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Abstract. We introduce a new class of asymptotically pseudononspreading mappings and demonstrate its rela-

tionship with the existing related families of mappings. Demiclosedness principle for the mappings as well as the

convexity and closedness of its fixed point set are established. Furthermore, we propose and investigate a new

iterative algorithm for solving multiple-set split feasibility problem for the new class of mappings. In particular,

weak and strong convergence theorems for solving multiple-set split feasibility problem for a certain subclass of

the new class of mappings in Hilbert spaces are proved and certain applications are given. The results presented

in the paper extend and improve the results of Osilike and Isiogugu [1], Quan and Chang [2] and host of other

corresponding related results in literature.
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1. INTRODUCTION

The split feasibility problem (SFP) in finite-dimensional spaces was first introduced by Censor

and Elfving [3] for modeling inverse problems which arise from phase retrievals and in medical
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image reconstruction, see [4] and [3]. Recently, it has been found that the SFP can also be used

in various disciplines such as image restoration, computer tomograph, and radiation therapy

treatment planning (see [5] and references therein]. The multiple-set split feasibility problem

(MSSFP) was studied in ([2] and references therein].

Let H1 and H2 be real Hilbert spaces and let A : H1→ H2 be a bounded linear operator. Sup-

pose that {C1, · · · ,CN} and {Q1, · · · ,QM} are nonempty closed convex subsets of H1 and H2,

respectively. Then, the multiple set split feasibility problem is

to f ind x∗ ∈
N⋂

i=1

Ci such that Ax∗ ∈
M⋂

j=1

Q j (1.1).

In the sequel, we use Γ to denote the set of solutions of the problem (MSSFP) (1.1), that is,

Γ =

{
x ∈

N⋂
i=1

Ci : Ax ∈
M⋂

j=1

Q j

}
.

It is worthy of note that MSSFP (1.1) becomes Split Feasibility Problem (SFP) when N = M =

1. In this paper, we propose and investigate a new iterative algorithm for solving multiple-set

SFP (MSSFP) problem for a new class of asymptotically pseudononspreading mapping. Also,

we prove the convergence of the presented algorithm as well as some salient properties of the

fixed point set of the mapping under study.

2. PRELIMINARIES

Here, we recall some relevant definitions and lemmas which will be needed in the proof of our

main result. In what shall follow, we denote strong and weak convergence by ”→” and ”⇀”

respectively, the fixed point set of a mapping T by F(T ) and the solution set of (1.1) by Γ.

In what follows, H will denote a real Hilbert soace and C a nonempty subset of H.

Defiinition 2.1 [Demiclosedness principle] If T : H → H is a mapping, then (I−T ) is said to

be demiclosed at zero if for any sequence, {xn} ⊂ H with xn ⇀ x∗ and (I−T )xn→ 0, we have

x∗ = T x∗.

Defiinition 2.2 A single valued mapping T : C → C is said to be semicompact, if for any

bounded sequence {xn} ⊂ C with ‖(I− T )xn‖ → 0, then there exists a subsequence {xnk} of

{xn} such that {xnk} converges strongly to a point p ∈C.



ASYMPTOTICALLY PSEUDO-NONSPREADING MAPPINGS 3

Defiinition 2.3 A mapping T : C→ C is said to be asymptotically nonexpansive, see [6], if

there exists a sequence {kn} ⊂ [1,∞) with kn→ 1 as n→ ∞ such that

‖T nx−T ny‖ ≤ kn‖x− y‖ ∀ x,y ∈C and all n≥ 1 (2.1).

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [6]

in 1972. They proved that, if C is a nonempty bounded closed convex subset of a uniformly

convex Banach space E, then every asymptotically nonexpansive self-mapping T of C has a

fixed point. Further, the set F(T ) of fixed points of T is closed and convex. Since 1972, host of

authors have studied the weak and strong convergence problems of the iterative algorithms for

such a class of mappings.

Defiinition 2.4 A mapping T : C→C is said to be asymptotically pseudocontractive, see [7] if

there exists a sequence {kn} ⊂ [1,∞) with kn→ 1 as n→ ∞ such that

‖T nx−T ny‖2 ≤ kn‖x− y‖2 +‖x−T nx− (y−T ny)‖2 ∀ x,y ∈C and all n≥ 1 (2.2).

It is clear that every asymptotically nonexpansive mapping is asymptotically pseudo-contractive,

but the converse is false. See Roades[8]

Defiinition 2.5 (see [9],[10], [11] and [12]) In 2008, Kohsaka and Takahashi [11] introduced

nonspreading mapping, and obtained a fixed point theorem for a single nonspreading mapping,

and a common fixed point theorem for a commutative family of nonspreading mappings in Ba-

nach spaces. Let H be a real Hilbert space and C be a nonempty closed convex subset of H. A

mapping T : C→C is said to be nonspreading if

2‖T x−Ty‖2 ≤ ‖T x− y‖2 +‖x−Ty‖2 ∀ x,y ∈C (2.3).

Inequality (2.3) is equivalent to

‖T x−Ty‖2 ≤ ‖x− y‖2 +2〈x−T x,y−Ty〉, ∀ x,y ∈C,

and the class of nonspreading mappings contains the class of firmly nonexpansive mappings

(i.e., mappings T : C→C satisfying ‖T x−Ty‖2 ≤ 〈T x−Ty,x− y〉, ∀ x,y ∈C).

Defiinition 2.6 (see [7] A mapping T : C→C is said to be uniformly L−Lipschitzian if there
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exists a constant L≥ 0 such that for all (x,y) ∈ H×H,

‖T nx–T ny‖ ≤ L‖x− y‖. (2.4)

Defiinition 2.7 A mapping T : C→C is said to be pseudo- nonspreading if

‖T x−Ty‖2 ≤ ‖x− y‖2 +‖(I−T )x− (I−T )y‖2 +2〈x−T x,y−Ty〉 ∀ x,y ∈C, (2.5).

(See Osilike et al [13])

Defiinition 2.8 In 2011, Osilike and Isiogugu [1] introduced κ-strictly pseudo-nonspreading

mappings in Hilbert spaces, and obtained weak mean convergence theorem of Baillon’s type

for such mappings. They presented it in the nomenclature of nonspreading-type mapping and

showed that the class of nonspreading mappings is properly contained in the class of strictly

pseudononspreading mappings. Let H be a real Hilbert space with C⊂H being nonempty then

a mapping T : C → C is said to be κ-strictly pseudo-nonspreading if there exists a constant

κ ∈ [0,1) such that

‖T x−Ty‖2 ≤ ‖x− y‖2 + k‖x−T x− (y−Ty)‖2 +2〈x−T x,y−Ty〉 ∀x,y ∈C (2.6).

Defiinition 2.9 Later in 2014, Quan and Chang [2] introduced the class of κ-asymptotically

strictly pseudo-nonspreading mappings in Hilbert space which contains the class of κ-strictly

pseudo-nonspreading mappings. They studied multiple-set plit feasibility problems for the map-

pings. Let H be a real Hilbert space with C ⊂ H being nonemptsy then a mapping T : C→C

is said to be κ-asymptotically strictly pseudo-nonspreading if there exists a constant κ ∈ [0,1)

and a sequence {kn} ⊂ [1,∞) with kn→ 1 as n→ ∞ such that

‖T nx−T ny‖2 ≤ kn‖x− y‖2 + k‖x−T nx− (y−T ny)‖2 +2〈x−T nx,y−T ny〉 ∀x,y ∈C. (2.7)

As far as we know, nothing has been reported about asymptotically pseudo-nonspreading map-

pings. Thus the following questions arise naturally.

question 1: Can one introduce the concept of asymptotically pseudo-nonspreading mappings

using terminologies that are in conformity with the existing standard?

question 2: Can one display illustrative examples to show the relationship existing among the

mapping and already existing related mappings?
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question 3: Can one establish demiclosedness principle for the mapping as well as the convex-

ity and closedness of its fixed point set?

question 4: Can one establish the solution of multiple-set split feasibility problem for the map-

ping?

question 5: Can one show some possible applications of such solutions established?

question 6: Is there any numerical example to demonstrate such solutions established?

Defiinition 2.10 Inspired and motivated by the above innovations as well as the questions, we

introduce in this paper, a new family of mappings which is more general than the class of κ-

asymptotically strictly pseudo-nonspreading mappings in Hilbert space. Illustrative examples

given herein show that our new class of mappings is independent on the closely related class of

asymptotically pseudo-contractive mappings.

Defiinition 2.11 Opial property, see [13]. A Banach space E is said to have the Opial property

if for any sequence {xn} with xn ⇀ x∗, we have

liminf
n→∞

‖xn− x∗‖< liminf
n→∞

‖xn− x∗‖ (2.8)

for all y ∈ E with y 6= x∗. It is known that each Hilbert space possess the Opial property.

Lemma 2.12 see Chidume and Ofoedu[14]. Let {αn} be a sequence of nonnegative real num-

bers satisfying the following relations αn+1 ≤ (1+ cn)αn +σn,n≥ 0, such that
∞

∑
n=1

σn < ∞ and
∞

∑
n=1

cn < ∞. Then, {αn} is convergent.

If in addition that {αn} has a subsequence, {αnk} that converges to 0, then {αn} converges to 0

as n→ ∞.

Lemma 2.13 see [13]. Let H be a real Hilbert space. Then, the following results hold:

(i) For all x,y ∈ H and for all t ∈ [0,1], we have ‖tx+(1− t)y‖2 = t‖x‖2 +(1− t)‖y‖2−

t(1− t)‖x− y‖2.

(ii) ‖x+ y‖2 ≤ ‖x‖+2〈y,x+ y〉.

(iii) If {xn}∞
n=n is a sequence in H which converges weakly to z ∈ H, then

limsup
n→∞

‖xn− y‖2 = limsup
n→∞

‖xn− z‖2 +‖z− y‖2.
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3. MAIN RESULTS

Defiinition 3.1 A mapping T : C→ C is said to be asymptotically pseudo-nonspreading if

there exists a sequence {kn} ⊂ [1,∞) with kn→ 1 as n→ ∞ such that

‖T nx−T ny‖2 ≤ kn‖x− y‖2 +‖x−T nx− (y−T ny)‖2 +2〈x−T nx,y−T ny〉 ∀x,y ∈C (3.1),

or equivalently, a mapping T : C ⊂ H→C is said to be asymptotically pseudo-nonspreading if

there exists a sequence {kn} ⊂ [1,∞) with kn→ 1 as n→ ∞ such that

‖T nx−T ny‖2 ≤ kn‖x− y‖2 +‖x−T nx‖2 +‖y−T ny‖2 ∀x,y ∈C (3.2).

Remark 3.2 From, (2.1). (2.7) and (3.2), it can easily be deduced that the class of asymptot-

ically nonexpansive mappings and the class of κ-asymptotically strictly pseudo-nonspreading

are proper subclasses of the class of asymptotically pseudononspreading mappings.

Example 3.3 An example of an asymptotically pseudononspreading mapping which is not κ-

asymptotically strictly pseudo-nonspreading. Let C =
[−3

2 , 3
2

]
; C1 = {x ∈ C : |x| < 1

6}; C2 =

{x ∈C : 1
6 ≤ |x| ≤

1
2 and C3 = {x ∈C : 1

2 < |x| ≤ 3
2 . Define T : C→C by

T x =


x, i f x ∈C1;

−3x, i f x ∈C2;

−1
3x, i f x ∈C3.

(3.3)

Case 1 Suppose that x,y ∈C1 then, ∀n ∈ N, T nx = x while, T ny = y. Hence,

‖T nx−T ny‖2 = ‖x− y‖2 ≤ ‖x− y‖2 +‖x−T nx− (y−T ny)‖2 +2〈x−T nx,y−T ny〉.

Case 2 Suppose that x,y ∈C2, then, we show that T is asymptotically pseudononspreading as

follows. If n is odd, then, T nx =−3x ∈C3 while, T ny =−3y ∈C3. Hence,

‖T nx−T ny‖2 = 9‖x− y‖2 ≤ ‖x− y‖2 +‖x−T nx− (y−T ny)‖2 +2〈x−T nx,y−T ny〉.

If n is even then, T nx = x ∈C2 while, T ny = y ∈C2, . and it follows from case 1.

Case 3: If x,y ∈C3 and n is odd. Then, we show that T is asymptotically pseudononspreading

as follows.

‖T nx−T ny‖2 =
1
9
‖x− y‖2 ≤ ‖x− y‖2 +‖x−T nx− (y−T ny)‖2 +2〈x−T nx,y−T ny〉.
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If x,y ∈C3 and n is even, then, T nx = x ∈C3 while, T ny = y ∈C3, and it follows from case 1.

Case 4 Suppose that x ∈C1 and y ∈C2 then, it is easy to see that y2 = ‖y‖2 > ‖xy‖ ≥ xy. Thus,

y2− xy > 0. If n is odd, then, T nx = x ∈C1 while, T ny =−3y ∈C3. Hence,

‖T nx−T ny‖2 = ‖x+3y‖2

= ‖x− y‖2 +‖x−T nx− (y−T ny)‖2 +2〈x−T nx,y−T ny〉−8(y2− xy)

≤ ‖x− y‖2 +‖x−T nx− (y−T ny)‖2 +2〈x−T nx,y−T ny〉.

If n is even then, T nx = x ∈C1 while, T ny = y ∈C2, and it follows from case 1.

Case 5 Suppose that x ∈C1 and y ∈C3 then, it is easy to see that y2 = ‖y‖2 > ‖xy‖ ≥ xy. Thus,

y2− xy > 0. If n is odd, then, T nx = x ∈C1 while, T ny =−1
3y ∈C2. Hence,

‖T nx−T ny‖2 = ‖x+ 1
3

y‖2

= ‖x− y‖2 +‖x−T nx− (y−T ny)‖2 +2〈x−T nx,y−T ny〉− 8
3
(y2− xy)

≤ ‖x− y‖2 +‖x−T nx− (y−T ny)‖2 +2〈x−T nx,y−T ny〉.

If n is even then, T nx = x ∈C1 while, T ny = y ∈C3, and it follows from case 1.

Case 6: Suppose that x∈C2, y∈C3 and n is odd. Then, T nx=−3x∈C3 while, T ny=−1
3y∈C2.

Hence,

‖T nx−T ny‖2 = ‖3x− 1
3

y‖2

= ‖x− y‖2 +‖x−T nx− (y−T ny)‖2 +2〈x−T nx,y−T ny〉−8(x2 +
y2

3
)

≤ ‖x− y‖2 +‖x−T nx− (y−T ny)‖2 +2〈x−T nx,y−T ny〉.

If n is even, then, T nx = x ∈ C2 while, T ny = y ∈ C3, and it follows as in case 1. We thus

conclude that for all x,y ∈C” we have

‖T nx−T ny‖2 ≤ ‖x− y‖2 +‖x−T nx− (y−T ny)‖2 +2〈x−T nx,y−T ny〉.

The mapping T is not λ -strictly asymptotically pseudononspreading because, if x = 1
2 , y =−1

2

and n odd, then T nx =−3
2 and T ny = 3

2 . We have that for an arbitrary {κn} such that lim
n→∞

κn = 1

and λ ∈ [0,1), take ε = 1−λ . Since κn→ 1, it implies that there exist nε ∈ N such that κn <

ε +1 ∀ n≥ nε . Hence, ∀ n≥ nε , it follows that
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‖T nx−T ny‖2 = 9, κn‖x− y‖2 < (1+ ε),

λ‖x−T nx− (y−T ny)‖2 = 16λ , 2〈x−T nx,y−T ny〉=−8, and

κn‖x− y‖2 +λn‖x−T nx− (y−T ny)‖2 +2〈x−T nx,y−T ny〉 ≤ −6+15λ < 9 = ‖T nx−T ny‖2.

Next, we demonstrate that the family of asymptotically pseudocontractive mappings and the

family of asymptotically pseudononspreading are independent even when their fixed point sets

are nonempty.

Example 3.4 Example of an asymptotically pseudocontractive mapping which is not asymp-

totically pseudononspreading. Let us consider a bijective linear transformation, T : R2 → R2

defined by

T x̄ = Ax̄, ∀ x̄ ∈ R2, where A =

 0 −1+
√

2

−1−
√

2 0

 . (3.6)

Then, F(T ) 6= /0 since (0,0) ∈ F(T ).

Proof Observe that T nx̄ = Anx̄ and A2 =−I,A3 =−A,A4 = I,A5 = A,A6 = A2,A7 = A3, . . .An =

An−4, n≥ 5. Thus we need only prove that

‖T nx̄−T nȳ‖2 ≤ ‖x̄− ȳ‖2 +‖x̄−T nx̄− (ȳ−T nȳ)‖2, ∀ x̄, ȳ ∈ R2, for n = 1,2,3,4.

For n = 1 let x̄ = (x1,x2), ȳ = (y1,y2) ∈ R2 be arbitrary. Then,

T x̄ = ((−1+
√

2)x2,(−1−
√

2)x1)
T and T ȳ = ((−1+

√
2)y2,(−1−

√
2)y1)

T . Hence,

‖x̄− ȳ‖2 +‖x̄−T x̄− (ȳ−T ȳ)‖2

= ‖T x̄−T ȳ‖2 +2[‖x̄− ȳ‖2−〈x̄− ȳ,T (x̄− ȳ)〉]

= ‖T x̄−T ȳ‖2 +2[‖(x1− y1,x2− y2)‖2−〈(x1− y1,x2− y2),T (x1− y1,x2− y2)〉]

= ‖T x̄−T ȳ‖2 +2[‖x1− y1‖2 +‖x2− y2‖2

−[(−1+
√

2)(x1− y1)(x2− y2)+((−1−
√

2)(x1− y1)(x2− y2))]]

= ‖T x̄−T ȳ‖2 +2[(x1− y1)+(x2− y2)]
2

≥ ‖T x̄−T ȳ‖2.

This shows that ‖x̄− ȳ‖2 +‖x̄−T x̄− (ȳ−T ȳ)‖2 ≥ ‖T x̄−T ȳ‖2.

For n = 2 let x̄ = (x1,x2), ȳ = (y1,y2) ∈ R2 be arbitrary. Then, T 2x̄ =−x̄ and T 2ȳ =−ȳ.



ASYMPTOTICALLY PSEUDO-NONSPREADING MAPPINGS 9

Hence,

‖T nx̄−T nȳ‖2 = |x̄− ȳ‖2 ≤ |x̄− ȳ‖2 +‖x̄−T nx̄− (ȳ−T nȳ)‖2, ∀ x̄, ȳ ∈ R2.

For n = 3 let x̄ = (x1,x2), ȳ = (y1,y2)∈R2 be arbitrary. Then, T 3x̄ = ((1−
√

2)x2,(1+
√

2)x1)
T

and = T 3ȳ = ((1−
√

2)y2,(1+
√

2)y1)
T . Hence,

‖x̄− ȳ‖2 +‖x̄−T x̄− (ȳ−T ȳ)‖2

= ‖T x̄−T ȳ‖2 +2[‖x̄− ȳ‖2−〈x̄− ȳ,T (x̄− ȳ)〉]

= ‖T x̄−T ȳ‖2 +2[‖(x1− y1,x2− y2)‖2−〈(x1− y1,x2− y2),T (x1− y1,x2− y2)〉]

= ‖T x̄−T ȳ‖2 +2[‖x1− y1‖2 +‖x2− y2‖2

−[(1−
√

2)(x1− y1)(x2− y2)+((1+
√

2)(x1− y1)(x2− y2))]]

= ‖T x̄−T ȳ‖2 +2[(x1− y1)− (x2− y2)]
2

≥ ‖T x̄−T ȳ‖2.

For n = 4 let x̄ = (x1,x2), ȳ = (y1,y2) ∈ R2 be arbitrary. Then, T 4x̄ = x̄ and T 4ȳ = ȳ. Hence,

‖T nx̄−T nȳ‖2 = ‖x̄− ȳ‖2 ≤ |x̄− ȳ‖2 +‖x̄−T nx̄− (ȳ−T nȳ)‖2, ∀ x̄, ȳ ∈ R2.

However, the mapping T is not asymptotically pseudononspreading because, for x̄ = (11,0)

and ȳ = (−11,0) with an arbitrary κn ⊆ [1,∞) and ε = 1
10 , we have that κn → 1 implies that

there exist nε ∈ N such that κn < ε +1 ∀n ≥ nε . Hence, for n ∈ {4n−3 : n ∈ N}, with n ≥ nε

then, ‖T nx̄−T nȳ‖2 = ‖(0,11+ 11
√

2)− (0,−11− 11
√

2)‖2 = 1452+ 968
√

2, κn‖x̄− ȳ‖2 =

κn‖(11,0)−(−11,0)‖2 < (1+ε)(484) =
(2662

5

)
; ‖x̄−T nx̄‖2 = ‖(11,0)−(0,11+11

√
2)‖2 =

484+242
√

2;‖ȳ−T nȳ‖2 = ‖(−11,0)− (0,−11−11
√

2)‖2 = 484+242
√

2. Hence,

κn‖x̄− ȳ‖2 +‖x̄−T nx̄‖2 +‖ȳ−T nȳ‖2 <
2662

5
+(484+242

√
2)+(484+242

√
2)

=
7502

5
+484

√
2

< 1452+968
√

2

= ‖T nx−T ny‖2
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Example 3.5 Example of an asymptotically pseudononspreading mapping which is not

asymptotically pseudocontractive. Let C =
[

1
3 ,

1+
√

5
2

]
. Define T : C→C by

T x =


1

1−x ,x ∈
[

1
3 ,

3−
√

5
2

]
=C1;

x,x ∈
(

3−
√

5
2 , 3

2

)
=C2;

x−1
x ,x ∈

[
3
2 ,

1+
√

5
2

]
=C3;

(3.7)

Then, F(T ) 6= /0 since x ∈ F(T ) ∀ x ∈C2. T is asymptotically pseudononspreading but T is not

asymptotically pseudocontractive.

Proof

Case 1: Suppose that x,y ∈C1, then, T (x) = 1
1−x ∈C3. Whereas, T 2(x) = x ∈C1. Hence, for

each odd number, n and each x,y∈C1, we have that T n(x) = 1
1−x and T n(y) = 1

1−y . Thus, taking

note of the fact that x+ y < 1 ∀ x,y ∈C1, we have that

‖x− y‖2 +‖x−T nx‖2 +‖y−T ny‖2 = ‖x− y‖2 +

∥∥∥∥x− 1
1− x

∥∥∥∥2

+

∥∥∥∥y− 1
1− y

∥∥∥∥2

≥ x2− 2x
1− x

+
1

(1− x)2 + y2− 2y
1− y

+
1

(1− y)2

>
1

(1− x)2 +
1

(1− y)2 −2
(

x
1− x

+
y

1− y

)
= ‖T nx−T ny‖2 +2

(
2xy+1− (x+ y)
(1− x)(1− y)

)
> ‖T nx−T ny‖2.

On the other hand, for each even number, n and each x,y ∈ C1, we have that T n(x) = x and

T n(y) = y. Hence,

‖T nx−T ny‖2 = ‖x− y‖2 ≤ ‖x− y‖2 +‖x−T nx− (y−T ny)‖2 +2〈x−T nx,y−T ny〉.

Case 2: Suppose that x,y ∈C2, then, T n(x) = x,T n(y) = y ∀ n ≥ 1, and the result follows as

in case 1 when n is even.

Case 3: Suppose that x,y ∈C3, then, T (x) = x−1
x ∈C1. Whereas, T 2(x) = x ∈C3. Hence, for

each odd number, n and each x,y ∈C3, we have that T n(x) = x−1
x and T n(y) = y−1

y . Thus, we

have that
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‖T nx−T ny‖2 =

∥∥∥∥x−1
x
− y−1

y

∥∥∥∥2

=

(
1
xy

)2

‖x− y‖2

Since x2− x−1≤ 0, ∀x ∈C3, then, we have that

2〈x−T nx,y−T ny〉 = 2
〈

x− x−1
x

,y− y−1
y

〉
= 2

〈
x2− x−1

x
,
y2− y−1

y

〉
=

2
xy

〈
x2− x−1,y2− y−1

〉
≥ 0

On its own, 2 < xy, ∀x,y ∈C3. Hence,
(

1− 2
xy

)
> 0 and so we have that

‖x−T nx− (y−T ny)‖2 =

∥∥∥∥x− x−1
x
−
(

y− y−1
y

)∥∥∥∥2

=

∥∥∥∥(x− y)−
(

x− y
xy

)∥∥∥∥2

=

(
1− 1

xy

)2

‖x− y‖2

=

(
1− 2

xy

)
‖x− y‖2 +

(
1
xy

)2

‖x− y‖2

Hence,

‖T nx−T ny‖2 =

(
1
xy

)2

‖x− y‖2

≤ ‖x− y‖2 +

(
1− 2

xy

)
‖x− y‖2 +

(
1
xy

)2

‖x− y‖2

= ‖x− y‖2 +‖x−T nx− (y−T ny)‖2

≤ ‖x− y‖2 +‖x−T nx− (y−T ny)‖2 +2〈x−T nx,y−T ny〉

On the other hand, for each even number, n and each x,y ∈ C3, we have that T n(x) = x and

T n(y) = y, and the result follows as in Case 1 when n is even.

Case 4: Suppose that x∈C1 and y∈C2, then, T (x) = 1
1−x ∈C3 ; T 2(x) = x∈C1 while, T n(y) =
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y, ∀ y ∈ C2 and n ∈ N. Hence, for each odd number, n ≥ 1 , x ∈ C1 and y ∈ C2, we have that

T n(x) = 1
1−x ∈C3 and T n(y) = y ∈C2. Thus, 0 < x < y < T n(x) which in turn implies that

−y <−x

Hence, on addition of T n(x) to both sides we have that

0 < T n(x)− y < T n(x)− x.

It follows that ‖T n(x)− y‖< ‖T n(x)− x‖. Hence,

‖T nx−T ny‖2 = ‖T n(x)− y‖2

< ‖T n(x)− x‖2

≤ ‖x− y‖2 +‖x−T nx‖2 +‖y−T ny‖2

On the other hand, for each even number, n and each x ∈C1 and y ∈C2, we have that T n(x) = x

and T n(y) = y, and the result follows as in Case 1 when n is even.

Case 5: Suppose that x∈C1, y∈C3, and n is odd, then T n(x) = 1
1−x ∈C3 and T n(y) = y−1

y ∈C1.

‖x− y‖2 +‖x−T nx‖2 +‖y−T ny‖2 ≥ 3×min{‖x− y‖2,‖x−T nx‖2,‖y−T ny‖2}

≥ 3×

(
3
2
− 3−

√
5

2

)2

=
15
4

>
46+6

√
5

36

=

(
1+
√

5
2
− 1

3

)2

≥ ‖T nx−T ny‖2

Assuming that x ∈C1, y ∈C3 and n is even, we have that T n(x) = x ∈C1 and T n(y) = y ∈C3,

and the result follows as in Case 1 when n is even.

Case 6: Suppose that x ∈ C2 and y ∈ C3, then, T (y) = y−1
y ∈ C1 and T 2(y) = y ∈ C3. While,

T n(x) = x, ∀x ∈C2 and n ∈N. Hence, for each odd number, n≥ 1 , x ∈C2 and y ∈C3, we have

that T n(x) = x ∈C2 and T n(y) = y−1
y ∈C1. Thus, 0 < T n(y)< x < y which in turn implies that
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x < y.

Hence, on addition of −T n(y) to both sides we have that

0 < x−T n(y)< y−T n(y).

It follows that ‖x−T n(y)‖< ‖y−T n(y)‖. Hence,

‖T nx−T ny‖2 = ‖x−T n(y)‖2

< ‖y−T n(y)‖2

≤ ‖x− y‖2 +‖x−T nx‖2 +‖y−T ny‖2

On the other hand, for each even number, n and each x ∈C2 and y ∈C3, we have that T n(x) = x

and T n(y) = y, and the result follows as in Case 1 when n is even.

However, T is not asymptotically pseudocontractive because for x= 1
3 ,y=

38
100 ∈D(T ), we have

that for ε = 0.1, there exists nε ∈ N such that κnε
< 1+ ε. Hence, if n≥ nε is odd then

‖x−T nx− (y−T ny)‖2 +κn‖x− y‖2 <

[(
3
2
+2
)
−
(

16
10

+
10
6

)]2

+(1+ ε)

[
3
2
− 16

10

]2

=

[
45
30

+
60
30
− 48

30
− 50

30

]2

+(1+ ε)

[
15
10
− 16

10

]2

=

[
7

30

]2

+(1+ ε)

[
1

10

]2

=
29
450

+
ε

100

= ‖T nx−T ny‖2

Lemma 3.6 Let C be a nonempty closed convex subset of a real Hilbert space H and T : C→C

be a uniformly L− Lipschitzean asymptotically pseudo-nonspreading mapping. If F(T ) 6= /0,

then it is closed and convex.

Proof. Suppose that F(T ) = /0 , then its closedness is trivially assured. Let {pn}n≥1 ⊂ F(T )

such that pn→ p be arbitrary. We prove that p ∈ F(T ).

‖T n p− p‖ = ‖T n p−T n pn +T n pn− p‖
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≤ ‖T n p−T n pn‖+‖T n pn− p‖

≤ L‖pn− p‖+‖pn− p‖

= (1+L)‖pn− p‖

→ 0 as n→ ∞.

Thus, p ∈ F(T ) and F(T ) is closed.

Next, we show that F(T ) is convex. Suppose that F(T ) = /0 or singleton, then its convexity

is trivially assured. If F(T ) is neither empty nor singleton, then define p = λ p1 +(1−λ )p2

where p1, p2 ∈ F(T ) and λ ∈ [0,1] are arbitrary. We show that p ∈ F(T ). To this end, we set

Gnβ
(x) := T n[(1−β )x+βT nx] where β ∈

(
0, 1√

L2+1+1

)
. Clearly,

Gnβ
(p1) = p1; Gnβ

(p2) = p2; ‖p− p1‖= (1−λ )‖p1− p2‖ and ‖p− p2‖= λ‖p1− p2‖.

(3.8)

Observe that,

‖Gnβ
p− p‖2 = ‖Gnβ

p−λ p1 +(1−λ )p2‖2

= ‖λ (p1−Gnβ
p)+(1−λ )(p2−Gnβ

p)‖2

= λ‖p1−Gnβ
p‖2 +(1−λ )‖p2−Gnβ

p‖2−λ (1−λ )‖p1− p2‖2 (3.9)

Furthermore,

‖Gnβ
p− p1‖2

= ‖T n[(1−β )p+βT n p]−T n p1‖2

≤ κn‖(1−β )p+βT n p− p1‖2 +‖(1−β )p+βT n p−Gnβ
p− (p1−T n p1)‖2

2〈(1−β )p+βT n p−Gnβ
p, p1−T n p1〉

= κn‖(1−β )(p− p1)+β (T n p− p1)‖2 +‖(1−β )(p−Gnβ
p)+β (T n p−Gnβ

p)‖2

= κn(1−β )‖p− p1‖2 +βκn‖T n p− p1‖2−β (1−β )κn‖T n p− p‖2

+(1−β )‖p−Gnβ
p‖2 +β‖T n p−T n[(1−β )p+βT n p]‖2−β (1−β )‖T n p− p‖2

≤ κn(1−β )‖p− p1‖2 +βκn[κn‖p− p1‖2 +‖T n p− p‖2]−β (1−β )κn‖T n p− p‖2

+(1−β )‖p−Gnβ
p‖2 +β

3L2‖T n p− p‖2−β (1−β )‖T n p− p‖2
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= κn[1+β (κn−1)]‖p− p1‖2 +(1−β )‖p−Gnβ
p‖2−β [1−β (κn +1)−β

2L2]‖T n p− p‖2

= κn[1+β (κn−1)]‖p− p1‖2 +(1−β )‖p−Gnβ
p‖2−β [1−2β −β

2L2]‖T n p− p‖2

Thus.

‖Gnβ
p− p1‖2 ≤ κn[1+β (κn−1)]‖p− p1‖2 +(1−β )‖p−Gnβ

p‖2 (3.10)

Similarly,

‖Gnβ
p− p2‖2 ≤ κn[1+β (κn−1)]‖p− p2‖2 +(1−β )‖p−Gnβ

p‖2 (3.11)

Substituting (3.10), (3.11) and (3.8) in (3.9), we have

‖Gnβ
p− p‖2

≤ λ [κn[1+β (κn−1)]‖p− p1‖2 +(1−β )‖p−Gnβ
p‖2

+(1−λ )[κn[1+β (κn−1)]‖p− p2‖2 +(1−β )‖p−Gnβ
p‖2]−λ (1−λ )‖p1− p2‖2

= λ [κn[1+β (κn−1)](1−λ )2‖p1− p2‖2 +λ (1−β )‖p−Gnβ
p‖2

+(1−λ )[κn[1+β (κn−1)]λ 2‖p1− p2‖2 +(1−β )(1−λ )‖p−Gnβ
p‖2−λ (1−λ )‖p1− p2‖2

= λ (1−λ )(κn−1)(1+βκn)‖p1− p2‖2 +(1−β )‖p−Gnβ
p‖2

Thus,

β‖Gnβ
p− p‖2 ≤ λ (1−λ )(κn−1)(1+βκn)‖p1− p2‖2 (3.12)

Since kn→ 1 as n→ ∞, we obtain from (3.12) that

lim
n→∞
‖Gnβ

p− p‖= 0 (3.13)

On its own,

‖T n p− p‖ = ‖T n p−Gnβ
p+Gnβ

p− p‖

≤ ‖T n p−Gnβ
p‖+‖Gnβ

p− p‖

= ‖T n p−T n[(1−β )p+βT n p]‖+‖Gnβ
p− p‖

≤ L‖p− [(1−β )p+βT n p]‖+‖Gnβ
p− p‖

≤ Lβ‖T n p− p‖+‖Gnβ
p− p‖
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Thus, (1−Lβ )‖T n p− p‖ ≤ ‖Gnβ
p− p‖, which implies that

lim
n→∞
‖T n p− p‖= 0 (3.14)

Therefore, T n p→ p as n→ ∞. This in turn implies that

p = lim
n→∞

T n p = T lim
n→∞

(T n−1 p) = T p.

Hence, p ∈ F(T ), which means that F(T ) is convex. �

Lemma 3.7 Let C be a nonempty closed convex subset of a real Hilbert space H and T : C→C

be a uniformly L− Lipschitzean asymptotically pseudo-nonspreading mapping. Then for any

sequence {xn} in C converging weakly to a point p and {‖xn−T xn‖} converging strongly to 0,

we have p = T p.

Proof. Let {xn}∞
n=1 be a sequence in C such that xn ⇀ p and xn− T xn → 0. We show that

p−T p = 0. Since, {xn}∞
n=1 is weak convergent, it is bounded. Then, we define f : H→R+ for

each x ∈ H by

f (x) = limsup
n→∞

‖xn− x‖2 ∀x ∈ H (3.15)

From lemma (2.13), we have

f (x) = limsup
n→∞

‖xn− p‖2 +‖x− p‖2 ∀x ∈ H (3.16)

It follows that

f (x) = f (p)+‖p− x‖2 ∀x ∈ H (3.17)

Observe that

‖Gnβ
xn− xn‖ ≤ ‖Gnβ

xn−T nxn‖+‖xn−T nxn‖

≤ L‖(1−βn)xn +βnT nxn− xn‖+‖T nxn− xn‖

= (Lβn +1)‖T nxn− xn‖

→ 0 as n→ ∞ (3.18)

Moreover,

‖[(1−β )xn +βT nxn]−Gnβ
xn‖2
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= ‖(1−β )(xn−Gnβ
xn)+β (T nxn−Gnβ

xn)‖2

= (1−β )‖xn−Gnβ
xn‖2 +β‖T nxn−Gnβ

xn‖2−β (1−β )‖xn−T nxn‖2

= (1−β )‖xn−Gnβ
xn‖2 +β

3L2‖xn−T nxn‖2−β (1−β )‖xn−T nxn‖2

= (1−β )‖xn−Gnβ
xn‖2−β [1−β −β

2L2]‖xn−T nxn‖2−β (1−β )‖xn−T nxn‖2

≤ (1−β )‖xn−Gnβ
xn‖2

→ 0 as n→ ∞ (3.19)

In particular, for arbitrary but fixed m≥ 1, we have from (3.17)

f (Gmβ
p) = f (p)+‖p−Gmβ

p‖2 (3.20)

Thus ,from (3.15), we have

f (Gmβ
p) = limsup

n→∞

‖xn−Gmβ
p‖2

= limsup
n→∞

‖xn−Gmβ
xn +Gmβ

xn−Gmβ
p‖2

= limsup
n→∞

(‖xn−Gmβ
xn‖2 +2〈xn−Gmβ

xn,Gmβ
xn−Gmβ

p〉+‖Gmβ
xn−Gmβ

p‖2)

= limsup
n→∞

‖Gmβ
xn−Gmβ

p‖2

Taking limsup
m→∞

o f both sides

limsup
m→∞

f (Gmβ
p)

= limsup
m→∞

limsup
n→∞

‖Gmβ
xn−Gmβ

p‖2

= limsup
m→∞

limsup
n→∞

‖T m[(1−β )xn +βT mxn]−T m[(1−β )p+βT m p]‖2

≤ limsup
m→∞

limsup
n→∞

(κm‖(1−β )(xn− p)+β (T mxn−T m p)‖2

+‖[(1−β )xn +βT mxn]−Gmβ
xn− ([(1−β )p+βT m p]−Gmβ

p)‖2

+2〈[(1−β )xn +βT mxn]Gmβ
xn, [(1−β )p+βT m p]−Gmβ

p〉)

≤ limsup
m→∞

limsup
n→∞

(κm(1−β )‖xn− p‖2 +βκm‖T mxn−T m p‖2

−β (1−β )κm‖(xn−T mxn)+T m p− p)‖2 +‖[(1−β )p+βT m p]−Gmβ
p)‖2)

≤ limsup
m→∞

limsup
n→∞

(κm(1−β )‖xn− p‖2 +βκm[κm‖xn− p‖2 +‖xn−T mxn− (p−T m p)‖2
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+2〈xn−T mxn, p−T m p〉]−β (1−β )κm‖T m p− p‖2 +‖(1−β )(p−Gmβ
p)+β (T m p−Gmβ

p)‖2)

= limsup
m→∞

limsup
n→∞

κm[1+β (κm−1)]‖xn− p‖2 +βκm‖p−T m p‖2−β (1−β )κm‖T m p− p‖2

+(1−β )‖p−Gmβ
p‖2 +β‖T m p−Gmβ

p‖2−β (1−β )‖T m p− p‖2)

= limsup
m→∞

limsup
n→∞

κm[1+β (κm−1)]‖xn− p‖2 +βκm‖p−T m p‖2−β (1−β )κm‖T m p− p‖2

+(1−β )‖p−Gmβ
p‖2 +β

3L2‖T m p− p‖2−β (1−β )‖T m p− p‖2)

= limsup
m→∞

limsup
n→∞

κm[1+β (κm−1)]‖xn− p‖2 +(1−β )‖p−Gmβ
p‖2−β (1−2β −β

2L2)‖T m p− p‖2)

Therefore,

limsup
m→∞

f (Gmβ
p) ≤ limsup

n→∞

‖xn− p‖2 +(1−β ) limsup
m→∞

‖p−Gmβ
p‖2)

= f (p)+(1−β ) limsup
m→∞

‖p−Gmβ
p‖2) (3.21)

It follows from (3.20) that

limsup
m→∞

f (Gmβ
p) = f (p)+ limsup

m→∞

‖p−Gmβ
p‖2 (3.22)

Considering (3.21) and (3.22), we have f (p)+limsup
m→∞

‖p−Gmβ
p‖2≤ f (p)+(1−β ) limsup

m→∞

‖p−

Gmβ
p‖2 which in turn implies that

limsup
m→∞

‖p−Gmβ
p‖= 0 and lim

m→∞
‖p−Gmβ

p‖= 0

Observe that,

‖T m p− p‖ ≤ ‖T m p−Gmβ
p‖+‖Gmβ

p− p‖

≤ L‖Gmβ
p− p‖+‖Gmβ

p− p‖

= βL‖T m p− p‖+‖Gmβ
p− p‖

This implies that (1−βL)‖T m p− p‖ ≤ ‖Gmβ
p− p‖→ 0 as n→ ∞. So, we have that

lim
m→∞
‖T m p− p‖= 0, and p = lim

m→∞
T m p = T lim

m→∞
(T m−1 p) = T p.

Therefore, p = T p and I−T is demiclosed at the origin. �

Theorem 3.8 Let H1, H2, A, {Si}, {Ti}, C and Q be the same as in multiple set split fea-

sibility problem (1.1). For each i = 1,2, · · · ,N. Let Ti : H2 → H2 be a family of uniformly

L̄i−Lipschitzian and asymptotically pseudononspreading mapping with the sequence {δn} ⊂
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[1,+∞) such that
∞

∑
n=1

(δ 2
n −1)< ∞, i = 1,2, · · · ,N and L̄ = max{L̄i}. Let Si : H1 → H1 be a

family of uniformly Li-Lipschitzian and asymptotically pseudononspreading mapping with the

sequence {κn} ⊂ [1,+∞) such that
∞

∑
n=1

(κ2
n −1)< ∞, i = 1,2, · · · ,N and L = max{Li}, . Sup-

pose that {xn} is a sequence generated by

∀ x1 ∈ H1, chosen arbitrarily,

yn = xn + γA∗[µI +(1−µ)T n
n(modN)((1−η)I +ηT n

n(modN))− I]Axn,

xn+1 = (1−αn)yn +αnSn
n(modN)[(1−βn)yn +βnSn

n(modN)yn]

(3.23)

where γ, η and µ are constants while {αn} and {βn} are sequences in[0,1]satisfying the fol-

lowing control conditions:

C1 0 < γ < 1
λ

where λ is the spectral radius of the operator A∗A;

C2 0 < liminfn→∞ αn ≤ limsupn→∞ αn < 1;

C3 0 < 1−µ ≤ η < 1√
1+L̄2+1

and 0 < 1−αn ≤ βn ≤ limsupn→∞ βn <
1√

1+L2+1
.

Suppose that Γ = {x ∈
⋂N

i=1 F(Si) : Ax ∈
⋂N

i=1 F(Ti)} 6= /0, then the sequence {xn} converges

weakly to a point x∗ ∈ Γ

Proof. The proof is divided into five steps.

Step(I) Firstly, we prove that limn→∞ ‖xn− p‖ exists for any p ∈ Γ. To this end, we take an arbi-

trary p∈ Γ and define Gn(x) := Sn
n(modN)[(1−βn)xn+βnSn

n(modN)xn]. and gn(x) := T n
n(modN)[(1−

η)I +ηT n
n(modN)]xn. Then, we have that

‖xn+1− p‖2

= ‖(1−αn)yn +αnGnyn− p‖2

= ‖(1−αn)(yn− p)+αn(Gnyn− p)‖2

= (1−αn)‖yn− p‖2 +αn‖Gnyn− p‖2−αn(1−αn)‖yn−Gnyn‖2

≤ (1−αn)‖yn− p‖2 +αnκn‖[(1−βn)yn +βnSn
n(modN)yn]− p‖2

+αn‖[(1−βn)yn +βnSn
n(modN)yn−Gnyn‖2]−αn(1−αn)‖yn−Gnyn‖2
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= (1−αn)‖yn− p‖2 +αnκn‖(1−βn)(yn− p)+βn(Sn
n(modN)yn− p)‖2

+αn‖(1−βn)(yn−Gnyn)+βn(Sn
n(modN)yn−Gnyn)‖2−αn(1−αn)‖yn−Gnyn‖2

= (1−αn)‖yn− p‖2 +αnκn(1−βn)‖yn− p‖2 +αnβnκn‖Sn
n(modN)yn− p‖2

−αnκnβn(1−βn)‖yn−Sn
n(modN)yn‖2 +αn(1−βn)‖yn−Gnyn‖2 +αnβn‖Sn

n(modN)yn−Gnyn‖2

−αnβn(1−βn)‖yn−Sn
n(modN)yn‖2−αn(1−αn)‖yn−Gnyn‖2

≤ (1−αn)‖yn− p‖2 +αnκn(1−βn)‖yn− p‖2 +αnβnκ
2
n‖yn− p‖2 +αnβnκn‖yn−Sn

n(modN)yn‖2

−αnκnβn(1−βn)‖yn−Sn
n(modN)yn‖2 +αn(1−βn)‖yn−Gnyn‖2 +αnβ

3
n L2‖yn−Sn

n(modN)yn‖2

−αnβn(1−βn)‖yn−Sn
n(modN)yn‖2−αn(1−αn)‖yn−Gnyn‖2

= [1+αn(κn−1)(1+βnκn)]‖yn− p‖2−αnβn[1−βn(κn +1)−β
2
n L2]‖yn−Sn

n(modN)yn‖2

−αn(βn−αn)‖yn−Gnyn‖2 (3.25)

In another development,

‖gnAxn−Ap‖2

= ‖T n
n(modN)[(1−η)Axn +ηT n

n(modN)Axn]−Ap‖2

≤ δn‖[(1−η)Axn +ηT n
n(modN)Axn]−Ap‖2 +‖[(1−η)Axn +ηT n

n(modN)Axn]−gnAxn‖2

= δn‖(1−η)(Axn−Ap)+η(T n
n(modN)Axn−Ap)‖2

+‖(1−η)(Axn−gnAxn)+η(T n
n(modN)Axn−gnAxn)‖2

= δn(1−η)‖Axn−Ap‖2 +δnη‖T n
n(modN)Axn−Ap‖2−δnη(1−η)‖Axn−T n

n(modN)Axn‖2

+(1−η)‖Axn−gnAxn‖2 +η‖T n
n(modN)Axn−gnAxn‖2−η(1−η)‖Axn−T n

n(modN)Axn‖2

≤ δn(1−η)‖Axn−Ap‖2 +δ
2
n η‖Axn−Ap‖2 +δnη‖Axn−T n

n(modN)Axn‖2

−η(1−η)(1+δn)‖Axn−T n
n(modN)Axn‖2 +(1−η)‖Axn−gnAxn‖2 +η

3L2‖Axn−T n
n(modN)Axn‖2

≤ [δn(1−η)+δ
2
n η ]‖Axn−Ap‖2−η [1−η(1+δn)−η

2L2]‖Axn−T n
n(modN)Axn‖2

+(1−η)‖Axn−gnAxn‖2

Therefore,

‖gnAxn−Ap‖2 ≤ [δn(1−η)+δ
2
n η ]‖Axn−Ap‖2 +(1−η)‖Axn−gnAxn‖2 (3.26)
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and

‖Gnyn− p‖2 ≤ [κn(1−βn)+κ
2
n βn]‖yn− p‖2 +(1−βn)‖yn−Gnyn‖2 (3.27)

From, (3.26), we have that

‖µAxn +(1−µ)gnAxn−Ap‖2

= ‖µ(Axn−Ap)+(1−µ)(gnAxn−Ap)‖2

= µ‖Axn−Ap‖2 +(1−µ)‖gnAxn−Ap‖2−µ(1−µ)‖Axn−gnAxn‖2

≤ µ‖Axn−Ap‖2 +(1−µ)[δn(1−η)+δ
2
n η ]‖Axn−Ap‖2 +(1−η)‖Axn−gnAxn‖2]

−µ(1−µ)‖Axn−gnAxn‖2

= µ‖Axn−Ap‖2 +(1−µ)[δn(1−η)+δ
2
n η ]‖Axn−Ap‖2

+(1−µ)(1−η)‖Axn−gnAxn‖2−µ(1−µ)‖Axn−gnAxn‖2

= [µ +(1−µ)[δn(1−η)+δ
2
n η ]]‖Axn−Ap‖2 +(1−µ)(1−η−µ)‖Axn−gnAxn‖2

≤ ‖Axn−Ap‖2 (3.28)

‖Axn−Ap‖2

= ‖Axn +µAxn +(1−µ)gn(Axn)−Axn− [µAxn +(1−µ)gn(Axn)−Axn]−Ap‖2

= ‖[µAxn +(1−µ)gn(Axn)−Ap]− [µAxn +(1−µ)gn(Axn)−Axn]‖2

= ‖µAxn +(1−µ)gn(Axn)−Ap‖2 +‖µAxn +(1−µ)gn(Axn)−Axn‖2

−2〈µAxn +(1−µ)gn(Axn)−Ap,µAxn +(1−µ)gn(Axn)−Axn〉

≤ ‖Axn−Ap‖2 +‖µAxn +(1−µ)gn(Axn)−Axn‖2

−2〈µAxn +(1−µ)gn(Axn)−Ap,µAxn +(1−µ)gn(Axn)−Axn〉

Thus,

〈µAxn+(1−µ)gn(Axn)−Ap,µAxn+(1−µ)gn(Axn)−Axn〉≤
1
2
‖µAxn+(1−µ)gn(Axn)−Axn‖2

(3.29)
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While,

‖yn− p‖2

= ‖xn + γA∗[µAxn +(1−µ)gnAxn−Axn]− p‖2

= ‖(xn− p)+ γA∗[µAxn +(1−µ)gnAxn−Axn]‖2

= ‖xn− p‖2 + γ
2‖A∗[µAxn +(1−µ)gnAxn−Axn]‖2 +2γ〈A∗[µAxn +(1−µ)gnAxn−Axn],xn− p〉

= ‖xn− p‖2 + γ
2〈A∗[µAxn +(1−µ)gnAxn−Axn],A∗[µAxn +(1−µ)gnAxn−Axn]〉

+2γ〈µAxn +(1−µ)gnAxn−Axn,Axn−Ap+(µAxn +(1−µ)gnAxn)− (µAxn +(1−µ)gnAxn)〉

= ‖xn− p‖2 + γ
2〈µAxn +(1−µ)gnAxn−Axn],AA∗[µAxn +(1−µ)gnAxn−Axn]〉

+2γ〈µAxn +(1−µ)gnAxn−Axn,µAxn +(1−µ)gnAxn−Ap+Axn−µAxn +(1−µ)gnAxn〉

≤ ‖xn− p‖2 + γ
2
λ‖µAxn +(1−µ)gnAxn−Axn‖2

+2γ〈µAxn +(1−µ)gnAxn−Axn,µAxn +(1−µ)gnAxn−Ap〉

+2γ〈µAxn +(1−µ)gnAxn−Axn,Axn−µAxn +(1−µ)gnAxn〉

= ‖xn− p‖2 + γ
2
λ‖µAxn +(1−µ)gnAxn−Axn‖2

+γ‖µAxn +(1−µ)gn(Axn)−Axn‖2−2γ‖µAxn +(1−µ)gn(Axn)−Axn‖2

= ‖xn− p‖2− γ(1− γλ )(1−µ)2‖gnAxn−Axn‖2 (3.30)

From (3.25) and (3.30), we have

‖xn+1− p‖2

≤ [1+αn(κn−1)(1+βnκn)][‖xn− p‖2− γ(1− γλ )(1−µ)2‖gnAxn−Axn‖2]

−αnβn[1−βn(κn +1)−β
2
n L2]‖yn−Sn

n(modN)yn‖2−αn(βn−αn)‖yn−Gnyn‖2 (3.31)

Consequently, we have that

‖xn+1− p‖2 ≤ [1+αn(κn−1)(1+βnκn)]‖xn− p‖2 (3.32)

From the assumption that
∞

∑
n=1

(κ2
n −1)< ∞, we have that

∞

∑
n=1

[an(κn−1)(1+βnκn)] <
∞

∑
n=1

(κn−1)(1+κn)
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=
∞

∑
n=1

(κ2
n −1)

< ∞

Hence, from Lemma 2.12, {‖xn− p‖} converges, both {xn} and {yn} are bounded and

lim
n→∞
‖gnAxn−Axn‖= lim

n→∞
‖yn−Sn

n(modN)yn‖= lim
n→∞
‖yn−Gnyn‖= 0 (3.33)

From, (3.33), we have that

‖T n
n(modN)Axn−Axn‖ = ‖T n

n(modN)Axn−gnAxn‖+‖gnAxn−Axn‖

≤ L̄‖Axn− [(1−η)Axn +ηT n
n(modN)Axn]‖+‖gnAxn−Axn‖

= L̄η‖Axn−T n
n(modN)Axn‖+‖gnAxn−Axn‖

Hence, ‖Axn−T n
n(modN)Axn‖ ≤ 1

(1−L̄η)
‖gnAxn−Axn‖→ 0 as n→ ∞. This implies that

lim
n→∞
‖Axn−T n

n(modN)Axn‖= 0. (3.34)

Step(II) Next, we show that limn→∞ ‖yn− p‖ exists. But, it is clear from (3.30) and (3.33)that

lim
n→∞
‖yn− p‖= lim

n→∞
‖xn− p‖ (3.35)

Step(III) Next, we show that

lim
n→∞
‖yn− xn‖= lim

n→∞
‖xn+1− xn‖= lim

n→∞
‖yn+1− yn‖= 0.

Obviously, (3.23) has it that yn−xn = γA∗[µI+(1−µ)T n
n(modN)((1−η)I+ηT n

n(modN))− I]Axn

which on taking norm of both sides and simplifying, we have that

‖yn− xn‖ = ‖γA∗[µI +(1−µ)T n
n(modN)((1−η)I +ηT n

n(modN))− I]Axn‖

= ‖γA∗[µAxn +(1−µ)gnAxn−Axn]‖

= ‖γA∗[(1−µ)(gnAxn−Axn)]‖.

Hence, from (3.33), we have that

lim
n→∞
‖yn− xn‖= 0. (3.36)
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Similarly,

‖xn+1− xn‖

= ‖(1−αn)yn +αnGnyn− xn‖

= ‖(1−αn)(xn + γA∗[µAxn +(1−µ)gnAxn−Axn]+αnGnyn− xn‖

= ‖(1−αn)γA∗[µAxn +(1−µ)gnAxn−Axn]+αn(Gnyn− xn)‖

= ‖(1−αn)γA∗[µAxn +(1−µ)gnAxn−Axn]+αn(Gnyn− yn)+αn(yn− xn)‖

= ‖(1−αn)γA∗[µAxn +(1−µ)gnAxn−Axn]+αn(Gnyn− yn)+αnγA∗[µAxn +(1−µ)gnAxn−Axn]‖

= ‖γA∗[µAxn +(1−µ)gnAxn−Axn]+αn(Gnyn− yn)‖

≤ ‖γA∗[(1−µ)(gnAxn−Axn)]‖+‖αn(Gnyn− yn)‖

From (3.33), we deduce that

lim
n→∞
‖xn+1− xn‖= 0. (3.37)

Similarly, from (3.23), we have that

‖yn+1− yn‖

= ‖xn+1 + γA∗[µAxn+1 +(1−µ)gn+1Axn+1−Axn+1]− (xn + γA∗[µAxn +(1−µ)gnAxn−Axn]‖

= ‖(xn+1− xn)+ γA∗[(1−µ)(gn+1Axn+1−Axn+1)]+(−γA∗[(1−µ)(gnAxn−Axn)]‖

≤ ‖xn+1− xn‖+‖γA∗[(1−µ)(gn+1Axn+1−Axn+1)]‖+‖γA∗[(1−µ)(gnAxn−Axn)]‖

From (3.33), we deduce that

lim
n→∞
‖yn+1− yn‖= 0. (3.38)

Step(IV) We prove that, for each j = 1,2,3, · · · ,N

‖yiN+ j−S jyiN+ j‖→ 0 and ‖AxiN+ j−TjAxiN+ j‖→ 0 as i→ ∞.

Clearly, From (3.33), we can obtain that

‖yiN+ j−SiN+ j
j yiN+ j‖→ 0 as i→ ∞. (3.39)
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Since S j is uniformly L j-Lipschitzian, it follows from (3.38) and (3.39) that

‖yiN+ j−S jyiN+ j‖

≤ ‖yiN+ j−SiN+ j
j yiN+ j‖+‖SiN+ j

j yiN+ j−S jyiN+ j‖

≤ ‖yiN+ j−SiN+ j
j yiN+ j‖+L j‖SiN+ j−1

j yiN+ j− yiN+ j‖

= ‖yiN+ j−SiN+ j
j yiN+ j‖+L j[‖SiN+ j−1

j yiN+ j−SiN+ j−1
j yiN+ j−1‖+‖SiN+ j−1

j yiN+ j−1− yiN+ j‖]

≤ ‖yiN+ j−SiN+ j
j yiN+ j‖+L2

j‖yiN+ j− yiN+ j−1‖

+L j[‖SiN+ j−1
j yiN+ j−1− yiN+ j−1‖+‖yiN+ j−1− yiN+ j‖]

→ 0 as n→ ∞. (3.40)

Similarly, we can prove that for each j = 1,2,3, · · · ,N, we can obtain that

‖AxiN+ j−T iN+ j
j AxiN+ j‖→ 0 as i→ ∞. (3.41)

Since Tj is uniformly L̄ j-Lipschitzian, in the same way as above, we can also prove that

‖AxiN+ j−TjAxiN+ j‖→ 0 as i→ ∞. (3.42)

Step(V) Finally, we prove that xn ⇀ x∗,yn ⇀ x∗, and it is a solution of problem (MSSFP). In

fact, since {yn} is bounded, there exists a subsequence {yn j} ⊂ {yn} such that yn j ⇀ x∗ ∈ H1.

Hence, for any positive integer j = 1,2,3, · · · ,N, there exists a subsequence ni( j) ⊂ ni with

ni( j)modN = j such that yni( j) ⇀ x∗. From(3.40) we have that

‖yni( j)–S jyni( j)‖→ 0, ni( j)→ ∞. (3.43)

Since S j is demiclosed at zero, it follows that x∗ ∈F(S j). By the arbitrariness of j = 1,2,3, · · · ,N,

we have

x∗ ∈C :=
N⋂

i=1

F(Si)

Moreover, from the algorithm and (3.34) we have yni = xni + γA∗[µI +(1− µ)T ni
ni(modN)

((1−

η)I +ηT ni
ni(modN)

)− I]Axni ⇀ x∗. Since A is a linear bounded operator, it follows that Axni ⇀

Ax∗. For any positive integer k = 1,2,3, · · · ,N, there exists a subsequence xni(k) ⊂ xni with

ni(k)(modN) = k such that Axni(k) ⇀ Ax∗ and ‖Axni(k)−TjAxni(k)‖→ 0. Since Tk is demiclosed

at zero, we have Ax∗ ∈ F(Tk). By the arbitrariness of k, it follows that Ax∗ ∈ Q :=
⋂N

k=1 F(Tk).
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This together with x∗ ∈C shows that x∗ ∈ Γ, that is, x∗ is a solution to the problem (MSSFP).

Next we prove that xn ⇀ x∗ and yn ⇀ x∗. In fact, assume that there exists another subse-

quence ynl ⊂ yn such that ynl ⇀ y∗ with y∗ 6= x∗. Consequently, by virtue of the existence of

limn→∞ ‖xn–p‖ and the celebrated Opial property which is a trivial inheritance of a Hilbert

space, we have

liminf
ni→∞

‖yni− x∗‖ < liminf
ni→∞

‖yni− y∗‖

= liminf
n→∞

‖yn− y∗‖

= liminf
n j→∞

‖yn j − y∗‖

< liminf
n j→∞

‖yn j − x∗‖

= liminf
n→∞

‖yn− x∗‖

= liminf
n j→∞

‖yn j − x∗‖

This is a contradiction. Therefore, yn ⇀ x∗. By the (3.23) and (3.34), we have

xn = yn− γA∗[µI +(1−µ)T n
n(modN)((1−η)I +ηT n

n(modN))− I]Axn ⇀ x∗.

This completes the proof of Theorem 3.8. �

Theorem 3.9:

Suppose that the conditions of theorem 3.8 are satisfied and suppose in addition that there exists

a positive integer j such that S j is semicompact, then the sequence {xn} generated by (3.23)

converges strongly to a point x∗ ∈ Γ.

Proof. Proof Without loss of generality, we can assume that S1 is semicompact. It follows from

(3.43) that

‖yni( j)–S jyni( j)‖→ 0, ni( j)→ ∞.

Therefore, there exists a subsequence of {yni( j)}, which (for the sake of convenience) we still

denote by {yni( j)}, such that yni( j)→ y∗ ∈ H1. Since yni( j) ⇀ y∗, y∗ = x∗ and soyni( j)→ x∗ ∈ Γ.

By virtue of limn→∞ ‖xn–p‖ exists, we know that

lim
n→∞
‖xn–p‖= lim

n→∞
‖yn–p‖= 0
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that is, {xn} and {yn} both converge strongly to the point x∗ ∈ Γ. This completes the proof of

Theorem 3.9 �

4. APPLICATIONS

In this section we shall utilize the results presented in Section 3 to study the hierarchical

variational inequality problem.

Theorem 4.1 Let H be a real Hilbert space, Si = 1,2, · · · ,N be uniformly Li-Lipschitzian and

asymptotically pseudo-nonspreading mappings with F =
⋂N

i=1 F(Si) 6= /0. Let T : H → H be a

nonspreading mapping. The so-called hierarchical variational inequality problem for a finite

family of mappings {Si} with respect to the mapping T is to find an x∗ ∈ F such that

〈x∗−T x∗,x∗− x〉 ≤ 0 (4.1)

It is easy to see that (4.1) is equivalent to the following fixed point problem:

f ind x∗ ∈ F such that x∗ = PFT x∗. (4.2)

where PF is the metric projection from H onto F. Letting C =F and Q=F(PFT ) (the fixed point

set of PFT and A = I (the identity mapping on H), problem (4.2) is equivalent to the following

multi-set split feasibility problem:

f ind x∗ ∈C such that x∗ ∈ Q. (4.3)

Hence from Theorem 3.8 we have the following theorem.

Theorem 4.1:

Let H, {Si}, T, C and Q be the same as in multiple set split feasibility problem (1.1). Let {xn},

{yn} be the sequences defined by

∀ x1 ∈ H1, chosen arbitrarily,

yn = xn + γ[µI +(1−µ)T ((1−η)I +ηT n
n(modN))− I]xn,

xn+1 = (1−αn)yn +αnSn
n(modN)[(1−βn)yn +βnSn

n(modN)yn]

(4.4)
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where γ, η and µ are constants while {αn} and {βn} are sequences in [0,1]satisfying the

following control conditions:

C1 0 < γ < 1
λ

where λ is the spectral radius of the operator A∗A;

C2 0 < liminfn→∞ αn ≤ limsupn→∞ αn < 1;

C3 0 < 1−µ ≤ η < 1√
1+L̄2+1

and 0 < 1−αn ≤ βn ≤ limsupn→∞ βn <
1√

1+L2+1
.

Suppose that L = max{Li}, and Γ = {x ∈
⋂N

i=1 F(Si) : Ax ∈
⋂N

i=1 F(Ti)} 6= /0, then the sequence

{xn} converges weakly to a solution of hierarchical variational inequality problem (4.1).

Proof. In fact, by the assumption that T is an asymptotically pseudononspreading mapping

implies that T is pseudononspreading as well as nonspreading with x− T x = y− Ty. Taking

N = 1 and A = I in Theorem 3.8, by the same method as that given in Theorem 3.8, we can

prove that {xn} converges weakly to a point x∗ ∈Γ, which is a solution of hierarchical variational

inequality problem (4.1) immediately. �

5. NUMERICAL EXAMPLES

Let H1 =H2 = R2. Let the mapping Si : H1→H1 be defined by

Si

 x1

x2

=

 cos(i+1)π

2 −sin(i+1)π

2

sin(i+1)π

2 cos(i+1)π

2

 (x1−5)

(x2−5)

+
 5

5


It follows that

S1

 x1

x2

=

 10− x1

10− x2


with Lipschitz constant L1 = 1 and C1 = F(S1) = {(5,5)}.

S2

 x1

x2

=

 x2

10− x1


with Lipschitz constant L2 = 1 and C2 = F(S2) = {(5,5)}.

S3

 x1

x2

=

 x1

x2


with Lipschitz constant L3 = 1 and C3 = F(S3) = H1., where L = max

i≥1
{Li} = 1. Clearly,

3⋂
i=1

F(Si) = {(5,5)}, and, 1
1+
√

L2+1
= −1+

√
2 < 0.42. Thus, we consider βn = { 1

9.1(
n

n+1)}
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and αn = {81
91 +

1
9.1(

1
n+1)}.

Let H2 = R2 with 0̄ = (0,0) ∈ R2 and Y = {x̄ : ‖x̄‖ < 1
6}. Let the mapping Ti : H2 → H2 be

defined by

Ti(x) =


x̄; i f ‖x̄‖< 1

6

[1−2(n mod 3)]x̄; i f 1
6 ≤ ‖x̄‖ ≤

1
2

1
1−2(n mod 3) x̄; otherwise

It follows that T1(x̄) = x̄ ∀x̄ ∈H2 with Lipschitz constant L1 = 1 and Q1 = F(T1) = Y .

T2(x̄) =

 x̄; i f ‖x̄‖< 1
6

−x̄; otherwise

with Lipschitz constant L2 = 1 and Q2 = F(T2) = Y .

T3(x̄) =


x̄; i f ‖x̄‖< 1

6

−3x̄; i f 1
6 ≤ ‖x̄‖ ≤

1
2

−1
3 x̄; otherwise

with Lipschitz constant L3 = 3 and Q3 =F(T3)=Y , where L=max
i≥1
{Li}= 3. Clearly,

3⋂
i=1

F(Ti)=

Y, and, 1
1+
√

L2+1
= 1

9(−1+
√

10). Thus, we consider η = 0.001 and µ = 0.999

Next, let us consider a bounded linear operator, T : H1 → H2 defined by T x̄ = Ax̄ where

A =

 1 −1

−1 1

 . Clearly, A is self-adjoint because 〈Ax,y〉 = 〈x,Ay〉 ∀x,y ∈ H1. Then, the

spectral radius of AA∗ is λ = 4. Thus, we consider γ = 0.249 < 0.25 = 1
λ
. By using stopping

criterion of ‖xn+1− p‖ < 1e− 4, we have from the table and graphs that the solution of the

MSSFP is p = (5,5) indeed.
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When x1 = (4,4) When x1 = (−7,8)

S/N xn+1 ‖xn+1− p‖ S/N xn+1 ‖xn+1− p‖

1 (4.1039,5.8901) 1.2631 1 (7.6432,15.7266) 11.0475

2 (4.1046,5.8893) 1.2620 2 (7.6467,15.7230) 11.0448

3 (5.6111,4.3930) 0.8614 3 (3.1844,-2.3281) 7.5497
...

...
...

...
...

...

32 (5.0105,5.0103) 0.0148 32 (4.9901,4.9899) 0.0142

33 (4.9937,4.9938) 0.0088 33 (5.0059,5.0060) 0.0084

34 (5.0037,5.0037) 0.0052 34 (4.9967,4.9962) 0.0050
...

...
...

...
...

...

57 (4.9999,4.9999) 0.0002 67 (4.9997,5.0001) 0.0003

58 (5.0001,5.0001) 0.0001 68 (4.9997,5.0001) 0.0003

59 (5.0001,5.0001) 0.0001 69 (5.0002,5.0000) 0.0002

60 (5.0001,5.0001) 0.0001 70 (4.9999,5.0000) 0.0001

61 (5.0001,4.9999) 0.0001 71 (4.9999,5.0000) 0.0001

62 (5.0001,4.9999) 0.0001 72 (4.9999,5.0000) 0.0001

63 (5.0000,5.0000) 0.0000 73 (5.0000,5.0001) 0.0001
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