

 

E𝑻𝑪𝟏𝒊 

 

𝝀𝟐 

 

𝑸𝟐 

 

𝒓𝟐 

 

E𝑻𝑪𝟐𝒊 

 

𝝀𝟑 

 

𝑸𝟑 

 

𝒓𝟑 

 

E𝑻𝑪𝟑𝒊 

 

0.01 

1 1.1318 22.832 5.005 0.818 1.4439 19.349 4.883 1.628 1.1572 19.330 4.901 2.177 

2 2.0533 20.163 3.836 1.229 2.0566 18.229 4.127 2.078 1.5668 18.520 4.342 2.595 

3 2.9959 18.310 2.948 1.732 2.3195 18.816 3.813 2.185 1.9859 17.798 3.860 3.059 

 

0.02 

1 1.0699 23.623 5.082 0.771 1.3761 19.987 4.956 1.536 1.0959 19.977 4.972 2.056 

2 1.9802 20.789 3.903 1.161 1.9829 18.787 4.194 1.965 1.4999 19.113 4.409 2.452 

3 2.9177 18.826 3.006 1.641 2.2426 19.385 3.878 2.066 1.9141 18.343 3.923 2.893 

 

0.03 

1 1.0081 24.460 5.162 0.726 1.3087 20.659 5.032 1.449 1.0344 20.663 5.047 1.939 

2 1.9071 21.449 3.971 1.096 1.9079 19.378 4.262 1.855 1.4325 19.739 4.478 2.315 

3 2.8375 19.371 3.066 1.554 2.1647 19.987 3.945 1.951 1.8418 18.919 3.987 2.733 

 

0.04 

1 0.9459 25.351 5.245 0.683 1.2411 21.375 5.109 1.364 0.9728 21.390 5.123 1.828 

2 1.8332 22.148 4.042 1.034 1.8329 20.002 4.333 1.750 1.3649 20.402 4.549 2.183 

3 2.7561 19.946 3.127 1.469 2.0866 20.622 4.013 1.840 1.7691 19.528 4.053 2.580 

 

0.05 

1 0.8841 26.296 5.329 0.642 1.1727 22.130 5.190 1.284 0.9116 22.160 5.202 1.721 

2 1.7587 22.889 4.115 0.973 1.7577 20.661 4.405 1.649 1.2974 21.103 4.622 2.057 

3 2.6745 20.550 3.190 1.388 2.0071 21.296 4.085 1.734 1.6959 20.172 4.121 2.433 

 

0.06 

1 0.8221 27.304 5.417 0.603 1.1051 22.932 5.273 1.207 0.8502 22.979 5.284 1.619 

2 1.6837 23.673 4.191 0.916 1.6814 21.361 4.481 1.552 1.2295 21.848 4.698 1.936 

3 2.5907 21.193 3.256 1.309 1.9275 22.009 4.158 1.632 1.6225 20.853 4.192 2.291 

 

0.07 

1 0.7605 28.375 5.508 0.562 1.0371 23.787 5.359 1.133 0.7892 23.848 5.368 1.521 

2 1.6081 24.507 4.268 0.861 1.6054 22.102 4.558 1.460 1.1619 22.636 4.776 1.820 

 3 2.5071 21.869 3.323 1.234 1.8474 22.764 4.234 1.535 1.5488 21.575 4.264 2.156 
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TABLE 4. The results for the Weibull distribution (continued) 

 

 

 

FIGURE 1. The min expected total cost of item 1,2,3 and three sources for the model with 

Weibull distribution. 

 

𝜷 

S
o

u
rc

e 

Item 1 Item 2 Item 3 

 

 𝝀𝟏 

 

𝑸𝟏 

 

𝒓𝟏 

 

E𝑻𝑪𝟏𝒊 

 

𝝀𝟐 

 

𝑸𝟐 

 

𝒓𝟐 

 

E𝑻𝑪𝟐𝒊 

 

𝝀𝟑 

 

𝑸𝟑 

 

𝒓𝟑 

 

E𝑻𝑪𝟑𝒊 

 

0.08 

1 0.6993 29.516 5.601 0.530 0.9692 24.696 5.447 1.063 0.7283 24.774 5.455 1.428 

2 1.5324 25.392 4.349 0.808 1.5283 22.892 4.639 1.371 1.0939 23.476 4.857 1.709 

3 2.4209 22.589 3.393 1.161 1.7669 23.566 4.312 1.441 1.4746 22.342 4.340 2.026 

 

0.09 

1 0.6381 30.737 5.697 0.496 0.9019 25.663 5.538 0.996 0.6676 25.761 5.543 1.339 

2 1.4564 26.334 4.432 0.757 1.4514 23.730 4.722 1.286 1.0261 24.368 4.941 1.604 

3 2.3355 23.348 3.465 1.091 1.6858 24.419 4.393 1.352 1.4006 23.155 4.418 1.902 

 

1 

1 0.5778 32.036 5.796 0.463 0.8342 26.699 5.633 0.932 0.6074 26.812 5.638 1.254 

2 1.3795 27.340 4.518 0.709 1.3744 24.621 4.807 1.205 0.9584 25.319 5.027 1.503 

3 2.2485 24.157 3.539 0.025 1.6046 25.326 4.476 1.266 1.3262 24.021 4.498 1.784 



11 

CONSTRAINED PROBABILISTIC MULTI-SOURCE INVENTORY MODEL 

TABLE 5. The value of λ∗ for Item 1 and the first source 

         at β = 0.01 for the Lindley-Weibull distribution 

λ E(HC) E(TCi) 

0 8.203 0.511 

0.3 7.272 0.585 

0.412 7.001 0.612 

0.4125 7.000 0.612 

0.4126 6.999 0.612 

 

TABLE 6. The results for the Lindley-Weibull distribution 

 

𝛃 

S
o

u
rce 

Item 1 Item 2 Item 3 

 

 𝛌𝟏 

 

𝐐𝟏 

 

𝐫𝟏 

 

E𝐓𝐂𝟏𝐢 

 

𝛌𝟐 

 

𝐐𝟐 

 

𝐫𝟐 

 

E𝐓𝐂𝟐𝐢 

 

𝛌𝟑 

 

𝐐𝟑 

 

𝐫𝟑 

 

E𝐓𝐂𝟑𝐢 

 

0.01 

1 0.4126 25.537 2.585 0.612 0.5309 21.809 2.592 1.165 0.3415 21.946 2.589 1.565 

2 1.1550 21.681 2.054 0.943 1.0201 19.942 2.239 1.521 0.6579 20.606 2.327 1.890 

3 2.0011 18.996 1.633 1.378 1.5526 18.426 1.939 1.946 0.9966 19.444 2.097 2.261 

 

0.02 

1 0.3735 26.450 2.616 0.579 0.4900 22.560 2.621 1.103 0.3056 22.705 2.618 1.484 

2 1.1030 22.394 2.082 0.892 0.9706 20.593 2.267 1.441 0.6159 21.294 2.354 1.791 

3 1.9370 19.577 1.658 1.305 1.4950 18.999 1.965 1.844 0.9488 20.072 2.123 2.143 

 

0.03 

1 0.3349 27.414 2.648 0.547 0.4494 23.353 2.652 1.044 0.2696 23.508 2.648 1.406 

2 1.0498 23.152 2.111 0.843 0.9213 21.279 2.295 1.364 0.5739 22.021 2.383 1.697 

3 1.8720 20.190 1.685 1.236 1.4371 19.605 1.992 1.746 0.9007 20.735 2.150 2.030 

 

0.04 

1 0.2959 28.440 2.681 0.517 0.4086 24.193 2.683 0.987 0.2337 24.358 2.679 1.330 

2 0.9971 23.951 2.141 0.797 0.8717 22.006 2.324 1.290 0.5317 22.790 2.412 1.605 

3 1.8070 20.837 1.711 1.169 1.3791 20.243 2.019 1.652 0.8527 21.435 2.178 1.921 

 

0.05 

1 0.2573 29.527 2.715 0.488 0.3681 25.082 2.716 0.933 0.1979 25.258 2.711 1.258 

2 0.9448 24.794 2.172 0.752 0.8219 22.775 2.355 1.218 0.4898 23.603 2.443 1.518 

3 1.7410 21.521 1.739 1.104 1.3208 20.917 2.048 1.562 0.8045 22.176 2.207 1.816 

 

0.06 

1 0.2188 30.681 2.749 0.459 0.3278 26.024 2.749 0.880 0.1624 26.212 2.743 1.189 

2 0.8918 25.690 2.203 0.709 0.7723 23.589 2.386 1.150 0.4478 24.465 2.474 1.434 

3 1.6750 22.243 1.768 1.042 1.2625 21.628 2.077 1.475 0.7563 22.959 2.237 1.715 

 

0.07 

1 0.1805 31.909 2.786 0.433 0.2878 27.022 2.783 0.831 0.127 27.224 2.777 1.123 

2 0.8392 26.638 2.235 0.668 0.7227 24.451 2.418 1.084 0.4061 25.378 2.505 1.353 

3 1.6090 23.006 1.797 0.982 1.2040 22.382 2.107 1.391 0.7083 23.788 2.267 1.619 
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TABLE 6. The results for the Lindley-Weibull distribution (continued) 

 

𝛃 

S
o

u
rce 

Item 1 Item 1 Item 3 

 

𝛌𝟏 

 

𝐐𝟏 

 

𝐫𝟏 

 

E𝐓𝐂𝟏𝐢 

 

𝛌𝟐 

 

𝐐𝟐 

 

𝐫𝟐 

 

E𝐓𝐂𝟐𝐢 

 

𝛌𝟑 

 

𝐐𝟑 

 

𝐫𝟑 

 

E𝐓𝐂𝟑𝐢 

 

0.08 

1 0.1425 33.214 2.822 0.407 0.2477 28.086 2.818 0.783 0.0917 28.301 2.811 1.059 

2 0.7866 27.645 2.269 0.628 0.6732 25.366 2.451 1.022 0.3644 26.347 2.538 1.276 

3 1.5430 23.813 1.827 0.925 1.1450 23.182 2.138 1.311 0.6601 24.668 2.299 1.526 

 

0.09 

1 0.1050 34.600 2.859 0.383 0.2080 29.216 2.853 0.737 0.0567 29.446 2.847 0.998 

2 0.7339 28.716 2.303 0.590 0.6239 26.336 2.484 0.962 0.3229 27.377 2.572 1.202 

3 1.4760 24.672 1.858 0.870 1.0863 24.029 2.169 1.234 0.6121 25.602 2.331 1.437 

 

0.1 

1 0.0675 36.084 2.899 0.359 0.1685 30.419 2.890 0.693 0.0219 30.666 2.883 0.940 

2 0.6815 29.854 2.338 0.554 0.5745 27.370 2.519 0.904 0.2815 28.473 2.607 1.132 

3 1.4090 25.582 1.890 0.817 1.0277 24.927 2.202 1.160 0.5642 26.594 2.364 1.353 

 

 

 

FIGURE 2. The min expected total cost of item 1,2,3 and three sources for the model with 

Lindley-Weibull distribution. 
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TABLE 7. MIMS's optimal policy model at β = 0.1for Weibull distribution and Lindley-Weibull 

distribution 

 Weibull distribution Lindley-Weibull distribution 

 Item 𝜆𝑖𝑠
∗
 𝑄𝑖𝑠

∗ 𝑟𝑖𝑠
∗ 𝐸𝑇𝐶𝑖𝑠 Source 𝜆𝑖𝑠

∗
 𝑄𝑖𝑠

∗ 𝑟𝑖𝑠
∗ 𝐸𝑇𝐶𝑖𝑠 Source 

1 0.5778 32.036 5.796 0.463 1 0.0675 36.084 2.899 0.359 1 

2 0.8342 26.699 5.633 0.932 1 0.1685 30.419 2.890 0.693 1 

3 0.6074 26.812 5.638 1.254 1 0.0219 30.666 2.883 0.940 1 

Min TC                                                            2.649  1.992 

 

6. CONCLUSION 

The optimal order quantity 𝑄∗  and the optimal reorder point 𝑟∗  for the 𝑖𝑡ℎ  item and 𝑠𝑡ℎ  

source are introduced after researching the multi-item multi-source constrained probabilistic 

inventory model with decreasing holding cost utilizing the multipliers of Lagrange method. Then, 

when the demand for lead time follows the Weibull and Lindley-Weibull distributions, the 

minimum expected total cost min E(TC) is calculated for each item and source. We can also choose 

the best source for each item. Eventually, we concluded that the findings of the Lindley-Weibull 

distribution are superior to those of the Weibull distribution at the lowest value of the holding cost. 
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