

Available online at http://scik.org J. Math. Comput. Sci. 2024, 14:8 https://doi.org/10.28919/jmcs/8549 ISSN: 1927-5307

ENTROPY OF BENZENOID HYDROCARBON CHAINS USING REVERSE TOPOLOGICAL INDICES

MEDHA ITAGI HUILGOL^{*}, P. H. SHOBHA

Department of Mathematics, Bengaluru City University, Central College Campus, Bengaluru-560001, India Abstract: In this paper, we have computed the reverse degree based topological indices like the reverse Randić index, reverse geometric arithmetic index, reverse Zagreb indices, reverse forgotten index, reverse arithmetic geometric index, reverse symmetric division degree index, reverse atom bond sum connectivity index, reverse hyper Zagreb indices, reverse redefined Zagreb indices using edge partition method and also obtained the entropy of above computed indices on hexagonal hydrocarbon chains using Shannon's entropy model.

Keywords: benzenoid hydrocarbon chains; topological indices; reverse topological indices; entropy of graphs.

AMS subject classification: 2020: 05C92, 05C90, 68R10, 68P30, 05C09.

1. INTRODUCTION

Topological indices are the numerical values that provide information about the molecular structure of chemical compounds. Topological indices are used in the field of cheminformatics and quantitative structure activity/ property relationship (QSAR/QSPR) studies to predict various properties of molecules, such as their biological activities, physical properties and toxicity parameters. Wiener introduced the first topological index [1] way back in 1947, which is well

^{*}Corresponding author

E-mail address: medha@bub.ernet.in

Received March 16, 2024

known by his name now that describes a correlation between chemical /physical property [2]-[4] of a molecule and its structure. Many of its forms are used in mathematical, combinatorial chemistry [5]-[20]. Several papers have been written [21]-[28] which help in getting many properties of a molecule with the help of its structure.

Hexagonal chain is a chain like structure composed of hexagonal rings. This hexagonal chain and its derivatives are well known organic compounds known for their sensitivity, durability and availability in nature. Formally speaking, benzenoid hydrocarbons are condensed polycyclic unsaturated fully conjugated hydrocarbons composed exclusively of six membered rings. A segment [29] of a hexagonal chain is its maximal sub chain in which all rings are linearly annihilated. A segment including a terminal hexagon is a terminal segment. The number of hexagons in a segment s is called its length and is denoted by l(s). In particular, if length of each segment is 2, then it is called a fibonacene, denoted by F_h , h being number of hexagonal rings. In this paper we determine exact value of degree based topological indices (Table1) and entropy based on reverse degree-based indices for hexagonal chains with n segments of length l, that is $G_{n,l}$ as well as linear polyacenes (L_h).

2. MATERIALS AND METHODS

Kulli [30] introduced reverse vertex degree as $\mathcal{R}(u) = \Delta(G) - \lambda(u) + 1$, where $\Delta(G)$ is the maximum degree of a graph and $\lambda(u)$ is the degree of vertex *u*. Wei et al. [31] introduced some reverse topological indices namely, the reverse general Randić index, the reverse atom bond connectivity index, the reverse geometric arithmetic index, the reverse forgotten index and the reverse Zagreb type indices etc. Many of these indices are used in treatment of corona virus (COVID 19). Jung et al.[32] introduced first and second reverse Zagreb indices, first and second reverse hyper Zagreb indices, reverse atomic-bond connectivity index and reverse geometricarithmetic index for TUC4[*m*, *n*]. The expression for these indices is given below in Table1.

TIs	Formula	Reverse TIs
[33]Randic index	$R(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{\lambda(u)\lambda(v)}}$	$[32]\mathcal{R}R_{\alpha}(G) = \sum_{uv \in E(G)} [\mathcal{R}\lambda(u) \times \mathcal{R}\lambda(v)]^{\alpha}$
[33] Inverse	$IR(G) = \sum_{uv \in E(G)} \sqrt{\lambda(u)\lambda(v)}$	$[32]\mathcal{R}IR(G) = \sum_{uv \in E(G)} \sqrt{\mathcal{R}\lambda(u)\mathcal{R}\lambda(v)}$
Randic index		
[34]Geometric	$CA(C) = \sum_{n=1}^{\infty} \frac{2\sqrt{\lambda(u)\lambda(v)}}{2\sqrt{\lambda(u)\lambda(v)}}$	$2\sqrt{\Re\lambda(u)\times\Re\lambda(v)} = \Sigma$
Arithmetic index	$GA(G) = \sum_{uv \in E(G)} \frac{1}{\lambda(u) + \lambda(v)}$	$[52] \mathcal{K}GA(G) = \sum_{uv \in E(G)} \frac{1}{\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v)}$
[36] Symmetric	$SSD(C) = \sum \frac{\lambda(u)}{\lambda(u)} \pm \frac{\lambda(v)}{\lambda(v)}$	$[35]\mathcal{P}SSD(C) = \sum \frac{\mathcal{R}\lambda(u)}{\mathcal{R}\lambda(u)} + \frac{\mathcal{R}\lambda(v)}{\mathcal{R}\lambda(v)}$
division deg index	$33D(\mathbf{G}) = \Delta u v \epsilon E(\mathbf{G}) \lambda(v) + \lambda(u)$	$[33]\mathcal{K}\mathcal{S}\mathcal{S}\mathcal{D}(\mathbf{u}) = \mathcal{L}_{uv \in E(G)} \mathcal{R}\lambda(v) \stackrel{!}{\rightarrow} \mathcal{R}\lambda(u)$
[6]First Zagreb index	$M_1 = \sum_{uv \in E(G)} \lambda(u) + \lambda(v)$	$[32] \mathcal{R}M_1(G) = \sum_{uv \in E(G)} \mathcal{R}\lambda(u) + \mathcal{R}\lambda(v)$
[37]Second Zagreb	$M_2 = \sum_{uv \in E(G)} \lambda(u) \lambda(v)$	[32] $\mathcal{R}M_2(G) = \sum_{uv \in E(G)} \mathcal{R}\lambda(u)\mathcal{R}\lambda(v)$
index		
[38]Harmonic index	$HI = \sum_{uv \in E(G)} \frac{2}{\lambda(u) + \lambda(v)}$	$[35]\mathcal{R}HI = \sum_{uv \in E(G)} \frac{2}{\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v)}$
[39]First hyper	HM1(G) =	$[31] \mathcal{R}HM1(G) =$
Zagreb index	$\sum_{uv\in E(G)} [\lambda(u) + \lambda(v)]^2$	$\sum_{uv \in E(G)} [\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v)]^2$
[39]Second hyper	$HM_2(G) = \sum_{uv \in E(G)} [\lambda(u) \times \lambda(v)]^2$	$[35]\mathcal{R}HM2(G) = \sum_{uv \in E(G)} [\mathcal{R}\lambda(u) \times \mathcal{R}\lambda(v)]^2$
Zagreb index		
[40]Sum connectivity	$SCI = \sum_{uv \in E(G)} \frac{1}{\sqrt{\lambda(u) + \lambda(v)}}$	$[35]\mathcal{RSCI} = \sum_{uv \in E(G)} \frac{1}{\sqrt{\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v)}}$
[41]Inverse sum index	$ISI = \sum_{uv \in E(G)} \frac{\lambda(u)\lambda(v)}{\lambda(u) + \lambda(v)}$	$[35]\mathcal{R}ISI = \sum_{uv \in E(G)} \frac{\mathcal{R}\lambda(u)\mathcal{R}\lambda(v)}{\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v)}$
[43]Atom Bond	$ABC(C) = \sum \frac{\lambda(u) + \lambda(v) - 2}{\lambda(u) + \lambda(v) - 2}$	$[22] \oplus ABC(C) = \sum \frac{\Re \lambda(u) + \Re \lambda(v) - 2}{\Re \lambda(u) + \Re \lambda(v) - 2}$
Connectivity	$ABC(G) = \sum_{uv \in E(G)} \sqrt{-\lambda(u)\lambda(v)}$	$[32]\mathcal{RABC}(G) = \sum_{uv \in E(G)} \sqrt{-\mathcal{R}\lambda(u)\mathcal{R}\lambda(v)}$
[44]Atom Bond Sum	$ABS(G) = \sum_{v \in \mathcal{F}} \int \frac{\lambda(u) + \lambda(v) - 2}{v^2}$	$[35]\mathcal{R}ABS(G) = \sum_{v \in \mathcal{I}(G)} \frac{\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v) - 2}{\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v) - 2}$
connectivity index	$\sum_{uv \in L(u)} \sqrt{\lambda(u) + \lambda(v)}$	$\sum_{uv \in E(G)} \sqrt{\frac{\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v)}{\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v)}}$
[16]Arithmetic	$AG(G) = \sum_{uv \in E(G)} \frac{\lambda(u) + \lambda(v)}{2 \sqrt{\lambda(u) + \lambda(v)}}$	$[35]\mathcal{R}AG(G) = \sum_{uv \in E(G)} \frac{\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v)}{2\sqrt{\mathcal{R}}\lambda(v) - \mathcal{R}\lambda(v)}$
Geometric index	$= 2 \left(\frac{1}{2} \sqrt{\lambda(u)} \lambda(v) \right)$	$= \sum_{u \in \mathcal{U}} (u) Z_{\sqrt{\mathcal{R}}\lambda}(u) \mathcal{R}\lambda(v))$
[37]Forgotten index	$F(G) = \sum_{uv \in E(G)} (\lambda(u))^2 + (\lambda(v))^2$	$ [32] \qquad \mathcal{R}F(G) = \sum_{uv \in E(G)} (\mathcal{R}\lambda(u))^2 + (\mathcal{R}\lambda(v))^2 $
[42]First redefined	$\mathbf{P}_{\alpha}\mathbf{T}\mathbf{C}_{\alpha}(\mathbf{C}) = \mathbf{\nabla} \qquad \lambda(u) + \lambda(v)$	$\begin{bmatrix} 21 \end{bmatrix} \qquad \mathcal{P} \mathbf{P} \mathbf{a} \mathbf{\mathcal{T}} \mathbf{C} (\mathbf{C}) = \mathbf{\nabla} \qquad \mathcal{R} \lambda(u) + \mathcal{R} \lambda(v)$
Zagreb index	$A \in L \cup U_1(\cup) - \angle u v \in E(G) \overline{\lambda(u) \times \lambda(v)}$	$[\mathbf{J}\mathbf{I}] \mathbf{\mathcal{K}}\mathbf{\mathcal{K}}\mathbf{\mathcal{L}}\mathbf{\mathcal{U}}_1(\mathbf{U}) - \mathbf{\mathcal{L}}uv \in E(G) \frac{1}{\mathcal{R}\lambda(u) \times \mathcal{R}\lambda(v)}$
[42]Second redefined	$\mathbf{P}_{\mathbf{Z}}\mathbf{Z}_{\mathbf{Z}_{\mathbf{Z}}}(\mathbf{C}) = \sum_{\boldsymbol{\lambda}(\boldsymbol{u}) \times \boldsymbol{\lambda}(\boldsymbol{v})} \boldsymbol{\lambda}(\boldsymbol{v})$	$[31] \qquad \mathcal{P} P_{\theta} \mathcal{T} \mathcal{C}_{\tau}(\mathcal{C}) - \sum \qquad \frac{\mathcal{R} \lambda(u) \times \mathcal{R} \lambda(v)}{\mathcal{R} \lambda(v)}$
Zagreb index	$AcZU_2(U) - \angle uv \in E(G) \frac{1}{\lambda(u) + \lambda(v)}$	$[J_1] \qquad \qquad$
[42]Third redefined	$ReZG_3(G) =$	$[31] \mathcal{R}ReZG_3(G) =$
Zagreb index	$\sum_{uv\in E(G)} (\lambda(u) + \lambda(v)) (\lambda(u)\lambda(v))$	$\sum_{uv\in E(G)} \left(\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v) \right) \left(\mathcal{R}\lambda(u) \mathcal{R}\lambda(v) \right)$

Table 1: Topological indices, reverse topological indices of graphs

We consider the following basic concepts, which will be applied throughout the paper. Let *G* be connected, simple graph. V(G) be the set of vertices belonging to the graph *G*, let *u*, *v* be the vertices belongs to V(G). E(G) be the edge set of a graph (*G*). Degree of vertex *u* is represented by $\lambda(\mathbf{u})$. Let e = uv belong to edge set of *G*. Reverse vertex degree of a vertex *u* is given by $\mathcal{R}(\mathbf{u}) = \Delta(\mathbf{G}) - \lambda(\mathbf{u}) + \mathbf{1}$, where Δ is the maximum degree of a graph and $\lambda(u)$ is the degree of vertex *u*. Then Reverse Topological index can be written as $\psi(G) = \sum_{e \in E(G)} (f(e))$ where *f* is a structural-functional that characterizes the bond- additive reverse topological index.

Entropy was first introduced by Claude Shannon in relation to information theory. As researchers looked for ways to evaluate the uncertainty, unpredictability or information content in network architecture and connectivity patterns, it turned out that entropy measure is a very effective tool which can be applied to complex networks. This advancement is a component of network science's larger progress. Later graph entropy was introduced by Rashevsky [45], which is used to characterize the structural complexity of graphs. Currently, graph entropy is a very effective tool for determining how information theoretical techniques can be employed in applied mathematical chemistry [2], [46]-[51]. An extensive overview on graph entropy measures can be found in [49]. There are several ways to define and calculate graph entropy, and the choice of a specific measure often depends on the aspect of the graph under consideration. Shannon's model [4], [52] is the most widely used method for calculating probabilistic entropy, and we employed it for our computations. In this paper we are obtaining the entropy of linear poly-acene and hexagonal chain of equal segment lengths using reversed degree-based indices. Shannon's entropy (*H*) of a discrete random variable $X = \{x_1, x_2, x_3, \dots, x_n\}$ is defined as

$$H(X) = -\sum_{i=1}^{n} p(x_i) \ln(p(x_i))$$

where $p(x_i)$ is the probability of the *i*th outcome, *n* is the total number of random variables. This entropy is modified in the case of chemical graphs in order to describe their structural characteristics. The edges of a chemical graph are regarded as elements and reverse topological indices are used to assign probability values to each edge. The entropy [42] measured using a topological index ψ of a graph *G* is defined as,

The above equation (1) is used to compute the graph entropies of reverse topological indices.

3. RESULTS AND DISCUSSION

Poly-acenes are a class of benzenoid hydrocarbon chains, that consist of linearly arranged benzene rings. Generally speaking, substances with several benzene rings joined in a linear form are referred to as "poly-acenes." These compounds have intriguing optical and electrical characteristics and are aromatic. We usually refer them as linear poly-acenes and represented as L_h , with h number of hexagons. Graphically it is represented as shown in Figure 1(a), which will have 4h+2 number of vertices and 5h+1 number of edges. A hexagonal chain's longest sub-chain, where every ring is linearly annealed, is called a segment (s). Its length, represented by l, is the total number of hexagons in a segment s. Specifically, if every segment has a length 2, it is referred to as a fibonacene, represented by the symbol F_h , where h is the number of hexagonal rings, given by h = n(l-1) + 1. In this paper we are considering n segments of length l denoted by $G_{n,l}$, with two segments of any pattern like zigzag, non-zigzag etc

Fig. 1(a): Linear poly-acene (L_6) Fig. 1(b): Hexagonal chain with 3 segments of length 2 ($G_{3,2}$).

Here we establish results related to hexagonal hydrocarbon chains mainly based on reverse degree-based indices. We use edge partition method for both of them that help in proving our results. The edge partition of linear poly-acene based on degrees and corresponding reverse degrees of each edge is given in Table 2(a) and 2(b), of end vertices respectively for L_h and $G_{n,l}$.

Table 2(a): Re	verse degree edge j	partitions of L_h	Table 2(b): Reverse degree edge partitions of								
$\lambda(u), \lambda(v)$	$\mathcal{R}\lambda(u),\mathcal{R}\lambda(v)$	Frequency	$\lambda(u), \lambda(v)$	$\mathcal{R}\lambda(u),\mathcal{R}\lambda(v)$	Frequency						
(2,2)	(2,2)	6	(2,2)	(2,2)	<i>n</i> +5						
(2,3)	(2,1)	4(h-1)	(2,3)	(2,1)	n (4l- 5)						
(3,3)	(1,1)	(<i>h</i> -1)			+1						
			(3,3)	(1,1)	<i>n</i> (<i>l</i> -1)						

Table 2(a): Reverse degree edge partitions of L_h

Theorem 1. The values of reverse degree-based indices of linear poly-acene having h number of hexagons is given as follows:

(1) $\Re R_1(L_h) = 9h + 15$, $\mathcal{R}R_{-1}(L_h) = \frac{3}{2} + 3(h-1),$ $\mathcal{R}R_{\frac{1}{2}}(L_h) = 12 + (4\sqrt{2}+1)(h-1),$ $\mathcal{R}R_{\frac{-1}{2}}(L_h) = 3 + (2\sqrt{2} + 1)(h - 1).$ (2) $\mathcal{R}IR(L_h) = 12 + (4\sqrt{2} + 1)(h - 1).$

(3)
$$\mathcal{R}M_1(L_h) = 14h + 10, \ \mathcal{R}M_2(L_h) = 9h + 15$$

(4)
$$\mathcal{R}HI(L_h) = 3 + \frac{11}{3}(h-1).$$

(5)
$$\mathcal{RSCI}(L_h) = 3 + \left(\frac{4}{\sqrt{3}} + \frac{1}{\sqrt{2}}\right)(h-1).$$

(6)
$$\mathcal{R}ISI(L_h) = 6 + \left(\frac{19}{6}\right)(h-1).$$

(7)
$$\mathcal{R}ABC(L_h) = 2\sqrt{2}h - \sqrt{2}.$$

(8)
$$\mathcal{R}ABS(L_h) = 3\sqrt{2} + \left(\frac{4}{\sqrt{3}}\right)(h-1).$$

(9)
$$\mathcal{R}GA(L_h) = 6 + \left(\frac{8\sqrt{2}}{3} + 1\right)(h-1).$$

(10)
$$\mathcal{R}AG(L_h) = 6 + (3\sqrt{2} + 1)(h - 1).$$

(11)
$$\mathcal{R}SSD(L_h) = 12h.$$

(12)
$$\mathcal{R}F(L_h) = 22h + 26h$$

(13)
$$\mathcal{R}HM_1(L_h) = 40h + 56$$
, $\mathcal{R}HM_2(L_h) = 17h + 79$.
(14) $\mathcal{R}ReZG_1(L_h) = 8h - 2$, $\mathcal{R}ReZG_2(L_h) = 6 + \frac{19}{6}(h - 1)$, $\mathcal{R}ReZG_3(L_h) = 26h + 70$.

Proof: Here we calculate reverse topological indices of linear poly-acene L_h as follows: (1) From Table 1, using definition of Randić index and reverse Randić index, we get $\mathcal{R}_{\alpha}(G) = \sum_{uv \in E(G)} [\mathcal{R}\lambda(u) \times \mathcal{R}\lambda(v)]^{\alpha}$. Substituting different values of \propto as follows we get, For $\alpha = 1$, $\mathcal{R}R_1(G) = 6 * 4 + 4(h-1) * 2 + (h-1) = 9h + 15$. For $\alpha = -1$, $\mathcal{R}R_{-1}(G) = \frac{6}{2 \times 2} + \frac{4(h-1)}{2 \times 1} + \frac{h-1}{1 \times 1} = \frac{3}{2} + 3(h-1)$, For $\alpha = \frac{1}{2}$, $\mathcal{R}R_{\frac{1}{2}}(G) = 6 * \sqrt{4} + 4(h-1) * \sqrt{2} + (h-1) = 12 + (4\sqrt{2}+1)(h-1)$. For $\alpha = \frac{-1}{2}$, $\mathcal{R}R_{\frac{-1}{2}}(G) = \frac{6}{\sqrt{2 \times 2}} + \frac{4(h-1)}{\sqrt{2 \times 1}} + \frac{h-1}{\sqrt{1 \times 1}} = 3 + (2\sqrt{2}+1)(h-1)$.

(2) The Reverse inverse Randić index is given by

$$\mathcal{R}IR(L_h) = \sum_{uv \in E(G)} \sqrt{\mathcal{R}\lambda(u)\mathcal{R}\lambda(v)} = 6 * \sqrt{4} + 4(h-1) * \sqrt{2} + (h-1)$$
$$= 12 + (4\sqrt{2}+1)(h-1).$$

(3) The Reverse first Zagreb index is given by $\mathcal{R}M_1(L_h) = \sum_{uv \in E(G)} \mathcal{R}\lambda(u) + \mathcal{R}\lambda(v)$ = 6(2+2) + 4(h-1)(2+1) + (h-1)(1+1) = 14h + 10.

The Reverse second Zagreb index is given by $M_2(L_h) = \sum_{uv \in E(G)} \mathcal{R}\lambda(u) \times \mathcal{R}\lambda(v)$

$$= 6(2 \times 2) + 4(h-1)(2 \times 1) + (h-1)(1 \times 1) = 9h + 15.$$

(4) The Reverse harmonic index is given by

$$\mathcal{R}HI(L_h) = \sum_{uv \in E(G)} \frac{2}{\Re \lambda(u) + \Re \lambda(v)} = 6\left(\frac{2}{2+2}\right) + 4(h-1)\left(\frac{2}{2+1}\right) + (h-1)\left(\frac{2}{1+1}\right)$$
$$= 3 + \frac{11}{3}(h-1).$$

(5) The Reverse Sum Connectivity index is given by

$$\mathcal{RSCI}(L_h) = \sum_{uv \in E(G)} \frac{1}{\sqrt{\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v)}} = 3 + \left(\frac{4}{\sqrt{3}} + \frac{1}{\sqrt{2}}\right)(h-1).$$

(6) The Reverse Inverse sum index is given by

$$\mathcal{RISI}(L_h) = \sum_{uv \in E(G)} \frac{\mathcal{R}\lambda(u)\mathcal{R}\lambda(v)}{\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v)} = 6\left(\frac{2\cdot 2}{2+2}\right) + 4(h-1)\left(\frac{2\cdot 1}{2+1}\right) + (h-1)\left(\frac{1\cdot 1}{1+1}\right)$$

$$= 6 + \left(\frac{19}{6}\right)(h-1).$$

(7) The Reverse Atom Bond Connectivity index is given by

$$\mathcal{R}ABC(L_h) = \sum_{uv \in E(G)} \sqrt{\frac{\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v) - 2}{\mathcal{R}\lambda(u)\mathcal{R}\lambda(v)}} = 6 * \sqrt{\frac{2}{4}} + 4(h-1) * \sqrt{\frac{1}{2}} = 2\sqrt{2}h - \sqrt{2}.$$

(8) The Reverse Atom Bond Sum connectivity index is given by

$$\mathcal{R}ABS(L_h) = \sum_{uv \in E(G)} \sqrt{\frac{\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v) - 2}{\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v)}} = 6\sqrt{\frac{2}{4}} + 4(h-1)\sqrt{\frac{1}{3}} = 3\sqrt{2} + \left(\frac{4}{\sqrt{3}}\right)(h-1).$$

(9) The Reverse geometric index is

$$\mathcal{R}GA(L_h) = \sum_{uv \in E(G)} \frac{2\sqrt{\mathcal{R}\lambda(u) \times \mathcal{R}\lambda(v)}}{\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v)} = 6 + \left(\frac{8\sqrt{2}}{3} + 1\right)(h-1).$$

(10) The Reverse Arithmetic Geometric index is given by

$$\mathcal{R}AG(L_h) = \sum_{uv \in E(G)} \frac{\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v)}{2\sqrt{\mathcal{R}\lambda(u)\mathcal{R}\lambda(v))}} = 6 + (3\sqrt{2} + 1)(h - 1).$$

(11) The Reverse Symmetric division degree index is

$$\mathcal{RSSD}(L_h) = \sum_{uv \in E(G)} \frac{\mathcal{R}\lambda(u)}{\mathcal{R}\lambda(v)} + \frac{\mathcal{R}\lambda(v)}{\mathcal{R}\lambda(u)} = 6\left(\frac{2}{2} + \frac{2}{2}\right) + 4(h-1)\left(\frac{2}{1} + \frac{1}{2}\right) + (h-1)2 = 12h$$

(12) The Reverse Forgotten index is given by

$$\mathcal{R}F(L_h) = \sum_{uv \in E(G)} \left(\mathcal{R}\lambda(u) \right)^2 + \left(\mathcal{R}\lambda(v) \right)^2 = 6(4+4) + 4(h-1)(4+1) + (h-1)(1+1) = 22h + 26.$$

(13) The Reverse first hyper Zagreb index is given by

$$\mathcal{R}HM_1(L_h) = \sum_{uv \in E(G)} [\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v)]^2$$

= 6(2+2)² + 4(h-1)(2+1)² + (h-1)(1+1)² = 40h + 56.

The Reverse second hyper Zagreb index is given by

 $\mathcal{R}HM_2(L_h) = \sum_{uv \in E(G)} [\mathcal{R}\lambda(u) \times \mathcal{R}\lambda(v)]^2$

$$= 6(4)^2 + 4(h-1)(2)^2 + (h-1)(1)^2 = 17h + 79.$$

(14) The Reverse first redefined Zagreb index is given by

$$\mathcal{R}ReZG_{1}(L_{h}) = \sum_{uv \in E(G)} \frac{\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v)}{\mathcal{R}\lambda(u) \times \mathcal{R}\lambda(v)}$$
$$= 6\left[\frac{2+2}{2\times 2}\right] + 4(h-1)\left[\frac{2+1}{2\times 1}\right] + (h-1)\left[\frac{2+2}{2\times 2}\right] = 6 + 8(h-1)$$

The Reverse second redefined Zagreb index is given by

$$\begin{aligned} \mathcal{R}ReZG_2(L_h) &= \sum_{uv \in E(G)} \frac{\mathcal{R}\lambda(u) \times \mathcal{R}\lambda(v)}{\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v)} \\ &= 6\left(\frac{2 \times 2}{2+2}\right) + 4(h-1)\left(\frac{2 \times 1}{2+1}\right) + (h-1)\left(\frac{1 \times 1}{1+1}\right) = 6 + \frac{19}{6}(h-1). \end{aligned}$$

The Reverse third redefined Zagreb index is given by

$$\mathcal{R}ReZG_{3}(G) = \sum_{uv \in E(G)} (\mathcal{R}\lambda(u) + \mathcal{R}\lambda(v)) \times (\mathcal{R}\lambda(u) \times \mathcal{R}\lambda(v))$$

= 6(2×2)(2+2) + 4(h-1)(2×1)(2+1) + (h-1)(1×1)(1+1)
= 48 + 26(h-1).

Theorem 2. The values of reverse degree-based indices of hexagonal chain of n segments of length *l* are given as follows:

$$(1). \ \mathcal{R}R_{1}(G_{n,l}) = 9nl - 7n + 22, \ \mathcal{R}R_{-1}(G_{n,l}) = 3nl - \frac{13n}{4} + \frac{7}{4}, \\ \mathcal{R}R_{\frac{1}{2}}(G_{n,l}) = (4\sqrt{2} + 1)nl + (1 - 5\sqrt{2})n + 10, \\ \mathcal{R}R_{-\frac{1}{2}}(G_{n,l}) = (2\sqrt{2} + 1)nl - (\frac{1+5\sqrt{2}}{2})n + (\frac{5+\sqrt{2}}{2}). \\ (2). \ \mathcal{R}IR(G_{n,l}) = (4\sqrt{2} + 1)nl + (1 - 5\sqrt{2})n + 10. \\ (3). \ \mathcal{R}HI(G_{n,l}) = \frac{11nl}{3} - \frac{23n}{6} + \frac{19}{6}. \\ (4). \ \mathcal{R}M_{1}(G_{n,l}) = 14nl - 13n + 23, \ \mathcal{R}M_{2}(G_{n,l}) = 9nl - 7n + 22. \\ (5) \ \mathcal{R}SCI(G_{n,l}) = (\frac{4}{\sqrt{3}} + \frac{1}{\sqrt{2}})nl + n(\frac{1}{2} - \frac{5}{\sqrt{3}} - \frac{1}{\sqrt{2}}) + (\frac{1}{\sqrt{3}} + \frac{5}{2}). \\ (6). \ \mathcal{R}ISI(G_{n,l}) = \frac{19nl}{6} - \frac{17}{6}n + \frac{17}{3}. \\ (7). \ \mathcal{R}ABC(G_{n,l}) = 2\sqrt{2}(nl - n) + 3\sqrt{2}. \\ (8). \ \mathcal{R}ABS(G_{n,l}) = \frac{4\sqrt{2nl}}{\sqrt{3}} + n(\frac{1}{\sqrt{2}} - \frac{5\sqrt{2}}{\sqrt{3}}) + (\frac{5}{\sqrt{2}} + \frac{\sqrt{2}}{\sqrt{3}}). \\ (9). \ \mathcal{R}GA(G_{n,l}) = (3\sqrt{2} + 1)nl - \frac{10\sqrt{2}}{3} + \frac{(15+2\sqrt{2})}{3}. \\ (10) \ \mathcal{R}AG(G_{n,l}) = (3\sqrt{2} + 1)nl - \frac{15\sqrt{2}}{2} + \frac{25}{2}. \\ \end{array}$$

(12)
$$\mathcal{R}F(G_{n,l}) = 22nl - 19n + 45.$$

(13). $\mathcal{R}HM_1(G_{n,l}) = 40nl - 33n + 89, \quad \mathcal{R}HM_2(G_{n,l}) = 17nl - 5n + 84.$
(14) $\mathcal{R}ReZG_1(G_{n,l}) = 8nl - \frac{17n}{2} + \frac{13}{2}, \quad \mathcal{R}ReZG_2(G_{n,l}) = \frac{19nl}{6} - \frac{17n}{6} + \frac{17}{3}, \quad \mathcal{R}ReZG_3(G_{n,l}) = 26nl - 16n + 86.$

Proof: Proof is similar to the above Theorem 1, depending on the values of indices as defined in Table 1 and edge partitions as given in Table 2(b) and the values are as given in the statement of the theorem.

Theorem 3. The entropy of reverse degree-based indices of linear poly-acene L_h having h number of hexagons are as follows:

$$\begin{array}{ll} \text{(1).} & E_{\mathcal{R}R_{1}}(L_{h}) = ln(9h+15) - \frac{1}{9h+15} \{24 \ln(4) + 8(h-1)\ln(2)\}, \\ & E_{\mathcal{R}R_{-1}}(L_{h}) = \ln\left(\frac{3}{2} + 3(h-1)\right) - \frac{1}{\frac{3}{2} + 3(h-1)} \left\{\frac{3}{2} ln\left(\frac{1}{4}\right) + 2(h-1)ln\left(\frac{1}{2}\right)\right\}, \\ & E_{\mathcal{R}R_{\frac{1}{2}}}(L_{h}) = ln\left(12 + \left(4\sqrt{2} + 1\right)(h-1)\right) - \frac{1}{12 + \left(4\sqrt{2} + 1\right)(h-1)} \left\{12 ln(2) + 4\sqrt{2}(h-1)ln\left(\frac{1}{\sqrt{2}}\right)\right\}, \\ & E_{\mathcal{R}R_{-\frac{1}{2}}}(L_{h}) = ln\left(3 + \left(2\sqrt{2} + 1\right)(h-1)\right) - \frac{1}{3 + \left(2\sqrt{2} + 1\right)(h-1)} \left\{3 ln\left(\frac{1}{2}\right) + 2\sqrt{2}(h-1)ln\left(\frac{1}{\sqrt{2}}\right)\right\}, \\ & (2) E_{\mathcal{R}IR}(L_{h}) = ln\left(12 + \left(4\sqrt{2} + 1\right)(h-1)\right) - \frac{1}{12 + \left(4\sqrt{2} + 1\right)(h-1)} \left\{12 ln(2) + 4\sqrt{2}(h-1)ln\left(\frac{1}{\sqrt{2}}\right)\right\}, \\ & (3) E_{\mathcal{R}M_{1}}(L_{h}) = ln\left(14h+10\right) - \frac{1}{14h+10} \{24 ln(4) + 12(h-1)ln(3) + 2(h-1)ln(2)\}, \\ & E_{\mathcal{R}M_{2}}(L_{h}) = ln(9h+15) - \frac{1}{9h+15} \{24 ln(4) + 8(h-1)ln(2)\}, \\ & (4) E_{\mathcal{R}HI}(L_{h}) = ln\left(3 + \frac{11}{3}(h-1)\right) - \frac{1}{3 + \frac{11}{3}(h-1)} \left\{3 ln\left(\frac{1}{2}\right) + \frac{8}{3}(h-1)ln\left(\frac{2}{3}\right)\right\}, \\ & (5) E_{\mathcal{R}SCI}(L_{h}) = ln(\mathcal{R}SCI) - \frac{1}{3 + \left(\frac{4}{3} + \frac{1}{12}\right)(h-1)} \left\{3 ln\left(\frac{1}{2}\right) + \frac{4}{\sqrt{3}}(h-1)ln\left(\frac{1}{\sqrt{3}}\right) + \frac{1}{\sqrt{2}}(h-1)ln\left(\frac{1}{\sqrt{2}}\right)\right\}, \\ & (6) E_{\mathcal{R}ISI}(L_{h}) = ln\left(6 + \left(\frac{19}{6}\right)(h-1)\right) - \frac{1}{6 + \left(\frac{19}{6}\right)(h-1)} \left\{6 ln(1) + \frac{8}{3}(h-1)ln\left(\frac{2}{3}\right) + \frac{1}{2}(h-1)ln\left(\frac{1}{\sqrt{2}}\right)\right\}. \\ & (7) E_{\mathcal{R}ABC}(L_{h}) = ln(2\sqrt{2}h - \sqrt{2}) - \frac{1}{2\sqrt{2}h - \sqrt{2}} \left\{3\sqrt{2}ln\left(\frac{1}{\sqrt{2}}\right) + 2\sqrt{2}(h-1)ln\left(\frac{1}{\sqrt{2}}\right)\right\}. \end{aligned}$$

(8)
$$E_{\mathcal{R}ABS}(L_h) = ln\left(3\sqrt{2} + \left(\frac{4}{\sqrt{3}}\right)(h-1)\right) - \frac{1}{3\sqrt{2} + \left(\frac{4}{\sqrt{3}}\right)(h-1)} \left\{3\sqrt{2} ln\left(\frac{1}{\sqrt{2}}\right) + \frac{4}{\sqrt{3}}(h-1)\right\}$$

1)
$$ln\left(\frac{1}{\sqrt{3}}\right)$$
.

(9)
$$E_{\mathcal{R}GA}(L_h) = ln\left(6 + \left(\frac{8\sqrt{2}}{3} + 1\right)(h-1)\right) - \frac{1}{6 + \left(\frac{8\sqrt{2}}{3} + 1\right)(h-1)} \left\{\frac{8\sqrt{2}}{3}(h-1)ln\left(\frac{2\sqrt{2}}{3}\right)\right\}.$$

(10) $E_{\mathcal{R}AG}(L_h) = ln\left(6 + \left(3\sqrt{2} + 1\right)(h-1)\right) - \frac{1}{(\sqrt{2}-1)(h-1)} \left\{3\sqrt{2}(h-1)ln\left(\frac{3}{\sqrt{2}}\right)\right\}.$

$$(10) E_{\mathcal{R}AG}(L_h) = \ln \left(6 + (3\sqrt{2} + 1)(h - 1)\right) - \frac{1}{6 + (3\sqrt{2} + 1)(h - 1)} \left\{ 3\sqrt{2}(h - 1) \ln \left(\frac{1}{2\sqrt{2}}\right) \right\}$$

$$(11) E_{\mathcal{R}SSD}(L_h) = \ln(12h) - \frac{1}{12h} \left\{ 12\ln(2) + 10(h - 1)\ln\left(\frac{5}{2}\right) + 2(h - 1)\ln(2) \right\}.$$

(12)
$$E_{\mathcal{R}F}(L_h) = ln(22h+26) - \frac{1}{22h+26} \{48 ln(8) + 20(h-1) ln(5) + 2(h-1) ln(2)\}.$$

(13)
$$E_{\mathcal{R}HM_1}(L_h) = l n(40h + 56) - \frac{1}{40h + 56} \{96 ln(16) + 36(h - 1) ln(9) + 4(h - 1) ln(9) + 4(h - 1) ln(9) \}$$

1) ln(4).

$$E_{\mathcal{R}HM_2}(L_h) = ln(17h+79) - \frac{1}{17h+79} \{96 ln(16) + 16(h-1) ln(4))\}.$$

$$(14) E_{\mathcal{R}ReZG_1}(L_h) = ln(8h-2) - \frac{1}{8h-2} \{6(h-1) ln\left(\frac{3}{2}\right) + 2(h-1) ln(2)\}.$$

$$E_{\mathcal{R}ReZG_2}(L_h) = ln\left(6 + \frac{19}{6}(h-1)\right) - \frac{1}{\left(6 + \frac{19}{6}(h-1)\right)} \{\frac{8}{3}(h-1) ln\left(\frac{2}{3}\right) + \frac{1}{2}(h-1) ln\left(\frac{1}{2}\right)\}.$$

$$E_{\mathcal{R}ReZG_3}(L_h) = \ln(26h+70) - \frac{1}{26h+70} \{48\ln(8) + 20(h-1)\ln(5) + 3(h-1)\ln(3)\}.$$

Proof: The Reverse Randić index entropy for linear poly-acene is obtained as

 $E_{\mathcal{R}R_{\alpha}}(L_{h}) = \ln (\mathcal{R}R_{\alpha}) - \frac{1}{\mathcal{R}R_{\alpha}} \ln \{ \prod ([\mathcal{R}\lambda(u) \times \mathcal{R}\lambda(v)]^{\alpha})^{[\mathcal{R}\lambda(u) \times \mathcal{R}\lambda(v)]^{\alpha}} \}, \text{ by substituting in the definition of entropy as given in Equation (1) and reverse Randić index value obtained in Theorem 1, above. For <math>\alpha = 1$, we get by substitution $\mathcal{R}R_{1}(T[p,q]) = 9h + 15$ value and using reverse degree edge partitions in Table 4 we get

$$\begin{split} E_{\mathcal{R}R_1}(L_h) &= \ln \left(9h + 15\right) - \frac{1}{9h + 15} \{ 6 \times 4 \ln(4) + 4 \times 2(h-1) \ln(2) + 1 \times 1(h-) \ln(1) \} \\ &= \ln \left(9h + 15\right) - \frac{1}{9h + 15} \{ 24 \ln \left(4\right) + 8(h-1) \ln(2) \}. \end{split}$$

Similarly, for all the reverse topological indices, we get the respective entropy value using Equation (1), Table 2(a), 2(b) and Theorem 1 and are given as in the statement of the theorem.

Theorem 4. The entropy of reverse degree- based indices of hexagonal chain of n segments of length $l = G_{n,l}$ having h number of hexagons are as follows:

$$\begin{aligned} (1). E_{\mathcal{R}R_{1}}(G_{n,l}) &= \ln(9nl - 7n + 22) - \frac{1}{9nl - 7n + 22} \{4(n + 5)\ln(4) + 2(4nl - 5n + 1)\ln(2)\}. \\ E_{\mathcal{R}R_{-1}}(G_{n,l}) &= \ln\left(3nl - \frac{13n}{4} + \frac{7}{4}\right) - \frac{1}{3nl - \frac{13n}{4} + \frac{7}{4}} \left\{\frac{(n + 5)}{4}\ln\left(\frac{1}{4}\right) + \frac{1}{2}(4nl - 5n + 1)\ln\left(\frac{1}{2}\right)\}. \\ E_{\mathcal{R}R_{1}}(G_{n,l}) &= \ln\left((4\sqrt{2} + 1)nl + (1 - 5\sqrt{2})n + 10\right) - \frac{1}{(4\sqrt{2} + 1)nl + (1 - 5\sqrt{2})n + 10} * \\ &\{2(n + 5)\ln(2) + \sqrt{2}(4nl - 5n + 1)\ln(\sqrt{2})\}. \\ E_{\mathcal{R}R_{-1}}(G_{n,l}) &= \ln\left((2\sqrt{2} + 1)nl - \left(\frac{1 + 5\sqrt{2}}{2}\right)n + \left(\frac{5 + \sqrt{2}}{2}\right)\right) - \frac{1}{(2\sqrt{2} + 1)nl - \left(\frac{1 + 5\sqrt{2}}{2}\right)n + \left(\frac{5 + \sqrt{2}}{2}\right)} \\ &\left\{\frac{1}{2}(n + 5)\ln\left(\frac{1}{2}\right) + \frac{1}{\sqrt{2}}(4nl - 5n + 1)\ln\left(\frac{1}{\sqrt{2}}\right)\right\}. \\ (2). E_{\mathcal{R}IR}(G_{n,l}) &= \ln\left((4\sqrt{2} + 1)nl + (1 - 5\sqrt{2})n + 10\right) - \frac{1}{(4\sqrt{2} + 1)nl + (1 - 5\sqrt{2})n + 10} \\ &\left\{2(n + 5)ln(2) + \sqrt{2}(4nl - 5n + 1)\ln\left(\frac{1}{\sqrt{2}}\right)\right\}. \\ (4) E_{\mathcal{R}M_{1}}(G_{n,l}) &= \ln\left(14nl - 13n + 23\right) - \frac{1}{14nl - 13n + 23}\{4(n + 5)\log(4) + 3(4nl - 5n + 1)\ln(3) + 2(nl - n)\ln(2)\}. \\ (4) E_{\mathcal{R}M_{2}}(G_{n,l}) &= \ln(9nl - 7n + 22) - \frac{1}{9nl - 7n + 22}\{4(n + 5)ln(4) + 2(4nl - 5n + 1)ln(2)\}. \\ (4) E_{\mathcal{R}M_{1}}(G_{n,l}) &= \ln\left(\frac{11nl}{3} - \frac{23n}{6} + \frac{19}{6}\right) - \frac{1}{\frac{13nl - 23n + 19}{3nl - \frac{13nl - 23n + 19}{3nl - \frac{1}{3nl - \frac{23n}{3} + \frac{19}{6}}} \left\{\frac{1}{2}(n + 5)ln\left(\frac{1}{2}\right) + \frac{2}{3}(4nl - 5n + 1)ln(\frac{2}{3})\right\}. \\ (5) E_{\mathcal{R}SCI}(G_{n,l}) &= ln\left(\frac{(4\sqrt{3} + \frac{1}{\sqrt{2}})nl + n\left(\frac{1}{2} - \frac{5}{\sqrt{3}} - \frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{3}} + \frac{5}{2}\right)\right) - \frac{1}{(\frac{4\sqrt{3} + \frac{1}{\sqrt{3}})nl + n\left(\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}\right)} \\ \\ (6) E_{\mathcal{R}ISI}(G_{n,l}) &= ln\left(\frac{19nl}{6} - \frac{17}{6}n + \frac{17}{3}\right) - \frac{19nl - 7n + 12}{19nl + \frac{1}{\sqrt{3}}}\left(4nl - 5n + 1\right)ln\left(\frac{1}{\sqrt{3}}\right)\right\}. \\ (6) E_{\mathcal{R}ISI}(G_{n,l}) &= ln\left(\frac{19nl}{\sqrt{3}} + \frac{1}{\sqrt{3}}(4nl - 5n + 1)\ln\left(\frac{1}{\sqrt{3}}\right) + \frac{1}{\sqrt{3}}(4nl - 5n + 1)\log\left(\frac{2}{3}\right)\right\}. \end{aligned}$$

$$n$$
) $ln\left(\frac{1}{2}\right)$.

$$(7)E_{\mathcal{R}ABC}(G_{n,l}) = ln(2\sqrt{2}(nl-n) + 3\sqrt{2}) - \frac{1}{2\sqrt{2}(nl-n) + 3\sqrt{2}} \left\{ \frac{1}{\sqrt{2}}(n+5) ln\left(\frac{1}{\sqrt{2}}\right) + \frac{1}{\sqrt{2}}(4nl-5n+1) ln\left(\frac{1}{\sqrt{2}}\right) \right\}.$$

$$\begin{split} (8). E_{RABS}(G_{n,l}) &= ln \left(\frac{4\sqrt{2nl}}{\sqrt{3}} + n \left(\frac{1}{\sqrt{2}} - \frac{5\sqrt{2}}{\sqrt{3}} \right) + \left(\frac{5}{\sqrt{2}} + \frac{\sqrt{2}}{\sqrt{3}} \right) \right) - \frac{1}{4\sqrt{2nl} + n \left(\frac{1}{\sqrt{2}} - \frac{5\sqrt{2}}{\sqrt{3}} \right) + \left(\frac{5}{\sqrt{2}} + \frac{\sqrt{2}}{\sqrt{3}} \right)}{(\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} \left(4nl - 5n + 1 \right) ln \left(\frac{1}{\sqrt{3}} \right) \right). \\ (9). E_{RGA}(G_{n,l}) &= ln \left(\left(\frac{8\sqrt{2}}{3} + 1 \right) nl - \frac{10\sqrt{2}}{3} + \frac{(15+2\sqrt{2})}{3} \right) - \frac{1}{\left(\frac{6\sqrt{2}}{3} + 1 \right) nl - \frac{10\sqrt{2}}{2} + \frac{(15+2\sqrt{2})}{3} \right)}{(3\sqrt{2} + 1)nl - \frac{10\sqrt{2}}{2} + \frac{(15+2\sqrt{2})}{3}} \left(\frac{2\sqrt{2}}{3} \left(4nl - 5n + 1 \right) log \left(\frac{2\sqrt{2}}{3} \right) \right). \\ (10). E_{RAG}(G_{n,l}) &= ln \left((3\sqrt{2} + 1)nl - \frac{15\sqrt{2}}{4} + \frac{(20+3\sqrt{2})}{4} \right) - \frac{1}{(3\sqrt{2}+1)nl - \frac{15\sqrt{2}}{4} + \frac{(20+3\sqrt{2})}{4}} \right) \\ \left(\frac{3}{2\sqrt{2}} \left(4nl - 5n + 1 \right) log \left(\frac{3}{2\sqrt{2}} \right) \right). \\ (11). E_{RSSD}(G_{n,l}) &= ln \left(12nl - \frac{25n}{2} + \frac{25}{2} \right) - \frac{1}{12nl - \frac{25n+25}{2}} \left\{ 2(n+5) ln(2) + \frac{5}{2} \left(4nl - 5n + 1 \right) ln \left(\frac{5}{2} \right) + 2(nl - n) ln(2) \right) \right\}. \\ (12). E_{RF}(G_{n,l}) &= ln \left(22nl - 19n + 45 \right) - \frac{1}{22nl - 19n+45} \left\{ 8(n+5) ln(8) + 5(4nl - 5n + 1) ln(5) + 2(nl - n) ln(2) \right\}. \\ (13). E_{RHM_1}(G_{n,l}) &= ln \left(40nl - 33n + 89 \right) - \frac{1}{40nl - 33n + 89} \left\{ 16 \left(n + 5 \right) ln(16) \right\} \\ &= 9(4nl - 5n + 1) ln(9) + 4(nl - n) ln(4) \right\} \\ E_{RHM_2}(G_{n,l}) &= ln \left(8nl - \frac{17n}{2} + \frac{13}{2} \right) - \frac{1}{8nl - \frac{17n}{2} + \frac{13}{2}} \left\{ \frac{3}{2} \left(4nl - 5n + 1 \right) ln \left(\frac{3}{2} \right) \right\} \\ &= 2(nl - n) ln(2) \right\}. \\ E_{RReZG_1}(G_{n,l}) &= ln \left(\frac{8nl}{2} - \frac{17n}{2} + \frac{13}{2} \right) - \frac{1}{8nl - \frac{17n}{2} + \frac{13}{2}} \left\{ \frac{3}{2} \left(4nl - 5n + 1 \right) ln \left(\frac{3}{2} \right) \right\} \\ &= \frac{2(nl - n) ln(2) \right\}. \\ E_{RReZG_2}(G_{n,l}) &= ln \left(26nl - 16n + 86 \right) - \frac{1}{26nl - 16n + 86} \left\{ 8(n + 5) ln(8) + \frac{1}{2} (nl - n) ln \left(\frac{1}{2} \right) \right\}. \end{aligned}$$

Proof: Proof is similar to the above Theorem 3.

3.2. Analysis: Numerical values for reverse degree-based indices and respective entropy of linear poly-acene (L_h) and hexagonal chain of equal segment length $(G_{n,l})$ are given in the following tables: Table 3-4. Graphical representations of entropies for the different *h* values of linear poly-acene and different *n*, *l* values of hexagonal chain of equal segments are shown below in Figure 2(a) and Figure 2(b).

TABLE 3: REVERSE TOPOLOGICAL INDICES AND ITS ENTROPY OF LINEAR POLYACENE (L_h)

h	R	R	R	R	\mathcal{R}	R	R	${\cal R}$	\mathcal{R}	\mathcal{R}	R	\mathcal{R}	\mathcal{R}	\mathcal{R}	\mathcal{R}	R	\mathcal{R}	R	\mathcal{R}	R	\mathcal{R}
	R 1	R -1	R _{1/2}	R-1 /2	IR	M_1	M ₂	HI	SCI	ISI	ABC	ABS	GA	AG	SSD	F	HM_1	HM ₂	ReZG ₁	ReZG ₂	ReZG ₃
4	51	10.5	31.97	14.49	31.97	66	51	14	12.05	15.50	12.73	11.17	20.31	21.73	48	114	216	147	30	15.50	174
5	60	13.5	38.63	18.31	38.63	80	60	17.67	15.07	18.67	15.56	13.48	25.08	26.97	60	136	256	164	38	18.67	200
6	69	16.5	45.28	22.14	45.28	94	69	21.33	18.08	21.83	18.38	15.79	29.86	32.21	72	158	296	181	46	21.83	226
7	78	19.5	51.94	25.97	51.94	108	78	25	21.10	25	21.21	18.10	34.63	37.46	84	180	336	198	54	25	252
8	87	22.5	58.60	29.80	58.60	122	87	28.67	24.12	28.17	24.04	20.41	39.40	42.70	96	202	376	215	62	28.17	278
9	96	25.5	65.25	33.63	65.25	136	96	32.33	27.13	31.33	26.87	22.72	44.17	47.94	108	224	416	232	70	31.33	304
10	105	28.5	71.91	37.46	71.91	150	105	36	30.15	34.50	29.70	25.03	48.94	53.18	120	246	456	249	78	34.50	330
11	114	31.5	78.57	41.28	78.57	164	114	39.67	33.17	37.67	32.53	27.34	53.71	58.43	132	268	496	266	86	37.67	356
12	123	34.5	85.23	45.11	85.23	178	123	43.33	36.18	40.83	35.36	29.65	58.48	63.67	144	290	536	283	94	40.83	382
13	132	37.5	91.88	48.94	91.88	192	132	47	39.20	44	38.18	31.96	63.25	68.91	156	312	576	300	102	44	408
14	141	40.5	98.54	52.77	98.54	206	141	50.67	42.21	47.17	41.01	34.26	68.03	74.15	168	334	616	317	110	47.17	434
15	150	43.5	105.2	56.60	105.2	220	150	54.33	45.23	50.33	43.84	36.57	72.80	79.40	180	356	656	334	118	50.33	460
	Respective entropy values																				
				•						Respec	uve entr	opy van	les		-						
h	R	R	R	R	R	R	R	R	R	Respect	R R	opy van R	R	R	R	R	R	R	R	R	R
h	<i>R</i> R1	<i>R</i> R-1	R R _{1/2}	R R-1/2	R IR	<i>R</i> M1	<i>R</i> M2	Я НІ	R SCI	Respec R ISI	RABC	opy van R ABS	R GA	R AG	R SSD	Я F	R HM1	R HM2	ReZG1	ReZG2	ReZG3
h 4	R R 1 2.95	R R -1 2.95	R R _{1/2} 3.02	R R-1/2 3.02	R IR 3.02	R M ₁ 3.02	R M2 2.95	R HI 3.02	R SCI 3.04	Respect R ISI 3.02	R ABC 2.89	Copy van R ABS 2.89	R GA 3.04 3.04	R AG 3.04	R SSD 3.04	R F 2.98	R HM 1 2.97	R HM ₂ 2.73	R ReZG 1 3.02	R ReZG2 3.02	R ReZG 3 2.86
h 4 5	R R 1 2.95 3.17	R R -1 2.95 3.17	R R1/2 3.02 3.24	R R-1/2 3.02 3.24	R IR 3.02 3.24	R M1 3.02 3.24	R M2 2.95 3.17	R HI 3.02 3.23	R SCI 3.04 3.25	Respect R ISI 3.02 3.23	R ABC 2.89 3.09	R ABS 2.89 3.09	R GA 3.04 3.26	R AG 3.04 3.26	R SSD 3.04 3.25	R F 2.98 3.19	R HM1 2.97 3.18	R HM2 2.73 2.94	R ReZG1 3.02 3.24	R ReZG2 3.02 3.23	R ReZG3 2.86 3.08
h 4 5 6	R R1 2.95 3.17 3.35	R R-1 2.95 3.17 3.35	R R1/2 3.02 3.24 3.41	R R-1/2 3.02 3.24 3.41	R IR 3.02 3.24 3.41	R M1 3.02 3.24 3.41	R M2 2.95 3.17 3.35	R HI 3.02 3.23 3.41	R SCI 3.04 3.25 3.43	Respect R ISI 3.02 3.23 3.41	R ABC 2.89 3.09 3.26	R ABS 2.89 3.09 3.25 3.25	R GA 3.04 3.26 3.43 3.43	R AG 3.04 3.26 3.43	R SSD 3.04 3.25 3.43	R F 2.98 3.19 3.37	R HM1 2.97 3.18 3.36	R HM2 2.73 2.94 3.12	R ReZG1 3.02 3.24 3.41	R ReZG2 3.02 3.23 3.41	R ReZG3 2.86 3.08 3.26
h 4 5 6 7	R R1 2.95 3.17 3.35 3.50	R R-1 2.95 3.17 3.35 3.50	R R1/2 3.02 3.24 3.41 3.56	R R-1/2 3.02 3.24 3.41 3.56	R IR 3.02 3.24 3.41 3.56	R M1 3.02 3.24 3.41 3.56	R M2 2.95 3.17 3.35 3.50	R HI 3.02 3.23 3.41 3.56	R SCI 3.04 3.25 3.43 3.58	Respect R ISI 3.02 3.23 3.41 3.56	R ABC 2.89 3.09 3.26 3.40	R ABS 2.89 3.09 3.25 3.40	R GA 3.04 3.26 3.43 3.58	R AG 3.04 3.26 3.43 3.58	R SSD 3.04 3.25 3.43 3.58	R F 2.98 3.19 3.37 3.52	R HM1 2.97 3.18 3.36 3.51	R HM2 2.73 2.94 3.12 3.27	R ReZG1 3.02 3.24 3.41 3.56	R ReZG2 3.02 3.23 3.41 3.56	R ReZG3 2.86 3.08 3.26 3.42
h 4 5 6 7 8	R R1 2.95 3.17 3.35 3.50 3.64	R R-1 2.95 3.17 3.35 3.50 3.64	R R1/2 3.02 3.24 3.41 3.56 3.69	R R-1/2 3.02 3.24 3.41 3.56 3.69	R IR 3.02 3.24 3.41 3.56 3.69	R M1 3.02 3.24 3.41 3.56 3.70	R M2 2.95 3.17 3.35 3.50 3.64	R HI 3.02 3.23 3.41 3.56 3.69	R SCI 3.04 3.25 3.43 3.58 3.71	R ISI 3.02 3.23 3.41 3.56 3.69 3.69	R ABC 2.89 3.09 3.26 3.40 3.53	R ABS 2.89 3.09 3.25 3.40 3.52	R GA 3.04 3.26 3.43 3.58 3.71 3.71	R AG 3.04 3.26 3.43 3.58 3.71	R SSD 3.04 3.25 3.43 3.58 3.71	R F 2.98 3.19 3.37 3.52 3.65	R HM1 2.97 3.18 3.36 3.51 3.65	R HM2 2.73 2.94 3.12 3.27 3.41	R ReZG1 3.02 3.24 3.41 3.56 3.70	R ReZG2 3.02 3.23 3.41 3.56 3.69	R ReZG3 2.86 3.08 3.26 3.42 3.55
h 4 5 6 7 8 9	R R1 2.95 3.17 3.35 3.50 3.64 3.76	R R-1 2.95 3.17 3.35 3.50 3.64 3.76	R R1/2 3.02 3.24 3.41 3.56 3.69 3.81	R R-1/2 3.02 3.24 3.41 3.56 3.69 3.81	R IR 3.02 3.24 3.41 3.56 3.69 3.81	R M1 3.02 3.24 3.41 3.56 3.70 3.81	R M2 2.95 3.17 3.35 3.50 3.64 3.76	R HI 3.02 3.23 3.41 3.56 3.69 3.81	R SCI 3.04 3.25 3.43 3.58 3.71 3.82	R ISI 3.02 3.23 3.41 3.56 3.69 3.81	R ABC 2.89 3.09 3.26 3.40 3.53 3.64	R ABS 2.89 3.09 3.25 3.40 3.52 3.63	R GA 3.04 3.26 3.43 3.58 3.71 3.83	R AG 3.04 3.26 3.43 3.58 3.71 3.83	R SSD 3.04 3.25 3.43 3.58 3.71 3.82	R F 2.98 3.19 3.37 3.52 3.65 3.77	R HM1 2.97 3.18 3.36 3.51 3.65 3.76	R HM2 2.73 2.94 3.12 3.27 3.41 3.53	R ReZG1 3.02 3.24 3.41 3.56 3.70 3.81	R ReZG2 3.02 3.23 3.41 3.56 3.69 3.81	R ReZG3 2.86 3.08 3.26 3.42 3.55 3.67
<i>h</i> 4 5 6 7 8 9 10	R R1 2.95 3.17 3.35 3.50 3.64 3.76 3.86	R R-1 2.95 3.17 3.35 3.50 3.64 3.76 3.86	R R1/2 3.02 3.24 3.41 3.56 3.69 3.81 3.91	R R-1/2 3.02 3.24 3.41 3.56 3.69 3.81 3.91	R IR 3.02 3.24 3.41 3.56 3.69 3.81 3.91	R M1 3.02 3.24 3.41 3.56 3.70 3.81 3.91	R M2 2.95 3.17 3.35 3.50 3.64 3.76 3.86	R HI 3.02 3.23 3.41 3.56 3.69 3.81 3.91	R SCI 3.04 3.25 3.43 3.58 3.71 3.82 3.93	Respect R ISI 3.02 3.23 3.41 3.56 3.69 3.81 3.91	R ABC 2.89 3.09 3.26 3.40 3.53 3.64 3.74	R ABS 2.89 3.09 3.25 3.40 3.52 3.63 3.73 3.73	R GA 3.04 3.26 3.43 3.58 3.71 3.83 3.93 3.93	R AG 3.04 3.26 3.43 3.58 3.71 3.83 3.93	R SSD 3.04 3.25 3.43 3.58 3.71 3.82 3.93	R F 2.98 3.19 3.37 3.52 3.65 3.77 3.87	R HM1 2.97 3.18 3.36 3.51 3.65 3.76 3.87	R HM2 2.73 2.94 3.12 3.27 3.41 3.53 3.65	R ReZG1 3.02 3.24 3.41 3.56 3.70 3.81 3.92	R ReZG2 3.02 3.23 3.41 3.56 3.69 3.81 3.91	R ReZG3 2.86 3.08 3.26 3.42 3.55 3.67 3.78
<i>h</i> 4 5 6 7 8 9 10 11	R R1 2.95 3.17 3.35 3.50 3.64 3.76 3.86 3.96	R R-1 2.95 3.17 3.35 3.50 3.64 3.76 3.86 3.96	R R1/2 3.02 3.24 3.41 3.56 3.69 3.81 3.91 4.01	R R-1/2 3.02 3.24 3.41 3.56 3.69 3.81 3.91 4.01	R IR 3.02 3.24 3.41 3.56 3.69 3.81 3.91 4.01	R M1 3.02 3.24 3.41 3.56 3.70 3.81 3.91 4.01	R M2 2.95 3.17 3.35 3.50 3.64 3.76 3.86 3.96	R HI 3.02 3.23 3.41 3.56 3.69 3.81 3.91 4.01	R SCI 3.04 3.25 3.43 3.58 3.71 3.82 3.93 4.02	R ISI 3.02 3.23 3.41 3.56 3.69 3.81 3.91 4.01	R ABC 2.89 3.09 3.26 3.40 3.53 3.64 3.74 3.83	R ABS 2.89 3.09 3.25 3.40 3.52 3.63 3.73 3.83	R GA 3.04 3.26 3.43 3.58 3.71 3.83 3.93 4.02	R AG 3.04 3.26 3.43 3.58 3.71 3.83 3.93 4.03	R SSD 3.04 3.25 3.43 3.58 3.71 3.82 3.93 4.02	R F 2.98 3.19 3.37 3.52 3.65 3.77 3.87 3.97	R HM1 2.97 3.18 3.36 3.51 3.65 3.76 3.87 3.96	R HM2 2.73 2.94 3.12 3.27 3.41 3.53 3.65 3.75	R ReZG1 3.02 3.24 3.41 3.56 3.70 3.81 3.92 4.01	R ReZG2 3.02 3.23 3.41 3.56 3.69 3.81 3.91 4.01	R ReZG3 2.86 3.08 3.26 3.42 3.55 3.67 3.78 3.88
h 4 5 6 7 8 9 10 11 12	R R1 2.95 3.17 3.35 3.50 3.64 3.76 3.86 3.96 4.05	R R-1 2.95 3.17 3.35 3.50 3.64 3.76 3.86 3.96 4.04	R R1/2 3.02 3.24 3.41 3.56 3.69 3.81 3.91 4.01 4.09	R R-1/2 3.02 3.24 3.41 3.56 3.69 3.81 3.91 4.01 4.09	R IR 3.02 3.24 3.41 3.56 3.69 3.81 3.91 4.01 4.09	R M1 3.02 3.24 3.41 3.56 3.70 3.81 3.91 4.01 4.09	R M2 2.95 3.17 3.35 3.50 3.64 3.76 3.86 3.96 4.05	R HI 3.02 3.23 3.41 3.56 3.69 3.81 3.91 4.01 4.09	R SCI 3.04 3.25 3.43 3.58 3.71 3.82 3.93 4.02 4.11	Respect R ISI 3.02 3.23 3.41 3.56 3.69 3.81 3.91 4.01 4.09	R ABC 2.89 3.09 3.26 3.40 3.53 3.64 3.74 3.83 3.91	R ABS 2.89 3.09 3.25 3.40 3.52 3.63 3.73 3.83 3.91 3.91	R GA 3.04 3.26 3.43 3.58 3.71 3.83 3.93 4.02 4.11 1	R AG 3.04 3.26 3.43 3.58 3.71 3.83 3.93 4.03 4.11	R SSD 3.04 3.25 3.43 3.58 3.71 3.82 3.93 4.02 4.11	R F 2.98 3.19 3.37 3.52 3.65 3.77 3.87 3.97 4.05	R HM1 2.97 3.18 3.36 3.51 3.65 3.76 3.87 3.96 4.05	R HM2 2.73 2.94 3.12 3.27 3.41 3.53 3.65 3.75 3.84	R ReZG1 3.02 3.24 3.41 3.56 3.70 3.81 3.92 4.01 4.10	R ReZG2 3.02 3.23 3.41 3.56 3.69 3.81 3.91 4.01 4.09	R ReZG3 2.86 3.08 3.26 3.42 3.55 3.67 3.78 3.88 3.97
h 4 5 6 7 8 9 10 11 12 13	R R1 2.95 3.17 3.35 3.50 3.64 3.76 3.86 3.96 4.05 4.13	R R.1 2.95 3.17 3.35 3.50 3.64 3.76 3.86 3.96 4.04 4.12	R R1/2 3.02 3.24 3.41 3.56 3.69 3.81 3.91 4.01 4.09 4.17	R R-1/2 3.02 3.24 3.41 3.56 3.69 3.81 3.91 4.01 4.09 4.17	R IR 3.02 3.24 3.41 3.56 3.69 3.81 3.91 4.01 4.09 4.17	R M1 3.02 3.24 3.41 3.56 3.70 3.81 3.91 4.01 4.09 4.17	R M2 2.95 3.17 3.35 3.50 3.64 3.76 3.86 3.96 4.05 4.13	R HI 3.02 3.23 3.41 3.56 3.69 3.81 3.91 4.01 4.09 4.17	R SCI 3.04 3.25 3.43 3.58 3.71 3.82 3.93 4.02 4.11 4.19	Respect R ISI 3.02 3.23 3.41 3.56 3.69 3.81 3.91 4.01 4.09 4.17	R ABC 2.89 3.09 3.26 3.40 3.53 3.64 3.74 3.83 3.91 3.99	R ABS 2.89 3.09 3.25 3.40 3.52 3.63 3.73 3.83 3.91 3.99	R GA 3.04 3.26 3.43 3.58 3.71 3.83 3.93 4.02 4.11 4.19	R AG 3.04 3.26 3.43 3.58 3.71 3.83 3.93 4.03 4.11 4.19	R SSD 3.04 3.25 3.43 3.58 3.71 3.82 3.93 4.02 4.11 4.19	R F 2.98 3.19 3.37 3.52 3.65 3.77 3.87 3.97 4.05 4.13	R HM1 2.97 3.18 3.36 3.51 3.65 3.76 3.87 3.96 4.05 4.13	R HM2 2.73 2.94 3.12 3.27 3.41 3.53 3.65 3.75 3.84 3.93	R ReZG1 3.02 3.24 3.41 3.56 3.70 3.81 3.92 4.01 4.10 4.18	R ReZG2 3.02 3.23 3.41 3.56 3.69 3.81 3.91 4.01 4.09 4.17	R ReZG3 2.86 3.08 3.26 3.42 3.55 3.67 3.78 3.88 3.97 4.05
h 4 5 6 7 8 9 10 11 12 13 14	R 2.95 3.17 3.35 3.50 3.64 3.76 3.86 3.96 4.05 4.13 4.20	R 2.95 3.17 3.35 3.50 3.64 3.76 3.86 3.96 4.04 4.12 4.20	R R1/2 3.02 3.24 3.41 3.56 3.69 3.81 3.91 4.01 4.09 4.17 4.25	R R-1/2 3.02 3.24 3.41 3.56 3.69 3.81 3.91 4.01 4.09 4.17 4.25	R IR 3.02 3.24 3.41 3.56 3.69 3.81 3.91 4.01 4.09 4.17 4.25	R M1 3.02 3.24 3.41 3.56 3.70 3.81 3.91 4.01 4.09 4.17 4.25	R M2 2.95 3.17 3.35 3.50 3.64 3.76 3.86 3.96 4.05 4.13 4.20	R HI 3.02 3.23 3.41 3.56 3.69 3.81 3.91 4.01 4.09 4.17 4.24	R SCI 3.04 3.25 3.43 3.58 3.71 3.82 3.93 4.02 4.11 4.19 4.26	Respect R ISI 3.02 3.23 3.41 3.56 3.69 3.81 3.91 4.01 4.09 4.17 4.25	R ABC 2.89 3.09 3.26 3.40 3.53 3.64 3.74 3.83 3.91 3.99 4.06	R ABS 2.89 3.09 3.25 3.40 3.52 3.63 3.73 3.83 3.91 3.99 4.06	R GA 3.04 3.26 3.43 3.58 3.71 3.83 3.93 4.02 4.11 4.19 4.26	R AG 3.04 3.26 3.43 3.58 3.71 3.83 3.93 4.03 4.11 4.19 4.26	R SSD 3.04 3.25 3.43 3.58 3.71 3.82 3.93 4.02 4.11 4.19 4.26	R F 2.98 3.19 3.37 3.52 3.65 3.77 3.87 3.97 4.05 4.13 4.21	R HM1 2.97 3.18 3.36 3.51 3.65 3.76 3.87 3.96 4.05 4.13 4.20	R HM2 2.73 2.94 3.12 3.27 3.41 3.53 3.65 3.75 3.84 3.93 4.01	R ReZG1 3.02 3.24 3.41 3.56 3.70 3.81 3.92 4.01 4.10 4.18 4.25	R ReZG2 3.02 3.23 3.41 3.56 3.69 3.81 3.91 4.01 4.09 4.17 4.25	R ReZG3 2.86 3.08 3.26 3.42 3.55 3.67 3.78 3.88 3.97 4.05 4.13

		R	R	R	R	R	R	R	R	R	R	R	R	R	R	\mathcal{R}	R	R	R	R	R
n	l	\mathbf{R}_1	R _{1/2}	R-1 /2	IR	M_1	M ₂	HI	SCI	ISI	ABC	ABS	GA	AG	SSD	F	HM_1	HM ₂	ReZG ₁	ReZG ₂	ReZG
4	2	((40.20	17.0	40.29	02		17.17	14.02	10 (7	15.50	16.00	25.26	26.70	59.5	145	277	200	265	10.77	3
4	2	66	40.38	17.69	40.38	83	66	1/.1/	14.83	19.67	15.50	16.98	25.26	26.79	38.3	145	277	200	36.5	19.67	230
3	2	//	4/.03	21.31	4/.03	98	//	20.07	1/.//	25.17	18.38	20.14	30.08	31.97	/0	1/0	324	229	44 51.5	23.17	200
0	2	88	54.87	24.94	54.87	113	88	24.17	20.71	20.07	21.21	25.29	34.91	37.15	81.5	195	3/1	238	51.5	20.07	302
/	2	99	02.11	28.30	02.11	128	99	21.07	25.05	30.17	24.04	20.45	39.74	42.55	95	220	418	287	59	30.17	274
8	2	110	69.36	32.18	69.36	143	110	31.17	26.59	33.67	26.87	29.60	44.57	47.52	104.5	245	465	316	00.5	33.67	3/4
9	2	121	/6.60	35.80	/6.60	158	121	34.67	29.53	3/.1/	29.70	32.76	49.40	52.70	110	270	512	345	/4	3/.1/	410
10	2	132	83.84	39.42	83.84	1/3	132	38.17	32.47	40.67	32.53	35.92	54.23	57.88	127.5	295	559	3/4	81.5	40.67	446
11	2	143	91.08	43.04	91.08	188	143	41.67	35.41	44.17	35.36	39.07	59.06	63.06	139	320	606	403	89	44.1/	482
12	2	154	98.33	46.66	98.33	203	154	45.17	38.35	47.67	38.18	42.23	63.88	68.24	150.5	345	653	432	96.5	47.67	518
13	2	165	105.57	50.28	105.57	218	165	48.67	41.29	51.17	41.01	45.39	68.71	73.43	162	370	700	461	104	51	554
14	2	176	112.81	53.91	112.81	233	176	52.17	44.23	54.67	43.84	48.54	73.54	/8.61	174	395	747	490	112	55	590
15	2	187	120.05	57.53	120.05	248	187	55.67	47.16	58.17	46.67	51.70	78.37	83.79	185	420	794	519	119	58	626
										D	• • • • • •										
		БФ	БФ	БФ	БФ	ЕФ	ЕФ	БФ	ГØ	Respec	tive entro	opy values	5	ГØ	ГØ	ГØ	ГØ	ЕФ	ГØ	БФ	ГФ
		E <i>R</i>	E <i>R</i>	E <i>R</i>	E R	E <i>R</i>	E <i>R</i>	E <i>R</i>	ER	Respect	tive entro E <i>R</i>	opy values	ER CA	ER	ER	ER F	ER	ER	ER D.ZC	E <i>R</i>	ER
n	1	E <i>R</i> R1	E <i>R</i> R1/2	E <i>R</i> R-1/2	E <i>R</i> IR	Е М1	ER M2	E <i>R</i> HI	ER SCI	Respect	tive entro E <i>R</i> ABC	opy values ER ABS	ER GA	ER AG	ER SSD	<i>Е</i> Я F	<i>Е</i> Я НМ1	ER HM2	ER ReZG1	ER ReZG2	ER ReZG
n	1	E <i>R</i> R1	E <i>R</i> R _{1/2}	E <i>R</i> R-1/2	E <i>R</i> IR	E <i>R</i> M ₁	E <i>R</i> M ₂	E <i>R</i> HI	ER SCI	Respect	tive entro ER ABC	opy values ER ABS	<i>ER</i> GA	ER AG	ER SSD	<i>ER</i> F	<i>ER</i> HM ₁	E <i>R</i> HM ₂	ER ReZG1	E <i>R</i> ReZG ₂	<i>ER</i> ReZG 3
n 4 5	1	ER R ₁ 3.16	E <i>R</i> R _{1/2} 3.23	E <i>R</i> R-1/2 3.23	E <i>R</i> IR 3.23	E <i>R</i> M ₁ 3.23	ER M ₂ 3.16	ER HI 3.23	<i>ER</i> SCI 3.25	Respect ER ISI 3.23 2.40	tive entro ER ABC 3.09	ER ABS 3.09	ER GA 3.258	<i>ER</i> AG 3.26	<i>ER</i> SSD 3.25 2.43	<i>ER</i> F 3.18	<i>ER</i> HM ₁ 3.17	E <i>R</i> HM ₂ 2.94	<i>ER</i> ReZG ₁ 3.23	E <i>R</i> ReZG ₂ 3.23	<i>ER</i> ReZG 3 3.07
n 4 5	1 2 2 2	ER R ₁ 3.16 3.34	E <i>R</i> R _{1/2} 3.23 3.41	E <i>R</i> R-1/2 3.23 3.41	E <i>R</i> IR 3.23 3.41	E <i>R</i> M ₁ 3.23 3.41	E <i>R</i> M ₂ 3.16 3.34	E <i>R</i> HI 3.23 3.41	<i>ER</i> SCI 3.25 3.43	Respect ER ISI 3.23 3.40 2.55	tive entro E <i>R</i> ABC 3.09 3.26	ER ABS 3.09 3.26	<i>ER</i> GA 3.258 3.434	<i>ER</i> AG 3.26 3.43	<i>ER</i> SSD 3.25 3.43	<i>ER</i> F 3.18 3.36	<i>ER</i> HM ₁ 3.17 3.35 2.50	E <i>R</i> HM ₂ 2.94 3.11	<i>ER</i> ReZG 1 3.23 3.41	E <i>R</i> ReZG ₂ 3.23 3.40	<i>ER</i> ReZG 3 3.07 3.24
n 4 5 6 7	1 2 2 2 2	ER R ₁ 3.16 3.34 3.48	E <i>R</i> R _{1/2} 3.23 3.41 3.56 2.60	ER R -1/2 3.23 3.41 3.56 2.60	ER IR 3.23 3.41 3.56 2.60	ER M ₁ 3.23 3.41 3.56 2.60	E <i>R</i> M ₂ 3.16 3.34 3.48	ER HI 3.23 3.41 3.56 2.60	<i>ER</i> SCI 3.25 3.43 3.58 2.71	Respect ER ISI 3.23 3.40 3.55 2.68	E <i>R</i> ABC 3.09 3.26 3.40	ER ABS 3.09 3.26 3.40 2.52	<i>ER</i> GA 3.258 3.434 3.583 2.712	<i>ER</i> AG 3.26 3.43 3.58 2.71	<i>ER</i> <i>SSD</i> 3.25 3.43 3.58 2.71	<i>ER</i> F 3.18 3.36 3.51	<i>ER</i> HM ₁ 3.17 3.35 3.50	ER HM ₂ 2.94 3.11 3.25 2.38	<i>E</i> R ReZG ₁ 3.23 3.41 3.56 2.60	E<i>R</i> ReZG₂ 3.23 3.40 3.55 2.68	<i>ER</i> ReZG 3 3.07 3.24 3.39 2.52
n 4 5 6 7 8	1 2 2 2 2 2 2	ER R ₁ 3.16 3.34 3.48 3.61	E <i>R</i> R _{1/2} 3.23 3.41 3.56 3.69 2.80	ER R -1/2 3.23 3.41 3.56 3.69 2.80	ER IR 3.23 3.41 3.56 3.69 2.80	E <i>R</i> M ₁ 3.23 3.41 3.56 3.69 2.80	E <i>R</i> M ₂ 3.16 3.34 3.48 3.61	ER HI 3.23 3.41 3.56 3.69 2.80	<i>ER</i> SCI 3.25 3.43 3.58 3.71	Respect ER ISI 3.23 3.40 3.55 3.68 2.80	ER ABC 3.09 3.26 3.40 3.53 2.64	ER ABS 3.09 3.26 3.40 3.52	<i>ER</i> GA 3.258 3.434 3.583 3.713	<i>ER</i> AG 3.26 3.43 3.58 3.71	<i>ER</i> <i>SSD</i> 3.25 3.43 3.58 3.71 2.82	<i>ER</i> F 3.18 3.36 3.51 3.64	<i>ER</i> HM ₁ 3.17 3.35 3.50 3.63	ER HM ₂ 2.94 3.11 3.25 3.38 2.40	<i>E</i> R ReZG ₁ 3.23 3.41 3.56 3.69 2.80	E <i>R</i> ReZG ₂ 3.23 3.40 3.55 3.68	<i>ER</i> ReZG 3 3.07 3.24 3.39 3.52 2.63
n 4 5 6 7 8	1 2 2 2 2 2 2 2 2 2	E <i>R</i> R ₁ 3.16 3.34 3.48 3.61 3.73 2.82	E <i>R</i> R _{1/2} 3.23 3.41 3.56 3.69 3.80 2.91	E<i>R</i>- 1/2 3.23 3.41 3.56 3.69 3.80 2.01	ER IR 3.23 3.41 3.56 3.69 3.80 2.91	ER M ₁ 3.23 3.41 3.56 3.69 3.80 2.91	E <i>R</i> M ₂ 3.16 3.34 3.48 3.61 3.73 2.82	ER HI 3.23 3.41 3.56 3.69 3.80 2.90	<i>E</i> R SCI 3.25 3.43 3.58 3.71 3.82 2.93	Respect ER ISI 3.23 3.40 3.55 3.68 3.80	ER ABC 3.09 3.26 3.40 3.53 3.64	ER ABS 3.09 3.26 3.40 3.52 3.64	<i>ER</i> GA 3.258 3.434 3.583 3.713 3.828 2.021	<i>ER</i> AG 3.26 3.43 3.58 3.71 3.83 2.93	<i>ER</i> <i>SSD</i> 3.25 3.43 3.58 3.71 3.82 2.93	<i>E</i> R F 3.18 3.36 3.51 3.64 3.75 2.86	<i>ER</i> HM ₁ 3.17 3.35 3.50 3.63 3.74	ER HM ₂ 2.94 3.11 3.25 3.38 3.49 2.50	<i>ER</i> ReZG ₁ 3.23 3.41 3.56 3.69 3.80 2.01	E <i>R</i> ReZG ₂ 3.23 3.40 3.55 3.68 3.80 2.90	<i>ER</i> ReZG 3 3.07 3.24 3.39 3.52 3.63 2.74
n 4 5 6 7 8 9	1 2	ER R ₁ 3.16 3.34 3.48 3.61 3.73 3.83 2.93	E <i>R</i> R _{1/2} 3.23 3.41 3.56 3.69 3.80 3.91 4.00	E<i>R</i> R -1/2 3.23 3.41 3.56 3.69 3.80 3.91 4.00	ER IR 3.23 3.41 3.56 3.69 3.80 3.91	E <i>R</i> M ₁ 3.23 3.41 3.56 3.69 3.80 3.91	E <i>R</i> M ₂ 3.16 3.34 3.48 3.61 3.73 3.83 2.92	ER HI 3.23 3.41 3.56 3.69 3.80 3.90 4.00	<i>E</i> R SCI 3.25 3.43 3.58 3.71 3.82 3.93 4.02	Respect ER ISI 3.23 3.40 3.55 3.68 3.80 3.90	E <i>R</i> ABC 3.09 3.26 3.40 3.53 3.64 3.74 2.83	ER ABS 3.09 3.26 3.40 3.52 3.64 3.74 2.82	<i>ER</i> GA 3.258 3.434 3.583 3.713 3.828 3.931 4.025	<i>ER</i> AG 3.26 3.43 3.58 3.71 3.83 3.93	<i>ER</i> <i>SSD</i> 3.25 3.43 3.58 3.71 3.82 3.93 4.02	<i>ER</i> F 3.18 3.36 3.51 3.64 3.75 3.86 2.05	<i>ER</i> HM ₁ 3.17 3.35 3.50 3.63 3.74 3.85 2.94	ER HM ₂ 2.94 3.11 3.25 3.38 3.49 3.59 2.60	<i>ER</i> ReZG ₁ 3.23 3.41 3.56 3.69 3.80 3.91 4.00	E <i>R</i> ReZG ₂ 3.23 3.40 3.55 3.68 3.80 3.90 4.00	<i>E</i> R ReZG 3 3.07 3.24 3.39 3.52 3.63 3.74 2.82
n 4 5 6 7 8 9 10	1 2	E <i>R</i> R ₁ 3.16 3.34 3.48 3.61 3.73 3.83 3.93 4.01	E <i>R</i> R _{1/2} 3.23 3.41 3.56 3.69 3.80 3.91 4.00	E <i>R</i> R-1/2 3.23 3.41 3.56 3.69 3.80 3.91 4.00	E <i>R</i> IR 3.23 3.41 3.56 3.69 3.80 3.91 4.00	E <i>R</i> M ₁ 3.23 3.41 3.56 3.69 3.80 3.91 4.00	E <i>R</i> M ₂ 3.16 3.34 3.48 3.61 3.73 3.83 3.93	E <i>R</i> HI 3.23 3.41 3.56 3.69 3.80 3.90 4.00	<i>ER</i> SCI 3.25 3.43 3.58 3.71 3.82 3.93 4.02	Respect ER ISI 3.23 3.40 3.55 3.68 3.80 3.90 4.00	tive entro ER ABC 3.09 3.26 3.40 3.53 3.64 3.74 3.83 2.91	ER ABS 3.09 3.26 3.40 3.52 3.64 3.74 3.83	ER GA 3.258 3.434 3.583 3.713 3.828 3.931 4.025 4.110	<i>ER</i> AG 3.26 3.43 3.58 3.71 3.83 3.93 4.02	<i>ER</i> <i>SSD</i> 3.25 3.43 3.58 3.71 3.82 3.93 4.02 4.10	<i>ER</i> F 3.18 3.36 3.51 3.64 3.75 3.86 3.95 4.03	<i>ER</i> HM ₁ 3.17 3.35 3.50 3.63 3.74 3.85 3.94	ER HM ₂ 2.94 3.11 3.25 3.38 3.49 3.59 3.69 2.77	<i>E</i> R ReZG ₁ 3.23 3.41 3.56 3.69 3.80 3.91 4.00 4.08	E <i>R</i> ReZG ₂ 3.23 3.40 3.55 3.68 3.80 3.90 4.00	<i>E</i> R ReZG 3 3.07 3.24 3.39 3.52 3.63 3.74 3.83 2.92
<i>n</i> 4 5 6 7 8 9 10 11 12	1 2	E <i>R</i> R ₁ 3.16 3.34 3.48 3.61 3.73 3.83 3.93 4.01 4.09	$ E\mathcal{R} \\ R_{1/2} \\ 3.23 \\ 3.41 \\ 3.56 \\ 3.69 \\ 3.80 \\ 3.91 \\ 4.00 \\ 4.09 \\ 4.16 \\ $	ER R -1/2 3.23 3.41 3.56 3.69 3.80 3.91 4.00 4.08 4.16	E <i>R</i> IR 3.23 3.41 3.56 3.69 3.80 3.91 4.00 4.09	E <i>R</i> M ₁ 3.23 3.41 3.56 3.69 3.80 3.91 4.00 4.09	E <i>R</i> M ₂ 3.16 3.34 3.48 3.61 3.73 3.83 3.93 4.01	E <i>R</i> HI 3.23 3.41 3.56 3.69 3.80 3.90 4.00 4.08 4.16	<i>E</i> % <i>SCI</i> 3.25 3.43 3.58 3.71 3.82 3.93 4.02 4.10 4.18	Respect ER ISI 3.23 3.40 3.55 3.68 3.80 3.90 4.00 4.08 4.16	tive entro ER ABC 3.09 3.26 3.40 3.53 3.64 3.74 3.83 3.91 3.99	ER ABS 3.09 3.26 3.40 3.52 3.64 3.74 3.83 3.91 3.90	ER GA 3.258 3.434 3.583 3.713 3.828 3.931 4.025 4.110 4.180	<i>ER</i> <i>AG</i> 3.26 3.43 3.58 3.71 3.83 3.93 4.02 4.11 4.19	<i>ER</i> <i>SSD</i> 3.25 3.43 3.58 3.71 3.82 3.93 4.02 4.10 4.18	<i>ER</i> F 3.18 3.36 3.51 3.64 3.75 3.86 3.95 4.03 4.11	<i>E</i> % HM ₁ 3.17 3.35 3.50 3.63 3.74 3.85 3.94 4.03 4.10	ER HM ₂ 2.94 3.11 3.25 3.38 3.49 3.59 3.69 3.77 3.85	<i>E</i> R ReZG ₁ 3.23 3.41 3.56 3.69 3.80 3.91 4.00 4.08 4.16	E <i>R</i> ReZG ₂ 3.23 3.40 3.55 3.68 3.80 3.90 4.00 4.08 4.16	<i>E</i> R ReZG 3 3.07 3.24 3.39 3.52 3.63 3.74 3.83 3.92 2.99
<i>n</i> 4 5 6 7 8 9 10 11 12 13	1 2	E <i>R</i> R ₁ 3.16 3.34 3.48 3.61 3.73 3.83 3.93 4.01 4.09 4.16	$ E\mathcal{R} \\ R_{1/2} \\ \hline 3.23 \\ 3.41 \\ 3.56 \\ 3.69 \\ 3.80 \\ 3.91 \\ 4.00 \\ 4.09 \\ 4.16 \\ 4.24 \\ $	E <i>R</i> R-1/2 3.23 3.41 3.56 3.69 3.80 3.91 4.00 4.08 4.16 4.24	E <i>R</i> IR 3.23 3.41 3.56 3.69 3.80 3.91 4.00 4.09 4.16	E <i>R</i> M ₁ 3.23 3.41 3.56 3.69 3.80 3.91 4.00 4.09 4.17 4.24	E <i>R</i> M ₂ 3.16 3.34 3.48 3.61 3.73 3.83 3.93 4.01 4.09	E <i>R</i> HI 3.23 3.41 3.56 3.69 3.80 3.90 4.00 4.08 4.16 4.24	<i>E</i> R SCI 3.25 3.43 3.58 3.71 3.82 3.93 4.02 4.10 4.18 4.26	Respect ER ISI 3.23 3.40 3.55 3.68 3.80 3.90 4.00 4.08 4.16	ER ABC 3.09 3.26 3.40 3.53 3.64 3.74 3.83 3.91 3.99 4.06	ER ABS 3.09 3.26 3.40 3.52 3.64 3.74 3.83 3.91 3.99	ER GA 3.258 3.434 3.583 3.713 3.828 3.931 4.025 4.110 4.189 4.26	<i>ER</i> <i>AG</i> 3.26 3.43 3.58 3.71 3.83 3.93 4.02 4.11 4.19 4.26	<i>ER</i> <i>SSD</i> 3.25 3.43 3.58 3.71 3.82 3.93 4.02 4.10 4.18 4.26	<i>E</i> R F 3.18 3.36 3.51 3.64 3.75 3.86 3.95 4.03 4.11	<i>E</i> % HM ₁ 3.17 3.35 3.50 3.63 3.74 3.85 3.94 4.03 4.10 4.18	E <i>R</i> HM ₂ 2.94 3.11 3.25 3.38 3.49 3.59 3.69 3.77 3.85 3.92	<i>ER</i> ReZG ₁ 3.23 3.41 3.56 3.69 3.80 3.91 4.00 4.08 4.16 4.24	E <i>R</i> ReZG ₂ 3.23 3.40 3.55 3.68 3.80 3.90 4.00 4.08 4.16 4.23	<i>ER</i> ReZG 3 3.07 3.24 3.39 3.52 3.63 3.74 3.83 3.92 3.99 4.07
<i>n</i> 4 5 6 7 8 9 10 11 12 13 14	1 2	E <i>R</i> R ₁ 3.16 3.34 3.48 3.61 3.73 3.83 3.93 4.01 4.09 4.16 4.23	E <i>R</i> R _{1/2} 3.23 3.41 3.56 3.69 3.80 3.91 4.00 4.09 4.16 4.24 4.31	E <i>R</i> R-1/2 3.23 3.41 3.56 3.69 3.80 3.91 4.00 4.08 4.16 4.24 4.30	E <i>R</i> IR 3.23 3.41 3.56 3.69 3.80 3.91 4.00 4.09 4.16 4.24 4.31	E <i>R</i> M ₁ 3.23 3.41 3.56 3.69 3.80 3.91 4.00 4.09 4.17 4.24 4.31	E <i>R</i> M ₂ 3.16 3.34 3.48 3.61 3.73 3.83 3.93 4.01 4.09 4.16 4.23	E <i>R</i> HI 3.23 3.41 3.56 3.69 3.80 3.90 4.00 4.08 4.16 4.24 4.20	<i>ER</i> SCI 3.25 3.43 3.58 3.71 3.82 3.93 4.02 4.10 4.18 4.26 4.32	Respect ER ISI 3.23 3.40 3.55 3.68 3.80 3.90 4.00 4.08 4.16 4.23	tive entro ER ABC 3.09 3.26 3.40 3.53 3.64 3.74 3.83 3.91 3.99 4.06 4 13	ER ABS 3.09 3.26 3.40 3.52 3.64 3.74 3.83 3.91 3.99 4.06	ER GA 3.258 3.434 3.583 3.713 3.828 3.931 4.025 4.110 4.189 4.26	<i>ER</i> <i>AG</i> 3.26 3.43 3.58 3.71 3.83 3.93 4.02 4.11 4.19 4.26 4.33	<i>ER</i> <i>SSD</i> 3.25 3.43 3.58 3.71 3.82 3.93 4.02 4.10 4.18 4.26 4.32	<i>ER</i> F 3.18 3.36 3.51 3.64 3.75 3.86 3.95 4.03 4.11 4.19 4.25	<i>ER</i> HM ₁ 3.17 3.35 3.50 3.63 3.74 3.85 3.94 4.03 4.10 4.18 4.25	E <i>R</i> HM ₂ 2.94 3.11 3.25 3.38 3.49 3.59 3.69 3.77 3.85 3.92 3.90	<i>ER</i> ReZG ₁ 3.23 3.41 3.56 3.69 3.80 3.91 4.00 4.08 4.16 4.24 4.31	E <i>R</i> ReZG ₂ 3.23 3.40 3.55 3.68 3.80 3.90 4.00 4.08 4.16 4.23 4.20	<i>ER</i> ReZG 3 3.07 3.24 3.39 3.52 3.63 3.74 3.83 3.92 3.99 4.07 4.14
<i>n</i> 4 5 6 7 8 9 10 11 12 13 14	1 2	E <i>R</i> R ₁ 3.16 3.34 3.48 3.61 3.73 3.83 3.93 4.01 4.09 4.16 4.23 4.20	$\begin{array}{c} \mathbf{E}\boldsymbol{\mathcal{R}}\\ \mathbf{R}_{1/2}\\ \hline 3.23\\ 3.41\\ 3.56\\ 3.69\\ 3.80\\ 3.91\\ 4.00\\ 4.09\\ 4.16\\ 4.24\\ 4.31\\ 4.27\end{array}$	ER R-1/2 3.23 3.41 3.56 3.69 3.80 3.91 4.00 4.08 4.16 4.24 4.30 4.27	E <i>R</i> IR 3.23 3.41 3.56 3.69 3.80 3.91 4.00 4.09 4.16 4.24 4.31	E <i>R</i> M ₁ 3.23 3.41 3.56 3.69 3.80 3.91 4.00 4.09 4.17 4.24 4.31 4.27	ER M2 3.16 3.34 3.48 3.61 3.73 3.83 3.93 4.01 4.09 4.16 4.23 4.20	E <i>R</i> HI 3.23 3.41 3.56 3.69 3.80 3.90 4.00 4.08 4.16 4.24 4.30 4.27	<i>E</i> R SCI 3.25 3.43 3.58 3.71 3.82 3.93 4.02 4.10 4.18 4.26 4.32 4.20	Respect ER ISI 3.23 3.40 3.55 3.68 3.80 3.90 4.00 4.08 4.16 4.23 4.30	ER ABC 3.09 3.26 3.40 3.53 3.64 3.74 3.83 3.91 3.99 4.06 4.13	ER ABS 3.09 3.26 3.40 3.52 3.64 3.74 3.83 3.91 3.99 4.06 4.13	ER GA 3.258 3.434 3.583 3.713 3.828 3.931 4.025 4.110 4.189 4.26 4.33	<i>ER</i> <i>AG</i> 3.26 3.43 3.58 3.71 3.83 3.93 4.02 4.11 4.19 4.26 4.33 4.20	<i>E</i> R <i>SSD</i> 3.25 3.43 3.58 3.71 3.82 3.93 4.02 4.10 4.18 4.26 4.32 4.32	<i>E</i> R F 3.18 3.36 3.51 3.64 3.75 3.86 3.95 4.03 4.11 4.19 4.25	<i>E</i> % HM ₁ 3.17 3.35 3.50 3.63 3.74 3.85 3.94 4.03 4.10 4.18 4.25 4.21	ER HM2 2.94 3.11 3.25 3.38 3.49 3.59 3.69 3.77 3.85 3.92 3.99 4.05	<i>E</i> % ReZG ₁ 3.23 3.41 3.56 3.69 3.80 3.91 4.00 4.08 4.16 4.24 4.31 4.27	E <i>R</i> ReZG ₂ 3.23 3.40 3.55 3.68 3.80 3.90 4.00 4.08 4.16 4.23 4.30	<i>ER</i> ReZG 3 3.07 3.24 3.39 3.52 3.63 3.74 3.83 3.92 3.99 4.07 4.14

TABLE 4: REVERSE TOPOLOGICAL INDICES AND ITS ENTROPY OF HEXAGONAL CHAIN OF EQUAL SEGMENT LENGTH $(G_{n,l})$

TABLE 5: ENTROPY COMPARISON OF HEXAGONAL CHAINS FOR DIFFERENT VALUES OF h

		${\mathcal R}$	R	R	R	R	R	\mathcal{R}	${\cal R}$	R	R	\mathcal{R}	\mathcal{R}	\mathcal{R}	\mathcal{R}	R	${\cal R}$	${\mathcal R}$	${\mathcal R}$	\mathcal{R}	${\cal R}$	\mathcal{R}
h	G	\mathbf{R}_1	R -1	R 1/2	R-1 /2	IR	M_1	M ₂	HI	SCI	ISI	ABC	ABS	GA	AG	SSD	F	HM ₁	HM ₂	ReZG	ReZG	ReZG
	L ₅	3.17	3.17	3.24	3.24	3.24	3.24	3.17	3.23	3.25	3.23	3.09	3.09	3.26	3.26	3.25	3.19	3.18	2.94	3.24	3.23	3.08
5	G 4,2	3.16	3.14	3.23	3.23	3.23	3.23	3.16	3.23	3.25	3.23	3.09	3.09	3.26	3.26	3.25	3.18	3.17	2.94	3.23	3.23	3.07
	G 2,3	3.17	3.16	3.23	3.23	3.23	3.24	3.17	3.23	3.25	3.23	3.09	3.09	3.26	3.26	3.25	3.19	3.18	2.93	3.23	3.23	3.07
6	L ₆	3.35	3.35	3.41	3.41	3.41	3.41	3.35	3.41	3.43	3.41	3.26	3.25	3.43	3.43	3.43	3.37	3.36	3.12	3.41	3.41	3.26
	G 5,2	3.34	3.32	3.41	3.41	3.41	3.41	3.34	3.41	3.43	3.40	3.26	3.26	3.43	3.43	3.43	3.36	3.35	3.11	3.41	3.40	3.24
	L ₇	3.50	3.50	3.56	3.56	3.56	3.56	3.50	3.56	3.58	3.56	3.40	3.40	3.58	3.58	3.58	3.52	3.51	3.27	3.56	3.56	3.42
7	G 4,2	3.48	3.47	3.56	3.56	3.56	3.56	3.48	3.56	3.58	3.55	3.40	3.40	3.58	3.58	3.58	3.51	3.50	3.25	3.56	3.55	3.39
	G 3,3	3.49	3.49	3.56	3.56	3.56	3.56	3.49	3.56	3.58	3.56	3.40	3.40	3.58	3.58	3.58	3.51	3.51	3.25	3.56	3.56	3.40
	G _{2,4}	3.50	3.50	3.56	3.56	3.56	3.56	3.50	3.56	3.58	3.56	3.40	3.40	3.58	3.58	3.58	3.52	3.51	3.26	3.56	3.56	3.41
8	L ₈	3.64	3.64	3.69	3.69	3.69	3.70	3.64	3.69	3.71	3.69	3.53	3.52	3.71	3.71	3.71	3.65	3.65	3.41	3.70	3.69	3.55
	G 7,2	3.61	3.61	3.69	3.69	3.69	3.69	3.61	3.69	3.71	3.68	3.53	3.52	3.71	3.71	3.71	3.64	3.63	3.38	3.69	3.68	3.52
	L ₉	3.76	3.76	3.81	3.81	3.81	3.81	3.76	3.81	3.82	3.81	3.64	3.63	3.83	3.83	3.82	3.77	3.76	3.53	3.81	3.81	3.67
	G _{8,2}	3.73	3.72	3.80	3.80	3.80	3.80	3.73	3.80	3.82	3.80	3.64	3.64	3.83	3.83	3.82	3.75	3.74	3.49	3.80	3.80	3.63
9	G 4,3	3.74	3.74	3.81	3.81	3.81	3.81	3.74	3.80	3.82	3.80	3.64	3.64	3.83	3.83	3.82	3.76	3.75	3.50	3.81	3.80	3.65
	G _{2,5}	3.75	3.75	3.81	3.81	3.81	3.81	3.75	3.81	3.82	3.81	3.64	3.64	3.83	3.83	3.82	3.76	3.76	3.52	3.81	3.81	3.66
	L ₁₀	3.86	3.86	3.91	3.91	3.91	3.91	3.86	3.91	3.93	3.91	3.74	3.73	3.93	3.93	3.93	3.87	3.87	3.65	3.92	3.91	3.78
10	G 9,2	3.83	3.83	3.91	3.91	3.91	3.91	3.83	3.90	3.93	3.90	3.74	3.74	3.93	3.93	3.93	3.86	3.85	3.59	3.91	3.90	3.74
	G _{3,4}	3.85	3.85	3.91	3.91	3.91	3.91	3.85	3.91	3.93	3.91	3.74	3.74	3.93	3.93	3.93	3.87	3.86	3.62	3.91	3.91	3.76
	L ₁₁	3.96	3.96	4.01	4.01	4.01	4.01	3.96	4.01	4.02	4.01	3.83	3.83	4.02	4.03	4.02	3.97	3.96	3.75	4.01	4.01	3.88
	G _{10,2}	3.93	3.92	4.00	4.00	4.00	4.00	3.93	4.00	4.02	4.00	3.83	3.83	4.02	4.02	4.02	3.95	3.94	3.69	4.00	4.00	3.83
11	G 5,3	3.94	3.94	4.00	4.00	4.00	4.01	3.94	4.00	4.02	4.00	3.83	3.83	4.02	4.02	4.02	3.96	3.95	3.70	4.01	4.00	3.85
	G 2,6	3.95	3.95	4.01	4.01	4.01	4.01	3.95	4.00	4.02	4.01	3.83	3.83	4.02	4.02	4.02	3.96	3.96	3.73	4.01	4.01	3.87

The following two figures Figure 2(a), 2(b) show the behavior of reverse topological indices of linear poly-acene (L_h) , hexagonal chain with *n* segments of length 2 $(G_{n,2})$ respectively with respect to their entropy values.

Fig 2(a): Entropy based on reverse TIs for L_h

Fig 2(b): Entropy based on reverse TIs for $G_{n,2}$

Entropies of a hexagonal chain with n segments of length l and a linear poly-acene have been compared for specific values of h, which are listed in TABLE 5. And the comparison of these plots is are shown in Figure 3(a), 3(b).

Fig 3 (a): Entropy of $G_{n,l}$ for different values of h

Fig 3 (b): Entropy of L_h for different values of h

4. CONCLUSION

As various topological indices help in investigating properties of chemical molecules, in this paper, we have computed generalized expressions for reverse degree based topological indices, namely the reverse Randićindex, reverse geometric arithmetic index, reverse Zagreb indices, reverse forgotten index, reverse arithmetic geometric index, reverse symmetric division degree index, reverse atom bond sum connectivity index, reverse hyper Zagreb indices, reverse redefined Zagreb indices of two structures of benzenoid hydrocarbon chains, namely linear poly-acene L_h and hexagonal chain of equal segment length $G_{n,l}$. Information-theoretic entropy measurement is obtained by these generalised analytical formulations of linear poly-acene L_h and hexagonal chain of segment length $l(G_{n,l})$ for any arbitrary values of h. We have compared the entropies of two different structure L_h and $G_{n,l}$, for specific values of h and we have seen that their entropies show very little variation., implying that the structural transition between the above considered structure results in small change of disorder. Reverse degree based topological indices and entropies of these benzenoid hydrocarbon chains find applications in thermodynamic modelling/ process optimization, predicting the spontaneity of chemical reactions, helps in assessing the efficiency of combustion process, phase transitions, etc. They also, help in predicting Quantitative Structural Activity Properties, Chemo-informatics, Material Science, Chemical reactivity, Machine learning etc. in chemistry. Our findings in this paper, provide a very helpful contribution in developing QSAR/QSPR analysis.

FUNDING

This research received no external funding.

CONFLICTS OF INTEREST

The authors declare no conflict of interest

REFERENCES

- H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17–20. https://doi.org/10.1021/ja01193a005.
- [2] Z. Chen, M. Dehmer, Y. Shi, A note on distance-based graph entropies, Entropy, 16 (2014), 5416-5427.

https://doi.org/10.3390/e16105416.

- [3] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001), 211–249, https://doi.org/10.1023/A:1010767517079.
- [4] M. Randic, Characterizations of atoms, molecules and classes of molecules based on paths enumerations, MATCH Commun. Math. Computer Chem. 7 (1979), 5–64.
- [5] I. Gutman, J.H. Potgieter, Wiener index and intermolecular forces, J. Serb. Chem. Soc. 62 (1997), 185–192, https://doi.org/10.1023/A:1010767517079.
- [6] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535–538. https://doi.org/10.1016/0009-2614(72)85099-1.
- [7] I. Gutman, O.E. Polansky, Wiener numbers of Polycenes and related benzenoid molecules, MATCH Commun. Math. Computer Chem. 20 (1986), 115–123.
- [8] P. Poojary, G.B. Shenoy, N.N. Swamy, Reverse topological indices of some molecules in drugs used in the treatment of H1N1, Biointerface Res. App. Chem. 13 (2023), 71. https://doi.org/10.33263/BRIAC131.071.
- [9] H.P. Schultz, E.B. Schultz, T.P. Schultz, Topological organic chemistry. 9. Graph theory and molecular topological indices of stereoisomeric organic compounds, J. Chem. Inf. Comput. Sci. 35 (1995), 864–870. https://doi.org/10.1021/ci00027a011.
- [10] M. Arockiaraj, J. Clement, K. Balasubramanian, Topological indices and their applications to circumcised donut benzenoid systems, kekulenes and drugs, Polycyclic Aromatic Compounds 40 (2020), 280–303. https://doi.org/10.1080/10406638.2017.1411958.
- [11] A.T. Balaban, Chemical graphs. L. Symmetry and enumeration of fibonacenes (unbranched catacondensed benzenoids) isoarithmic with helicenes and zigzag cata-fusenes, MATCH Commun. Math. Computer Chem. 24 (1989), 9–38.
- [12] A.T. Balaban, M. Randic, Coding Canonical clar structures of polycyclic benzenoid hydrocarbons, MATCH Commun. Math. Computer Chem. 82 (2019), 139–162.
- [13] A.T. Balaban, P.V. Khadikar, S. Aziz, Comparison of topological indices based on iterated sum versus product operations, Iran. J. Math. Chem. 1 (2010), 43–67. https://doi.org/10.22052/ijmc.2010.5134.
- [14] H.S. Ramane, V.B. Joshi, R.B. Jummannaver, et al. Relationship between Randić index, sum-connectivity index, harmonic index and π -electron energy for benzenoid hydrocarbons, Natl. Acad. Sci. Lett. 42 (2019), 519–524.

https://doi.org/10.1007/s40009-019-0782-y.

- [15] V. Ravi, K. Desikan, On computation of the reduced reverse degree and neighbourhood degree sum-based topological indices for metal-organic frameworks, Main Group Metal Chem. 45 (2022), 92–99. https://doi.org/10.1515/mgmc-2022-0009.
- [16] V.S. Shegehalli, R. Kanabur, Arithmetic-geometric indices of path graph, J. Math. Computer Sci. 16 (2015), 19–24.
- [17] S. Sardana, A.K. Madan, Topological models of prediction of antihypertensive activity of substituted benzylimidazoles, J. Mol. Struct. Theochem, 638 (2003), 41–49. https://doi.org/10.1016/S0166-1280(03)00425-1.
- [18] R.G. Brereton, A.R. Carvalho, M. Wasim, et al. Handbook of Chemoinformatics: from data to knowledge, J. Chemometrics, 18 (2004), 265–271. https://doi.org/10.1002/cem.866.
- [19] M.A. Ali, M.S. Saradar, I. Siddique, et al. Vertex-based topological indices of double and strong double graph of Dutch Windmill graph, J. Chem. 3 (2021), 1-12, https://doi.org/10.1155/2021/7057412.
- [20] Y. Guihai, L. Xingfu, H. Deyan, Topological indices based on 2- or 3-eccentricity to predict anti-HIV activity. Appl. Math. Comput. 416 (2022), 126748, https://doi.org/10.1080/10406638.2022.2026418.
- [21] K. Sharma, V.K. Bhat, J.B. Liu, Second leap hyper-Zagreb coindex of certain benzenoid structures and their polynomials. Computational, Theor. Chem. 2023. https://doi.org/10.1016/j.comptc.2023.114088.
- [22] S. Sharma, V.K. Bhat, S. Lal, The metric resolvability and topological characterisation of some molecules in H1N1 antiviral drugs, Mol. Simul. 49(2023), 1165–1178. https://doi.org/10.1080/08927022.2023.2223718.
- [23] S. Mondal, A. Dey, N. De, et al. QSPR analysis of some novel neighbourhood degree-based topological descriptors, Complex Intell. Syst. 7(2021), 977–996. https://doi.org/10.1007/s40747-020-00262-0.
- [24] M.I. Huilgol, V. Sriram, H.J. Udupa, et al. Computational studies of toxicity and properties of β-diketones through topological indices and M/NM-polynomials, Comput. Theor. Chem. 1224 (2023), 114108. https://doi.org/10.1016/j.comptc.2023.114108.
- [25] M.I. Huilgol, V. Sriram, K. Balasubramanian, Structure–activity relations for antiepileptic drugs through omega polynomials and topological indices, Mol. Phys. 2022. https://doi.org/10.1080/00268976.2021.1987542.
- [26] M. Arockiaraj, S. Mushtaq, S. Klavzar, et al. Szeged-like topological indices and the efficacy of the cut method: the case of Melem structures, Discr. Math. Lett. 9 (2022), 49–56. http://dx.doi.org/10.47443/dml.2021.s209.

- [27] H. Raza, M. Waheed, M.K. Jamil, et al. Structures devised by the generalizations of two graph operations and their topological descriptors, Main Group Metal Chem. 45 (2022), 44–56, https://doi.org/10.1515/mgmc-2022-0006.
- [28] X. Zhang, M.K. Siddiqui, S. Javed, et al. Physical analysis of heat for formation and entropy of Ceria Oxide using topological indices, Comb. Chem. High Throughput Screen. 25 (2022), 441–450. https://doi.org/10.2174/1386207323999201001210832.
- [29] A. A. Dobrynin, Hexagonal Chains with Segments of equal lengths having distinct sizes and the same Wiener index, MATCH Communication in. Mathematical and Computer Chemistry, 2017, vol. 78, pp. 121–132.
- [30] V. R. Kulli, Reverse Zagreb and Reverse hyper-Zagreb indices and their polynomials of rhombus silicate networks, Ann. Pure Appl. Math. 16 (2018), 47–51. https://doi.org/10.22457/apam.v16n1a6.
- [31] J. Wei, M. Cancan, A.U. Rehman, et al. On Topological Indices of Remdesivir Compound Used in Treatment of Corona Virus (COVID 19), Polycyclic Aromatic Compounds 42 (2021), 4300–4316. https://doi.org/10.1080/10406638.2021.1887299.
- [32] C.Y. Jung, M.A. Gondal, N. Ahmad, et al. Reverse degree based indices of some nanotubes, J. Discr. Math. Sci. Cryptography 22 (2019), 1289–1294. https://doi.org/10.1080/09720529.2019.1700921.
- [33] M. Randic, Characterization of molecular branching, J. Amer. Chem. Soc. 97 (1975), 6609-6615.
- [34] Y. Yuan, B. Zhou, N. Trinajstic, On geometric-arithmetic index, J. Math. Chem. 47 (2010), 833–841. http://dx.doi.org/10.1007/s10910-009-9603-8.
- [35] M.I. Huilgol, P.H. Shobha, K. Balasubramanian, Reverse, reduced reverse degree based topological indices and entropy of armchair and zigzag polyhex nanotubes, preprint.
- [36] D. Vukicevic, M. Gasperov, Bond additive modeling 1. adriatic indices, Croatica Chem. Acta, 83 (2010), 243–260, https://hrcak.srce.hr/62202.
- [37] I. Gutmun, Furtula, A forgotten topological index, J. Math. Chem. 53 (2015), 1184–1190.
 https://doi.org/10.1007/s10910-015-0480-z.
- [38] G. Caporossi, I. Gutman, P. Hansen, et al. Graphs with maximum connectivity index, Comput. Biol. Chem. 27 (2003), 85–90. https://doi.org/10.1016/s0097-8485(02)00016-5.
- [39] G.H. Shirdel, H. Rezapour, A.M. Sayadi, The hyper-Zagreb index of graph operations, Iran. J. Math. Chem. 2 (2013), 213–220, https://doi.org/10.22052/ijmc.2013.5294.

- [40] B. Zhou, N. Trinajstic, On general sum-connectivity index, J. Math. Chem. 47 (2010), 210–218.
 https://doi.org/10.1007/s10910-009-9542-4.
- [41] A.T. Balaban, Highly discriminating distance based topological index, Chem. Phys. Lett. 89 (1982), 399–404, https://doi.org/10.1016/0009-2614(82)80009-2.
- [42] P.S. Ranjini, V. Lokesha, A. Usha, Relation between phenylene and hexagonal squeeze using harmonic index, Int. J. Appl. Graph Theory, 4 (2013), 116–121.
- [43] E. Estrada, L. Torres, L. Rodriguez, et al. An atom-bond connectivity index: modelling the enthalpy of formation of Alkanes, Indian J. Chem. A: Inorg. Phys. Theor. Anal. 10 (1998), 849–855. https://api.semanticscholar.org/CorpusID:55462937.
- [44] E. Trucco, A note on the information content of graphs, Bull. Math. Biol. 18 (1965), 129–135. https://doi.org/10.1007/BF02477836.
- [45] N. Rashevsky, Life, information theory, and topology, Bull. Math. Biophys. 17 (1955), 229–235. https://doi.org/10.1007/BF02477860.
- [46] D.S. Sabirov, I.S. Shepelevich, Information entropy in chemistry: an overview, Entropy, 23 (2021), 1240.
 https://doi.org/10.3390/e23101240.
- [47] A. Mowshowitz, M. Dehmer, Entropy and the complexity of graphs revisited, Entropy, 14 (2012), 559–570.
 https://doi.org/10.3390/e14030559.
- [48] C.X. Nie, F.T. Song, Entropy of Graphs in Financial Markets, Comput. Econ. 57 (2020), 1149–1166. https://doi.org/10.1007/s10614-020-10007-3.
- [49] M. Dehmer, A. Mowshowitz, A history of graph entropy measures, Inform. Sci. 181 (2011), 57–78. https://doi.org/10.1016/j.ins.2010.08.041.
- [50] M. Dehmer, Information processing in complex networks: Graph entropy and information functionals, Appl. Math. Comput. 201 (2008), 82–94. https://doi.org/10.1016/j.amc.2007.12.010.
- [51] Md. Ashraful Alam, M.U. Ghani, M. Kamran, et al. Degree-based entropy for a non-Kekulean benzenoid graph,
 J. Math. 2022 (2022), 2288207. https://doi.org/10.1155/2022/2288207.
- [52] M.P. Rahul, J. Clement, J. Singh Junias, et al. Degree-based entropies of graphene, graphyne and graphdiyne using Shannon's approach, J. Mol. Struct. 1260 (2022), 132797. https://doi.org/10.1016/j.molstruc.2022.132797.