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Abstract. A k-resolving set S is a set of vertices {v1,v2, ....vl} of a graph G(V,E) if for distinct vertices u,w ∈V ,

the lists of distances (dG(u,v1),dG(u,v2), ...,dG(u,vl)) and (dG(w,v1),dG(w,v2), ...,dG(w,vl)) differ in at least k-

positions. The least size of a k-resolving set is called the k-metric basis of G and its cardinality is called the

k-metric dimension, denoted by dimk (G). We determine error correcting codes for stacked prism graphs namely

Pm�Cn using k-resolving sets. We have also constructed an infinite family of stacked prisms of k-dimension. In

this paper we have studied the k-metric dimension of Pm�Cn. An explicit formula for dimk(Pm�Cn) is determined

and the codes arising from k-resolving sets of Pm�Cn are developed.
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1. INTRODUCTION

1.1. Error-correcting codes. Algebraic coding theory also known as theory of error-

correcting codes, is an area of applied mathematics, inspired by the fundamental paper of

Claude Shannon (1948) [28] along with results by Marcel Golay (1949) [13] and Richard Ham-

ming (1950) [15]. Since then it has become an area of great interest where algebraic structures,

probability and combinatorics all play a role [14].
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Coding theory is the study of methods for efficient and accurate transfer of information from

one place to another. It deals with the problem of detecting and correcting transmission errors

caused by a noise on the channel. It has diverse applications from transmission of financial

information across telephone lines, data transfer from one computer to another, to information

transmission from a distant source such as a weather or communications satellite [17].

Although the problems in coding theory often arise from engineering applications, it is indeed

fascinating to know that mathematics plays a very crucial role in the development of codes [25].

For an introductory exposition one can refer [14, 17, 19].

Formally, an error-correcting code(or simply a code) is a collection C of vectors, called code-

words, of given length l over a fixed alphabet. The Hamming distance between two codewords

x=(x1, ...,xl), y=(y1, ....,yl) is the number of positions where they differ, that is, |{i : xi 6= yi}|.

The minimum distance of C is the least Hamming distance between any two distinct codewords;

If the minimum distance is D, then the correction capability of C is r = b(D−1)/2c. Suppose

that a codeword x is transmitted via a noisy channel causes errors to appear. Often the codes

with highest error correction capabilities are sought for, so that at the decoding point efforts

are less, nevertheless a decoding algorithm is always essential to get back the original message.

Usage of group theory, combinatorics is not new in encoding and decoding [6, 19, 25].

1.2. k-metric dimension. Metric dimension is an effective tool to study different distance-

based problems in the field of robot navigation [22], geographical routing protocols [26], com-

binatorial optimization [27], network discovery and verification [4], sensor networks [18] and

chemistry [7].

Metric dimension was introduced separately by Slater [29] in 1975 and by Harary and Melter

[16] in 1976. There are several variations of metric dimension in graphs such as strong metric

dimension, local metric dimension, adjacency dimension, k-metric dimension, partition dimen-

sion and so on. For more information see the survey by Kuziak and Yero [24].

Estrada - Moreno et al. [10] introduced the k-metric dimension problem. In their paper

[10] the k-metric dimension of path graphs, cycle graphs and trees were studied. The k-metric

dimension of lexicographic products of graphs, corona product of graphs, unicyclic graphs

was studied by Estrada et al. [11, 12, 9]. Yero et al. [31] showed that the decision problem
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regarding whether the k-metric dimension of a graph does not exceed a positive integer is NP-

complete, which also shows the NP-hardness of computing dimk(G) for any graph G. Further,

an algorithm is provided to compute the k-metric dimension and k-metric basis of any tree.

Corregidor et al. [8] determined some bounds for k for which a graph is k-metric dimensional.

Klavžar et al. [23] studied the k-metric dimension of hierarchical product of graphs, splice and

link product of graphs. An integer linear programming model for finding the k-metric dimension

and k-metric basis for a graph was developed. Bailey et al. [1] studied the k-metric dimension

of grid graphs, that is the Cartesian product of path graphs.

Bailey et al. [1] have started a new trend with the usage of graph parameters in developing

codes. Bailey et al. [1] used the metric property of a graph in developing effective codes. In

their interesting paper [1], the authors have used k-resolving sets arising in graphs and simple

graph product namely the grid graphs. In [20], the present authors extending this technique to

cartesian products of different graphs not just involving paths as done by Bailey and Yero [1].

In this paper we extend this to another class of cartesian products, namely the stacked prisms,

which are the cartesian products involving paths and cycles to obtain codes using k-resolving

sets in these graphs. Decoding algorithms are developed, along with their complexity analysis.

We first give some important definitions and results about k-resolving sets.

2. PRELIMINARIES

2.1. k-resolving sets. We consider finite, simple, connected, undirected graphs. The distance

between two vertices u and v of a graph G is the length of a shortest path between u and v, and

we denote this by dG(u,v).

Definition 2.1. [16, 29] Let G = (V,E) be a graph. Given a set S = {v1,v2, ...,vd} ⊆V (G) and

a vertex u ∈ V (G), the vector r(u|S) = (dG(u,v1),dG(u,v2), ...,dG(u,vd)) is called the metric

representation of u with respect to S. The set S is called a resolving set for G if the metric

representations of all vertices of G are pairwise different. This means that for every pair of

distinct vertices of G, their metric representations differ in at least one position.

Definition 2.2. [16, 29] A resolving set with the smallest possible cardinality is called a metric

basis of G.



4 MEDHA ITAGI HUILGOL, GRACE DIVYA D’SOUZA

Definition 2.3. [16, 29] The cardinality of a metric basis of G is called metric dimension of G,

denoted by dim(G).

Definition 2.4. [10] Let G = (V,E) be a graph. An ordered set of vertices {v1,v2, ...,vl} is a

k-resolving set for G if, for any distinct vertices u,w ∈V , the lists of distances

(dG(u,v1),dG(u,v2), ...,dG(u,vl)) and (dG(w,v1),dG(w,v2), ...,dG(w,vl)) differ in at least k-

positions.

Definition 2.5. [10] A k-resolving set with minimum cardinality is called a k-metric basis of G.

Definition 2.6. [10] The cardinality of a k-metric basis of G is called k-metric dimension of G,

denoted by dimk(G).

Definition 2.7. [10] If k is the largest integer for which G has a k-resolving set, then G is called

a k-metric dimensional graph.

Definition 2.8. [10] Given two vertices x,y ∈ V (G), the set of distinctive vertices of x,y is

denoted by DG(x,y) and is defined as DG(x,y) = {z ∈V (G) : dG(x,z) 6= dG(y,z)}.

Many results were derived using this definition.

Theorem 2.9. [10] A connected graph G is k-metric dimensional if and only if k =

minx,y∈V (G)|DG(x,y)|.

Definition 2.10. [30] The Cartesian product of G and H, written, G�H, is the graph with

vertex set V (G)×V (H) specified by putting (u,v) adjacent to (u′,v′) if and only if (i) u = u′ and

vv′ ∈ E(H), or (ii) v = v′ and uu′ ∈ E(G).

3. MAIN RESULTS

3.1. The k-metric dimension of Pm�Cn. A stacked prism is obtained by choosing G = Pm

and H =Cn in Definition 2.10 [30]. As we will show, for any graph Pm�Cn of order nm and any

k ∈
{

1, ...,dn
2em

}
,

dimk(G) =


2k−

⌊
k⌈n
2

⌉⌋, when n is odd,

2k, if k ≥ 2 and 2k+1, if k = 1, when n is even and n≥ 6.
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This goes on to provide an interesting infinite family of k− metric dimensional graphs namely,

stacked prisms.

Suppose that G is the graph Pm�Cn, and U = {u1,u2, ...,um} and V = {v1,v2, ...,vn} are the

vertex sets of Pm and Cn respectively. It is clear that, if G is a k-metric dimensional graph, then

for every natural number k′ ≤ k, G also has a k′-metric basis. A characterization of k-metric

dimensional graphs obtained in Theorem 2.9 [10], will be useful in our work.

To compute the k-metric dimension of stacked prism graphs, we need to first determine for

which values of k there exists a k-metric basis. This is answered by our first result.

Theorem 3.1. The stacked prism graph G = Pm�Cn is
⌈

n
2

⌉
m-metric dimensional for any inte-

gers m≥ 2 and n≥ 3.

Proof. We will first show that k ≤
⌈

n
2

⌉
m. For this, let us consider the vertices (u1,v1) and

(u2,v2) .

When n is odd, DG
(
(u1,v1) ,(u2,v2)

)
=
(
{u1}×{v1,vd n

2e+1,vd n
2 e+2, ...vn−1,vn}

)
∪
(
{u2,u3, ...,um}×{v2,v3, ....,vd n

2 e,vd n
2 e+1}

)
.

Thus,∣∣DG
(
(u1,v1) ,(u2,v2)

)∣∣= dn
2e+(m−1)(dn

2e+1−1),∣∣DG
(
(u1,v1) ,(u2,v2)

)∣∣= dn
2e(1+m−1),∣∣DG

(
(u1,v1) ,(u2,v2)

)∣∣= dn
2em.

Similarly, when n is even, DG
(
(u1,v1) ,(u2,v2)

)
=
(
{u1}×{v1,vd n

2e+2,vd n
2e+3, ...vn−1,vn}

)
∪
(
{u2,u3, ...,um}×{v2,v3, ....,vd n

2 e,vd n
2 e+1}

)
.

Thus,∣∣DG
(
(u1,v1) ,(u2,v2)

)∣∣= dn
2e+(m−1)(dn

2e+1−1),∣∣DG
(
(u1,v1) ,(u2,v2)

)∣∣= dn
2e(1+m−1),∣∣DG

(
(u1,v1) ,(u2,v2)

)∣∣= dn
2em.

We see that dn
2em is the largest minimum value possible (since we consider the full vertex set).
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Hence G is k-metric dimensional for some k ≤ dn
2em.

Next we will show that k ≥ dn
2em. Let

(
ui,v j

)
and (us,vt) be any two distinct vertices of G.

Let us consider the following cases to determine the number of distinctive vertices.

Case 1. i = s.

Hence j 6= t and it follows that

{ui}×
{

v j,vt
}
⊆DG

((
ui,v j

)
,(us,vt)

)
for i = 1,2, ..,m.

Also
∣∣({ui}×V

)
∩DG

((
ui,v j

)
,(us,vt)

)∣∣≥ n−1 when n is odd and∣∣({ui}×V
)
∩DG

((
ui,v j

)
,(us,vt)

)∣∣≥ n−2 when n is even, for i = 1,2, ...,m.

Thus, for odd n, we have∣∣DG
(
(ui,v j),(us,vt)

)∣∣ ≥ ∣∣{ui}×
{

v j,vt
}∣∣+ |({ui} ×V ) ∩ DG

(
(ui,v j),(us,vt)

)
| − 2, for i =

1,2, ..,m

≥ 2+n−1−2

≥ n−1, for i = 1,2, ...,m.

Hence in general,∣∣DG
(
(ui,v j),(us,vt)

)∣∣≥ (n−1)+(n−1)+(n−1)+ ...+(n−1) (m times)

≥ m(n−1) = mn−m

≥ mn−n if n≥ m

≥ n, since m≥ 2.

We have mn− n ≥ n. Dividing by 2 on both sides and taking ceil function on both sides,

we get, dmn−n
2 e ≥ d

n
2e. Multiplying on both sides by m, we get dmn−n

2 em ≥ d
n
2em. Hence∣∣DG

(
(ui,v j),(us,vt)

)∣∣≥ dn
2em if n≥ m.

If n≤ m then mn−m≥ n2−n = n(n−1) .

mn−m≥ n and n−1.

Consider mn−m ≥ n. This implies that dmn−m
2 e ≥ dn

2e. Multiplying both sides by m, we get

dmn−m
2 em≥ dn

2em. Hence
∣∣DG

(
(ui,v j),(us,vt)

)∣∣≥ dn
2em if n≤ m.
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Similarly, for even n, we have∣∣DG
(
(ui,v j),(us,vt)

)∣∣≥ ∣∣{ui}×
{

v j,vt
}∣∣+ |({ui}×V )∩DG

(
(ui,v j),(us,vt)

)
|−2

≥ 2+n−2−2

≥ n−2, for i = 1,2, ...,m.

Hence in general,∣∣DG
(
(ui,v j),(us,vt)

)∣∣≥ (n−2)+(n−2)+(n−2)+ ...+(n−2) (m times)

≥ m(n−2) = mn−2m

≥ mn−2n if n≥ m

≥ 0, since m≥ 2.

We have mn − 2m ≥ 0. This implies mn ≥ 2m ≥ dn
2em since n ≥ 3. Hence∣∣DG

(
(ui,v j),(us,vt)

)∣∣≥ dn
2em if n≥ m.

If n≤ m then consider mn−2m≥ n2−2n = n(n−2).

mn−2m≥ n and n−2.

Consider mn− 2m ≥ n. This implies that mn ≥ 2m + n ≥ 2m ≥ dn
2em since n ≥ 3. Thus∣∣DG

(
(ui,v j),(us,vt)

)∣∣≥ dn
2em if n≤ m.

Case 2. j = t.

Proof is similar to Case 1.

Case 3. i 6= s and j 6= t.

We assume i < s. Depending on j < t or > t, we have the following cases:

Case 3(i). j < t.

Then,∣∣DG
((

ui,v j
)
,(us,vt)

)∣∣≥ ∣∣{u1, ...,us}×
{

v j
}∣∣+ |{ui, ...,um}×{vt}|+ |{ui}×{v1, ...,vt}|

+
∣∣{us}×

{
v j, ...,vn

}∣∣−4.

≥ s+(m− i+1)+ t +(n− j+1)−4

= s+ t +m+n− i− j−2

≥ i+ j+m+n− i− j−2 (because i < s, j < t)
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≥ m+n−2

≥ n, since m≥ 2.

Now m+ n− 2 ≥ n. This implies m+ n ≥ n+ 2. Dividing by 2 throughout and taking ceil

function on both sides, we get dm+n
2 e ≥ d

n+2
2 e. Multiplying both sides by m, we get dm+n

2 em≥

dn+2
2 em≥ d

n
2em. Hence

∣∣DG
(
(ui,v j),(us,vt)

)∣∣≥ dn
2em if n≤ m.

Case 3(ii). j > t.

Proof is similar to Case 3(i).

As a result of all the cases, k ≥
⌈

n
2

⌉
m. Hence k =

⌈
n
2

⌉
m. By Theorem 2.9 [10], a graph is

k-metric dimensional if and only if k = minx,y∈V (G)|DG(x,y)|. Hence Pm�Cn is
⌈

n
2

⌉
m-metric

dimensional since k =
⌈

n
2

⌉
m. �

As in case of Ps�Pt [1], Kn�Pm [20] and Kn�Km[21] the distinctive vertices play an important

role here also. It is observed that for a pair x,y, if S is a k-resolving set for G = Pm�Cn, then

|D(x,y)∩ S| ≥ k. We use this fact in proving the existence of k-metric dimension for every

k ∈
{

1,2, ...,
⌈

n
2

⌉
m
}

for Pm�Cn. The result given below establishes this fact.

Theorem 3.2. For the graph G = Pm�Cn,

dimk(G) =


2k−

⌊
k⌈n
2

⌉⌋, when n is odd,

2k, if k ≥ 2 and 2k+1, if k = 1, when n is even and n≥ 6.

for any integers m≥ 2,n≥ 3 and k ∈
{

1,2, ...,
⌈

n
2

⌉
m
}

.

Proof. When k = 1 , from [5] we know that,

β (Pm�Cn) =


2, if n is odd

3, if n is even.

Thus,

dim1(G) = dim(G) =


2, if n is odd

3, if n is even.



CODES FROM k-RESOLVING SETS FOR STACKED PRISM GRAPHS 9

From now on we consider only k ≥ 2.

Let (ui,v j) and (us,vt) be two distinct vertices of G.

The proof is divided into two cases depending on n being odd or even.

Case 1. n is odd.

First we will show that, dimk(G)≤ 2k−

⌊
k⌈n
2

⌉⌋. The metric basis of Pm�Cn follows an iterative

process given below:

SI =
(
{ul}×

{
vn−2q,vn−q

})
SII =

(
{ul}×

{
vn−2q,vn−(2q−1),vn−q,vn−(q−1)

})
To this set SII , add pairs

{
vn−(2q−2),vn−(q−2)

}
, .....,

{
vn−(2q−r),vn−(q−r)

}
where q =

⌊
n
2

⌋
and

r =
⌊

n
2

⌋
−1. Each pair gives a new k-resolving set. Next, we get

SIII =
(
{ul}×

{
vn−2q,vn−(2q−1), ....,vn−(2q−r),vn−q,vn−(q−1), ....,vn−(q−r),vn

})
.

Once we reach {ul}×V , we move to the next l iteration. The old l value becomes the new p

value.

Thus, we have

SIV =
({

up
}
×V )∪

(
{ul}×

{
vn−2q,vn−q

})
where l = 1,2, ...,m and p= 1,2, ...,m−1. Again we apply SII , SIII to SIV till we reach {ul}×V ,

in which case the old l value is added to p and l goes to the next iteration. We repeat this pro-

cess till we get the full vertex set of Pm�Cn.Note that when k = n + 1, the metric basis is

S =
(
{u1,um}×V

)
(It does not follow the iteration process). Consider the distance matrix of

Pm�Cn with respect to all the bases S (given above). For each k, we see that the metric repre-

sentations of each vertex is unique and each pair of vertices differ in at least k positions. Hence

S is a k-resolving set. Thus, dimk(G)≤ 2k−

⌊
k⌈n
2

⌉⌋.

Next we will show that dimk(G)≥ 2k−

⌊
k⌈n
2

⌉⌋.

We will show that no smaller k-resolving set can exist. We shall prove this by contradiction.

When k =

⌈
n
2

⌉
m, dimk(G) ≤ 2k−m. Suppose S′ is a k-metric basis for G = Pm�Cn of cardi-

nality < 2k−m, that is of cardinality 2k− (m+1).
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Then S′ = {(u1,v1), ...,(u1,vn),(u2,v1), ....,(u2,vn), .......,(um,v1), ...,(um,vn−1)}. We consider

the vertices
(
um−1,vn

)
,
(
um,v1

)
, and

(
um,vn−1

)
. Let A = DG

(
(um−1,vn),(um,v1)

)
∩ S′ and

B = DG
(
(um−1,vn),(um,vn−1)

)
∩S′. Hence

|A|=
∣∣DG

(
(um−1,vn),(um,v1)

)
∩S′
∣∣

=
∣∣∣(({u1, ...,um−1}×{vd n

2e, ...,vn}
)
∪
(
{um}×{v1,vd n

2e−1, ...,vd n
2e}
))
∩S′
∣∣∣

≥ k (This holds for m≥ 5)

and

|B|=
∣∣DG

(
(um−1,vn),(um,vn−1)

)
∩S′
∣∣

=
∣∣∣(({u1, ...,um−1}×{v1, ...,vd n

2e−1,vn}
)⋃(
{um}×{vd n

2e−1, ...,vn−1}
))
∩S′
∣∣∣

≥ k (This holds for m≥ 6)

We have,

|S′| ≥ |A|+ |B|− (m+1) where m+1 represents the common vertices.

|S′| ≥ 2k− (m+1). Note that 2k− (m+1) is same as 2(k−1)−

⌊
k−1⌈n

2

⌉ ⌋.

Now suppose |S′| = 2(k− 1)−

⌊
k−1⌈n

2

⌉ ⌋. Thus, it follows, |A| = k and |B| = k. Consider(
um,v1

)
,
(
u1,vn

)
∈ S and S = A∪B. Let P1 denote all the vertices except

(
um,v1

)
and P2 denote

all the vertices except
(
u1,vn

)
. That is, P1 =

((
{um}×{v2, ...,vn−1}

)
∪
(
{u1, ...,um−1}×V

))
and P2 =

((
{u1,um−1}×{v1, ...,vn−1}

)
∪
(
{u2, ...,um−1}×V

))
.

So, ∣∣P1∩S′
∣∣= k−1

and ∣∣P2∩S′
∣∣= k−1.

Let us consider the vertices along the diagonal namely (u1,v1),(u2,v2), ....,(um,vn). For

every pair of these vertices, we denote the set of distinctive vertices by Q, that is, Q =

DG
(
(u1,v1),(u2,v2)

)
. We note that since S′ is a k-metric basis,

∣∣Q∩S′
∣∣≥ k.

Thus, ∣∣Q∩S′
∣∣≤ ∣∣P1∩S′

∣∣= k−1
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and ∣∣Q∩S′
∣∣≤ ∣∣P2∩S′

∣∣= k−1.

This is a contradiction to the fact that S′ is a k-metric basis. Therefore, |S′| 6= 2(k−1)−

⌊
k−1⌈n

2

⌉ ⌋.

Hence |S′| ≥ 2k−

⌊
k⌈n
2

⌉⌋ . Applying the same process for all other k values, we obtain similar

contradictions. Thus, dimk(Pm�Cn)≥ 2k−

⌊
k⌈n
2

⌉⌋. Hence, dimk(Pm�Cn) = 2k−

⌊
k⌈n
2

⌉⌋.

Case 2. n is even.

We need to prove that dimk(G) = 2k. We will first show that dimk(G) ≤ 2k. The metric basis

of Pm�Cn follows an iterative process as given below:

SI =
(
{ul}×

{
vn−(n−1),vn−(2q−2),vn−(q−1)

})
SII =

(
{ul}×

{
vn−(n−1),vn−(2q−2),vn−(q−1),vn−(q−2)

})
To this set SII , add pairs

{
vn−(2q−3),vn−(q−3)

}
, .....,

{
vn−(2q−r),vn−(q−r)

}
where q =

n
2

and r =
n
2

.

Each pair gives a new k-resolving set. Once we reach {ul}×V , we move to the next l iteration.

The old l value becomes the new p value.

Thus, we have

SIII =
({

up
}
×V )∪

(
{ul}×

{
vn−(n−1),vn−(q−1)

})
where l = 1,2, ...,m and p = 1,2, ...,m−1.

To SIII , we add the pairs
{

vn−(2q−2),vn−(q−2)
}
, .....,

{
vn−(2q−r),vn−(q−r)

}
till {ul}×V is at-

tained. The old l value is added to p and the next l iteration is applied on SIII . We repeat this

process till we get the full vertex set of Pm�Cn. Consider the distance matrix of Pm�Cn with re-

spect to all the bases S (given above). For each k, we see that the metric representations of each

vertex is unique and each pair of vertices differ in at least k positions. Hence S is a k-resolving

set. Thus, dimk(G)≤ 2k.

Next we show that dimk(G) ≥ 2k. We will prove that no smaller k-resolving set can exist. We

will prove this by method of contradiction. Let S′ be a k-metric basis for G = Pm�Cn of cardi-

nality < 2k, that is of cardinality 2k−2. Then,
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S′ = {(u1,v1), ...,(u1,vn),(u2,v1), ....,(u2,vn), .....,(um,v1), ...,(um,vn−2)}. Let us con-

sider the following vertices
(
um−1,v1

)
,
(
um,vn

)
,
(
um−1,vn

)
and

(
um,v1

)
. Let A =

|DG
(
(um,vn),(um−1,v1)

)
∩S′| and B =

∣∣DG
(
(um−1,vn),(um,v1)

)
∩S′
∣∣. Then

|A|=
∣∣DG

(
(um,vn),(um−1,v1)

)
∩S′
∣∣

=
∣∣∣(({u1, ...,um−1}×{v1, ...,vd n

2e}
)
∪
(
{um}×{vd n

2 e+1, ....,vn−2}
))
∩S′
∣∣∣ ≥ k−2

and

|B|=
∣∣DG

(
(um−1,vn),(um,v1)

)
∩S′
∣∣

=
∣∣∣(({u1, ...,um−1}×{vd n

2e+1, ....,vn}
)
∪
(
{um}×{v1, ....,vd n

2 e}
))
∩S′
∣∣∣≥ k.

We have,

|S′| ≥ |A|+ |B|

|S′| ≥ 2k−2

Now suppose |S′| = 2k − 2. Thus, it follows, |A| = k − 2 and |B| = k. Consider(
um,v⌈ n

2

⌉
+1

)
,
(
u1,vn

)
∈ S and S = A ∪ B. Let P1 denote all the vertices of G ex-

cept
(
um,v⌈ n

2

⌉
+1

)
and P2 denote all the vertices of G except

(
u1,vn

)
. That is,

P1 =
((
{um} × {v1, ...,v⌈ n

2

⌉,v⌈ n
2

⌉
+2
, ....,vn−2}

)
∪
(
{u1, ...,um−1} × V

)) [
This holds for

n > 6, and when n = 6, P1 is
((
{um} × {v1, ...,vd n

2e}
)
∪
(
{u1,u2, ...,um−1} × V

)) ]
and

P2 =
((
{u1}×{v1, ..,vn−1}

)
∪
(
{u2, ...,um−1}×V

)
∪
(
{um}×{v1, ...,vn−2}

))
. So,

∣∣P1∩S′
∣∣= k−3

and ∣∣P2∩S′
∣∣= k−1.

Let us consider the vertices along the diagonal namely, (u1,v1),(u2,v2), ....,(um,vm). For

every pair of these vertices, let us denote the set of distinctive vertices by Q, that is, Q =

DG
(
(u1,v1),(u2,v2)

)
. We note that since S′ is a k-metric basis, |Q∩S′| ≥ k−2 and |Q∩S′| ≥ k.

Thus, ∣∣Q∩S′
∣∣≤ ∣∣P1∩S′

∣∣= k−3

and ∣∣Q∩S′
∣∣≤ ∣∣P2∩S′

∣∣= k−1.
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This is a contradiction to the fact that S′ is a k-metric basis.

Therefore,|S′| 6= 2k−2. That is, |S′| ≥ 2k−1.

Suppose |S′| = 2k− 1. Then |A| = k− 1 and |B| = k. Applying the same procedure as above,

we arrive at a similar contradiction. Therefore, |S′| 6= 2k−1. Hence we have that, |S′| ≥ 2k.

Applying the same process as above for all other k values, we obtain similar contradictions.

Thus, dimk(Pm�Cn)≥ 2k. Hence dimk(Pm�Cn) = 2k. �

3.2. Codes from stacked prisms Pm�Cn. In this section, we use the family of stacked prism

graphs, that is, the cartesian product of the path graph Pm with cycle Cn, to obtain (Pm�Cn,k)-

codes.

The interesting application of purely graph theoretic concept of k-resolving sets comes in the

form of generating codes from these. These two were nicely merged by Bailey and Yero [1],

wherein they derived codes from k-resolving sets. For ready reference we list some important

definitions and results that help us in getting our main results.

Definition 3.3. [1] Let G be a graph with n vertices and diameter d, and let

S = {v1,v2, ...,vl} be a k-resolving set for G of size l. Then the set C (G,S) ={(
dG(u,v1),dG(u,v2), ...,dG(u,vl)

)
: u ∈V

}
is called a (G,k)-code.

Remark 3.4. 1. C (G,S) is an error-correcting code of length l, size n and with minimum

hamming distance at least k, over the alphabet {0, ....,d}, which can correct r = b(k−

1)/2c errors. Also k ≥ 3 for r > 0.

2. To get Hamming distance between codewords, label each codeword or row of the matrix

A as c1,c2, ...crank(A). Then pairwise Hamming distance is calculated and written as an

array to form a new matrix HD(C ) in which the distances from ci to all other codewords

makes the ith row. Therefore, hi j = dH(ci,c j). Note that HD(C ) has order rank(A)×

(rank(A)−1).

3. For C (G,S) to be used for error correction, we need a decoding algorithm see section

3.3.

4. Uncoverings was introduced by Bailey in [2, 3] where they were applied to decoding

permutation codes.
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Uncovering design is defined as [1] : Let ν ,κ ,τ be integers such that ν ≥ κ ≥ τ ≥ 0.

A (ν ,ν − κ,τ)-uncovering is a collection U of (ν − κ)-subsets of {1, ...,ν} with the

property that any τ-subset of {1, ...,ν} is disjoint from at least one member of U . Taking

the complements of each (ν−κ)-subset in U , we obtain a (ν ,κ,τ)-covering design.

We use covering and uncovering designs in our decoding algorithm.

Theorem 3.5. A (Pm�Cn,k)-code has mn codewords of length l = dimk(G) = 2k−

⌊
k⌈n
2

⌉⌋ over

an alphabet of size diam(Pm�Cn) =

⌈
n
2

⌉
+(m−2) and with minimum distance at least k and

so can correct r =
⌊
(k−1)

2

⌋
errors, whenever n is odd.

Proof. Proof follows from the above two results Theorem 3.1 and Theorem 3.2. �

We illustrate using the following example.

Example 3.6. Consider P4�C3 as in Figure 1.

By Theorem 3.1, we know that P4�C3 is
⌈

3
2

⌉
×4 = 8-metric dimensional.

From Theorem 3.2, dim8(G) = 16−

⌊
8⌈3
2

⌉⌋= 12.

The metric basis of P4�C3 is as follows:

S1 =
(
{u1}×{v1,v2}

)
S2 =

(
{u1}×{v1,v2,v3}

)
S3 =

(
{u1}×V )∪

(
{u2}×{v1,v2}

)
S4 =

(
{u1,u4}×V )

S5 =
(
{u1,u2}×V )∪

(
{u3}×{v1,v2}

)
S6 =

(
{u1,u2,u3}×V )

S7 =
(
{u1,u2,u3}×V )∪

(
{u4}×{v1,v2}

)
S8 =

(
{u1,u2,u3,u4}×V )

Thus, S = ({u1,u2,u3,u4}×{v1,v2,v3}) is a 8-resolving set.

We find the distance of each vertex in S with every vertex of P4�C3 which is nothing but its
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distance matrix, as shown below. Note that each row represents the distance of one vertex to all

the vertices of P4�C3.



0 1 1 1 2 2 2 3 3 3 4 4

1 0 1 2 1 2 3 2 3 4 3 4

1 1 0 2 2 1 3 3 2 4 4 3

1 2 2 0 1 1 1 2 2 2 3 3

2 1 2 1 0 1 2 1 2 3 2 3

2 2 1 1 1 0 2 2 1 3 3 2

2 3 3 1 2 2 0 1 1 1 2 2

3 2 3 2 1 2 1 0 1 2 1 2

3 3 2 2 2 1 1 1 0 2 2 1

3 4 4 2 3 3 1 2 2 0 1 1

4 3 4 3 2 3 2 1 2 1 0 1

4 4 3 3 3 2 2 2 1 1 1 0



u1 u2 u3 u4

v3

v2v1

u1v1

u1v2

u1v3

u2v1

u2v2

u2v3

u3v1

u3v2

u3v3

u4v1

u4v2

u4v3

FIGURE 1. P4�C3
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Next we determine its minimum hamming distance. The hamming distance matrix HD(C ) is

given below. 

8 8 12 8 8 9 11 11 12 10 10

8 8 8 12 8 11 9 11 10 12 10

8 8 8 8 12 11 11 9 10 10 12

12 8 8 8 8 12 8 8 9 11 11

8 12 8 8 8 8 12 8 11 9 11

8 8 12 8 8 8 8 12 11 11 9

9 11 11 12 8 8 8 8 12 8 8

11 9 11 8 12 8 8 8 8 12 9

11 11 9 8 8 12 8 8 8 8 12

12 10 10 9 11 11 12 8 8 8 8

10 12 10 11 9 11 8 12 8 8 8

10 10 12 11 11 9 8 9 12 8 8



We observe that the minimum hamming distance is 8. Hence by Theorem 3.5, a (P4�C3,8)-

code has 12 codewords over the alphabet {0,1,2,3,4} and has minimum distance 8, so can

correct r =
⌊

8−1
2

⌋
= 3 errors.

The set of codewords obtained from distance matrix is as follows:

{011122233344, 101212323434, 110221332443, 122011122233, 212101212323,

221110221332, 233122011122, 323212101212, 332221110221, 344233122011,

434323212101, 443332221110}.

Theorem 3.7. A (Pm�Cn,k)-code has mn codewords of length

l = dimk(G) =

 2k, if k ≥ 2

2k+1, if k = 1

over an alphabet of size diam(Pm�Cn) =

⌈
n
2

⌉
+(m−1) and with the minimum distance k and

so can correct r =
⌊
(k−1)

2

⌋
errors, whenever n is even.

Proof. Proof follows from the two results Theorem 3.1 and Theorem 3.2. �

We illustrate using the following example.
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Example 3.8. Consider P3�C6 as in Figure 2.

By Theorem 3.1, we know that P3�C6 is
⌈

6
2

⌉
×3 = 9-metric dimensional.

From Theorem 3.2, dim9(G) = 2(9) = 18.

The metric basis of P3�C6 is as follows:

S1 =
(
{u1}×{v1,v2,v4}

)
S2 =

(
{u1}×{v1,v2,v4,v5}

)
S3 =

(
{u1}×V )

S4 =
(
{u1}×V )∪

(
{u2}×{v1,v4}

)
S5 =

(
{u1}×V )∪

(
{u2}×{v1,v2,v4,v5}

)
S6 =

(
{u1,u2}×V )

S7 =
(
{u1,u2}×V )∪

(
{u3}×{v1,v4}

)
S8 =

(
{u1,u2}×V )∪

(
{u3}×{v1,v2,v4,v5}

)
S9 =

(
{u1,u2,u3}×V )

Thus, S = ({u1,u2,u3}×{v1,v2,v3,v4,v5,v6}) is a 9-resolving set.

u1 u2 u3

v1

v2 v3

v4

v5v6

u1v1 u1v2 u1v3 u1v4 u1v5 u1v6

u2v1 u2v2 u2v3 u2v4 u2v5 u2v6

u3v1 u3v2 u3v3 u3v4 u3v5 u3v6

FIGURE 2. P3�C6
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We find the distance of each vertex in S with every vertex of P3�C6. This is nothing but the

distance matrix of P3�C6 (shown below), where each row represents the distance of one vertex

to all the vertices of P3�C6.



0 1 2 3 2 1 1 2 3 4 3 2 2 3 4 5 4 3

1 0 1 2 3 2 2 1 2 3 4 3 3 2 3 4 5 4

2 1 0 1 2 3 3 2 1 2 3 4 4 3 2 3 4 5

3 2 1 0 1 2 4 3 2 1 2 3 5 4 3 2 3 4

2 3 2 1 0 1 3 4 3 2 1 2 4 5 4 3 2 3

1 2 3 2 1 0 2 3 4 3 2 1 3 4 5 4 3 2

1 2 3 4 3 2 0 1 2 3 2 1 1 2 3 4 3 2

2 1 2 3 4 3 1 0 1 2 3 2 2 1 2 3 4 3

3 2 1 2 3 4 2 1 0 1 2 3 3 2 1 2 3 4

4 3 2 1 2 3 3 2 1 0 1 2 4 3 2 1 2 3

3 4 3 2 1 2 2 3 2 1 0 1 3 4 3 2 1 2

2 3 4 3 2 1 1 2 3 2 1 0 2 3 4 3 2 1

2 3 4 5 4 3 1 2 3 4 3 2 0 1 2 3 2 1

3 2 3 4 5 4 2 1 2 3 4 3 1 0 1 2 3 2

4 3 2 3 4 5 3 2 1 2 3 4 2 1 0 1 2 3

5 4 3 2 3 4 4 3 2 1 2 3 3 2 1 0 1 2

4 5 4 3 2 3 3 4 3 2 1 2 2 3 2 1 0 1

3 4 5 4 3 2 2 3 4 3 2 1 1 2 3 2 1 0


Next we determine the minimum hamming distance for these. The hamming distance matrix

HD(C ) is given below.
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

18 12 18 12 18 18 9 18 12 18 9 12 18 12 18 12 18

18 18 12 18 12 9 18 9 18 12 18 18 12 18 12 18 12

12 18 18 12 18 18 9 18 9 18 12 12 18 12 18 12 18

18 12 18 18 12 12 18 9 18 9 18 18 12 18 12 18 12

12 18 12 18 18 18 12 18 9 18 9 12 18 12 18 12 18

18 12 18 12 18 9 18 12 18 9 18 18 12 18 12 18 12

18 9 18 12 18 9 18 12 18 12 18 18 9 18 12 18 9

9 18 9 18 12 18 18 18 12 18 12 9 18 9 18 12 18

18 9 18 9 18 12 12 18 18 12 18 18 9 18 9 18 12

12 18 9 18 9 18 18 12 18 18 12 12 18 9 18 9 18

18 12 18 9 18 9 12 18 12 18 18 18 12 18 9 18 9

9 18 12 18 9 18 18 12 18 12 18 9 18 12 18 9 18

12 18 12 18 12 18 18 9 18 12 18 9 18 12 18 12 18

18 12 18 12 18 12 9 18 9 18 12 18 18 18 12 18 12

12 18 12 18 12 18 18 9 18 9 18 12 12 18 18 12 18

18 12 18 12 18 12 12 18 9 18 9 18 18 12 18 18 12

12 18 12 18 12 18 18 12 18 9 18 9 12 18 12 18 18

18 12 18 12 18 12 9 18 12 18 9 18 18 12 18 12 18


We observe that minimum hamming distance is 9. Hence by Theorem 3.7, a (P3�C6,9)-code

has 18 codewords over the alphabet {0,1,2,3,4,5} and has minimum distance 9, so can correct

r =
⌊

9−1
2

⌋
= 4 errors.

The set of codewords obtained from distance matrix is as follows:

{012321123432234543, 101232212343323454, 210123321234432345,

321012432123543234, 232101343212454323, 123210234321345432, 123432012321123432,

212343101232212343, 321234210123321234, 432123321012432123, 343212232101343212,

234321123210234321, 234543123432012321, 323454212343101232, 432345321234210123,

543234432123321012, 454323343212232101, 345432234321123210}.
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In the next section, we obtain the decoding algorithm for (Pm�Cn,k)-codes.

3.3. Decoding Algorithm. In this section we give a decoding algorithm which is a modifica-

tion of the decoding algorithm given by Bailey and Yero [1].

Our decoding algorithm is as follows: Suppose we have received the word x =

x1,x2, ...,xdimk(Pm�Cn) of length dimk(Pm�Cn). Consider a (Pm�Cn,k)-code having mn code-

words of length l = dimk(Pm�Cn) with error-correction capability r = b(k−1)/2c. We wish to

correct r errors. Let r
′
= 1 < r. We determine the covering design (dimk(Pm�Cn),r+1,r

′
= 1).

To obtain this, we partition dimk(Pm�Cn) = a(r+ 1)+ b into p subsets including as many as

possible sets of size t where t =
⌊
r+1/r

′
+1c= br+1/2c and p = dv/te. For any combination

r
′
of the sets in the partition dimk(Pm�Cn), take r+1 subsets of points which contain their union.

Further, these r+ 1 subsets of points are chosen in such way that they are disjoint from other

r+1 subsets of points(as much as possible). These form the blocks of (dimk(Pm�Cn),r+1,r
′
=

1). Taking the complement of these blocks we get (dimk(Pm�Cn),dimk(Pm�Cn)−r−1,r
′
= 1)-

uncovering design.

Next we partition the received word x = x1,x2, ...,xdimk(Pm�Cn) and the blocks of the uncovering

design into r+1 sets. We now compare each of r+1 bit of the received word with the distance

matrix of (Pm�Cn,k) at positions indexed by all the blocks of the uncovering design such that

atleast r elements must be identical to the elements of x. The row belonging to (Pm�Cn,k) hav-

ing most number of common entries from all the blocks of the uncovering design is the original

transmitted word. Thus on comparing the original received word with the common row (that

we have obtained) we will obtain the error positions, which can easily be rectified.

Remark 3.9. Our decoding is better than the decoding proposed by Bailey and Yero [1]. In

our decoding we fix r
′
= 1. We consider covering designs (dimk(Pm�Cn),r+ 1,r

′
) instead of

(dimk(Pm�Cn),r,r
′
) where r

′
< r. Also we consider uncovering designs

(dimk(Pm�Cn),dimk(Pm�Cn)− r− 1,r
′
) instead of (dimk(Pm�Cn),dimk(Pm�Cn)− r,r

′
). We

observe that in our decoding the number of blocks of uncovering design reduces. Further in-

stead of checking each column corresponding to each symbol of the received word, we check
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only r+1 words such that atleast r words match with the codeword. This reduces the computa-

tion time.

3.4. Complexity. Let U denote the uncovering design (dimk(Pm�Cn),dimk(Pm�Cn)− r−

1,r
′
) and let the total number of blocks of U be denoted by T . For each block of U , the

distance matrix of Pm�Cn is examined at most |T | − 1 times and this repeats for every block

of U . Since we have T blocks, it follows that the complexity of the decoding algorithm is

O(|T |−1 · |T |).

4. CONCLUSION

The k-metric dimension is an extension of the classical metric dimension. While determining

the k-metric dimension of any arbitrary graph is NP-hard, we have tried to solve the open case

for Stacked prism graphs.

In this paper we have studied the k-metric dimension of a stacked prism Pm�Cn. An explicit

formula for dimk(Pm�Cn) is determined and the codes arising from k-resolving sets of the

stacked prisms Pm�Cn are developed. Decoding in terms of covering and uncovering designs

are given. In future communications this procedure is extended to obtain codes from other

(Cartesian) products of some standard classes of graphs such as Kn�Pm and Rook’s graphs.
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