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Abstract. In this paper, we obtained a solution of the fractional subdiffusion equation with initial and boundary

conditions. The fractional derivative is of type Caputo, Caputo-Fabrizio, and Atangana-Baleanu-Caputo sense.

Furthermore, we developed the Crank-Nicolson finite difference method to obtain a numerical solution for the

subdiffusion equation. We compare numerical solutions obtained by using various fractional derivatives and rep-

resenting graphically by using Python software. Also, we discussed the stability and convergence of the scheme.
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1. INTRODUCTION

Recently, many researchers have found interest in fractional calculus. Many scientists and

engineers have used fractional integrals and derivatives to simulate various phenomena in biol-

ogy, finance, signal processing, material science, physics, etc. Classical definitions of fractional
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derivatives like Riemann-Liouville fractional integral, Riemann-Liouville fractional derivative,

Caputo fractional derivative, etc. have limitations in modeling non-local dynamics due to the

singular kernel. To overcome this difficulty, researchers developed new definitions of the frac-

tional derivative with a non-singular kernel, i.e., the Caputo-Fabrizio fractional derivative, the

Atangana-Baleanu fractional derivative, etc.

In physics, fractional derivatives are used to model anomalous diffusion (i.e., subdiffusion or

superdiffusion), where particles spread in a power law manner. Fractional derivatives describe

anomalous diffusion processes more accurately than integer-order derivatives due to the advan-

tage of the short-term memory principle. The subdiffusion equation is obtained by replacing the

integer order derivative with the time-fractional derivative of order (0 < α < 1) in the classical

diffusion equation.

In this paper, the following fractional subdiffusion equation is considered

(1)
∂ αθ(x, t)

∂ tα
= d

∂ 2θ(x, t)
∂x2 ,

for 0≤ x≤ L, 0≤ t ≤ T,0 < α < 1.

initial condition θ(x,0) = g(x), 0≤ x≤ L(2)

boundary conditions θ(0, t) = 0,θ(L, t) = 0, 0≤ t ≤ T(3)

where d is diffusion coefficient and ∂ α θ(x,t)
∂ tα is fractional derivative of type Caputo, Caputo-

Fabrizio, Atangana -Baleanu-Caputo sense.

Nowadays, a wide range of techniques are available in the literature for solving fractional dif-

fusion equations. Analytical methods like the Laplace transform method, the Fourier transform

method, the Mellin transform method, and so on do not work well due to the complexity and

non-locality of fractional derivatives. Therefore, researchers need to establish numerical meth-

ods for solving such problems. Nowadays, many numerical methods exist for solving fractional

differential equations, like the finite difference method, the finite element method, the spec-

tral collocation method, etc. The solution of the fractional subdiffusion equation is obtained by

Yuste’s (2005) explicit finite difference method [12], Lewandowska’s (2006), Mainardi’s (2007)

using an analytical method [2], and Liu (2009) using an implicit finite difference scheme [3].
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Lukashcuuk (2011), Hristov (2011) using fractional time integral balance method [7], Mustapha

by finite difference method [5], Wang (2014) by using compact finite difference method [11],

Zeng (2015) using finite element method, Dehegan (2016) by using Legendre spectral element

method [6], Yang (2019) using fractional linear multistep method, Qui (2020) by Galerkin

method, and Dehestani (2022) using collocation method.

In this work, we developed the Crank-Nicolson finite difference method for the time-fractional

subdiffusion equation, incorporating not only the Caputo fractional derivative but also the

Caputo-Fabrizio and Atangana-Baleanu fractional derivatives.

This paper is organized as follows:

In Section 2, we discussed various definitions of fractional derivatives. Section 3 is devoted

to the discretization of Caputo, Caputo-Fabrizio, and Atangana-Baleanu fractional derivatives.

The crank-Nicolson finite difference method for the time fractional subdiffusion equation is de-

veloped in Section 4. We discussed stability and convergence in Section 5. Graphical solutions

and comparative analysis are discussed in Section 6.

2. PRELIMINARIES

Definition 2.1. Riemann-Liouville Fractional integral: [8]

If f (t) ∈C[0,1] then

(4) 0Jα
t f (t) =

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds,

is called the Riemann-Liouville fractional integral of order α . Where α ∈ (−∞,∞).

Definition 2.2. Riemann-Liouville Fractional Derivative:[1]

If f (t) ∈C[0,1] then

(5) R
0 Dα

t f (t) = D1
0I1−α

t f (t) =
d
dt

1
Γ(1−α)

∫ t

0
(t− s)−α f (s)ds,

is called the Riemann-Liouville fractional derivative of order α . Where α ∈ (0,1).

Definition 2.3. M.Caputo Fractional Derivative:[8]

If f (t) ∈C[0,1] then

(6) C
0 Dα

t f (t) =0 I1−α
t D1 f (t) =

1
Γ(1−α)

∫ t

0
(t− s)−α f

′
(s)ds,
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is called the Caputo fractional derivative of order α . Where α ∈ (0,1).

Let M(α) is normalization function which satisfies M(0) = M(1) = 1

Definition 2.4. Caputo-Fabrizio Fractional Derivative: [5]

If f (t) ∈ H1(0,1) then

(7)
CF∂ α f (t)

∂ tα
=

M(α)

(1−α)

∫ t

0
exp[

−α

1−α
(t− s)] f

′
(s)ds,

is called the Caputo-Fabrizio fractional derivative of order α . Where α ∈ (0,1).

Definition 2.5. Atangana-Baleanu-Caputo Fractional Derivative:[4]

If f (t) ∈ H1(0,1) then

(8)
ABC∂ α f (t)

∂ tα
=

M(α)

(1−α)

∫ t

0
Eα [
−α

1−α
(t− s)α ] f

′
(s)ds,

is called the Atangana-Baleanu-Caputo fractional derivative of order α . Where α ∈ (0,1) and

Eα(z) is Mittag-Leffler function.

Definition 2.6. Mittag-Leffler function of one parameter [8]

(9) Eα(z) =
∞

∑
k=0

zk

Γ(α K +1)

Definition 2.7. Mittag-Leffler function of two parameter [8]

(10) Eα,β (z) =
∞

∑
k=0

zk

Γ(α K +β )

3. DISCRETIZATION OF FRACTIONAL DERIVATIVES

To develop discretization of different time fractional derivatives, we define xi = i∆x, i =

0,1, . . . ,M and tn = n∆t, n = 0,1, . . . ,N; where ∆x = L
M and ∆t = T

N .

Caputo Fractional Derivative: Discretization of the Caputo time fractional derivative of order

α given by definition (6) at time level t = tn+1,is as follow(C∂ αθ

∂ tα

)i

n
=

∆t−α Cd0

Γ(2−α)

[
θ

n+1
i −θ

n
i

]
+

∆t−α

Γ(2−α)

n

∑
j=1

[
θ

n− j+1
i −θ

n− j
i

]
Cd j(11)

where Cd j = [( j+1)1−α − j1−α ]and Cd0 = 1(12)
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Caputo-Fabrizio Fractional Derivative: Discretization of the Caputo-Fabrizio time fractional

derivative of order α given by definition (7) at time level t = tn+1 with M(α) = 1 and −α

1−α
= α1

given by H. Yépez-Martı́nez and J.F. Gómez-Aguilar, is(CF∂ αθ

∂ tα

)i

n
=

CFd0

α∆t

[
θ

n+1
i −θ

n
i

]
+

1
α∆t

n

∑
j=1

[
θ

n− j+1
i −θ

n− j
i

]
CFd j(13)

(14) where CFd j =
[
exp[

−α

1−α
j∆t] − exp [

−α

1−α
( j+1)∆t]

]
Atangana-Baleanu-Caputo Fractional Derivative: Discretization of the Atangana-Baleanu-

Caputo(ABC) time fractional derivative of order α given by definition (9) at time level t = tn+1

with M(α) = 1, and α1 =
−α

1−α
, is(ABC∂ αθ(x, t)

∂ tα

)n

i
=

ABCd0

(1−α)∆t

[
θ

n+1
i −θ

n
i

]
+

1
(1−α)∆t

n

∑
j=1

[
θ

n− j+1
i −θ

n− j
i

]
ABCd j(15)

where

(16) ABCd j =
[
( j + 1)Eα,2

[
α1( j + 1)α (∆t)α

]
− j Eα,2

[
α1 jα (∆t)α

]]
and ∫ [

Eα [α1(tn+1 − s)α ]
]
ds = −(tn+1 − s)

[
Eα,2[α1(tn+1 − s)α ]

]
where Eα,2 is Mittag-Leffler function of two parameter as given in definition (10).

Moreover, the discretization of time fractional derivative can be represented as

(17)
(

∂ αθ(x, t)
∂ tα

)n

i
= ζ d0

[
θ

n+1
i −θ

n
i

]
+ ζ

n

∑
j=1

[
θ

n− j+1
i −θ

n− j
i

]
d j

Where

ζ =



(∆t)−α

Γ(2−α) , for Caputo time fractional derivative;

1
α ∆t , for Caputo-Fabrizio time fractional derivative;

1
(1−α)∆t for ABC time fractional derivative

And

d j =


Cd j, for Caputo time fractional derivative;

CFd j, for Caputo-Fabrizio time fractional derivative;

ABCd j for ABC time fractional derivative
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Space Derivative: Discretization of space derivative given in (1) by using Crank-Nicolson

Method as follow:

(18)
(

∂ 2U
∂x2

)i

n
=

1
(2∆x)2

[
Un+1

i−1 −2Un+1
i +Un+1

i+1 +Un
i−1−2Un

i +Un
i+1

]
+O((∆x)2)

4. MAIN RESULTS

In this section, we solved fractional subdiffusion equation (1)-(3) by using the Crank-

Nicolson Finite difference method. we substitute equation (17) and (18) in equation (1), we

get

ζ d0

[
θ

n+1
i −θ

n
i

]
+ ζ

n

∑
j=1

[
θ

n− j+1
i −θ

n− j
i

]
d j =

d
2(∆x)2

[
θ

n+1
i−1 −2θ

n+1
i +θ

n+1
i+1 +θ

n
i−1−2θ

n
i +θ

n
i+1

]
θ

n+1
i −θ

n
i +

1
d0

n

∑
j=1

[
θ

n− j+1
i −θ

n− j
i

]
d j =

d
2(∆x)2 ζ d0

[
θ

n+1
i−1 −2θ

n+1
i +θ

n+1
i+1 +θ

n
i−1−2θ

n
i +θ

n
i+1

]
θ

n+1
i −θ

n
i = r

[
θ

n+1
i−1 −2θ

n+1
i +θ

n+1
i+1 +θ

n
i−1−2θ

n
i +θ

n
i+1

]
−h

n

∑
j=1

[
θ

n− j+1
i −θ

n− j
i

]
d j

where r =
d

2(∆x)2 ζ d0
and h =

1
d0

− rθ
n+1
i−1 +(1+2r)θ n+1

i − rθ
n+1
i+1 = rθ

n
i−1 +(1−2r)θ n

i + rθ
n
i+1−h

n

∑
j=1

[
θ

n− j+1
i −θ

n− j
i

]
d j

(19)

Initial condition (2) is discretize as

(20) θ
0
i = g(xi), i = 1, 2, . . . , M

And boundary conditions (3) are discretize as

(21) θ
n
0 = 0,and θ

n
M = 0, n = 0,1, 2, . . . , N

The complete discretization of subdiffusion equation (1)-(3) is given by

− rθ
1
i−1 +(1+2r)θ 1

i − rθ
1
i+1 = rθ

0
i−1 +(1−2r)θ 0

i + rθ
0
i+1 for n = 0

(22)

− rθ
n+1
i−1 +(1+2r)θ n+1

i − rθ
n+1
i+1 = rθ

n
i−1 +Λθ

n
i + rθ

n
i+1 +h

n−1

∑
j=1

(d j−d j+1)θ
n− j
i +hdnθ

0
i

(23)

for n≥ 1
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initial condition θ
0
i = g(xi), i = 1, 2, . . . , M(24)

boundary conditions θ
n
0 = 0,and θ

n
M = 0, n = 0,1, 2, . . . , N(25)

with r = d
2(∆x)2 ζ d0

, Λ = 1− 2r− hd1 and h = 1
d0
, and i = 1, 2, . . . , M; n = 0,1, 2, . . . , N.

Note that value of ζ and d j depends on choice of fractional derivative as discussed in previous

section. Hence, matrix form of discretized Crank-Nicolson finite difference scheme (22)-(25)

is as follow

Aθ
1 = Bθ

0, for n = 0,(26)

Aθ
n+1 = F θ

n +h
n−1

∑
j=1

[
d j−d j+1

]
θ

n− j +hdnU0 for n≥ 1,(27)

where θ n =
(

θ n
1 , θ n

2 , . . . , θ n
M−1

)T
is the constant matrix, and

A =



1 + 2r −r

−r 1 + 2r −r
. . . . . . . . .

−r 1 + 2r −r

−2r 1 + 2r


,

B =



1 − 2r r

r 1 − 2r r
. . . . . . . . .

r 1 − 2r r

r 1 − 2r


, F =



Λ r

r Λ r
. . . . . . . . .

r Λ r

r Λ


,

with r = d
2(∆x)2 ζ d0

, Λ = 1−2r−hd1 and h = 1
Cd0

.
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5. STABILITY AND CONVERGENCE

5.1. Stability.

Lemma 5.1. The eigenvalues of M×M tri-diagonal matrix

a1 a2

a3 a1 a2
. . . . . . . . .

a3 a1 a2
. . . . . . . . .

a3 a1 a2

a3 a1


are given as

λi = a1 +2
√

a2 a3cos(
iπ

M+1
)

where a1, a2 and a3 are either real or complex numbers[9].

Lemma 5.2. If λi (A), i = 1,2, . . . ,M− 1 represents eigen values of matrix A, then following

conditions are hold

(i) λi (A)≥ 1,

(ii) ‖A−1‖2 ≤ 1, where ‖.‖2 is second norm of matrix.

Proof. By the Gerschgorin’s circle theorem [9] , each eigenvalue λi of a square matrix A lies in

at least one of the following circle

(28) |λ −ai j| ≤
M

∑
i=1,i6= j

ai j, j = 1, 2, 3, . . . M.

Thus each Eigen value of square matrix A satisfy at least one of the following inequality

(29) |λ | ≤
M

∑
i=1
|ai j |

(30) |λ | ≥ |ai j |−
M

∑
i=1,i6= j

|ai j |
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Now, we use inequality (30) to prove the condition (i) for the matrix A.

|λ1 (A)|≥ |(1 + 2r)− r |= 1+ r ≥ 1

|λ2 (A)|≥ |(1 + 2r)− r− r|= 1

|λ3 (A)|≥ |(1 + 2r)− r− r |= 1

...

|λM−1 (A)|≥ |(1 + 2r)− r|= 1+ r ≥ 1

Thus |λ j|≥ 1, j = 1, 2, 3 . . . , M.

To prove condition (ii), we have

‖A‖2 = max
1≤ j ≤ n

|λ j(A)|

Therefore, from condition (i), we get ‖A‖2 ≥ 1

Hence ‖A−1‖2 ≤ 1.

This completes the proof. �

Lemma 5.3. The discretized fractional order Crank-Nicolson finite difference scheme with ini-

tial and boundary conditions given by (22)-(25) is solvable for each time step unconditionally.

Proof. To prove the solvability of equations (22)-(25), it is enough to prove that matrix A is

invertible [9, 10]. We observed that the first and last row of matrix A is diagonally dominant.

For other rows, the diagonal element is 1 + 2 r and the sum of the absolute values of the non-

diagonal element in the same row is,

|(−r)|+|(−r)|= 2r

Hence, for each row, we have 1 + 2 r > 2 r . Thus, matrix A is strictly diagonally dominant.

Hence, matrix A is invertible. This shows that the solvability of the finite difference scheme. �

Lemma 5.4. If λi(B) and λi(F), i = 1,2, . . . ,M represents the eigenvalues of B and F respec-

tively, then following conditions are hold

(i) |λi (B)|≤ 1, |λi (F)|≤ 1, i = 1,2, . . . ,M

(ii) ‖B‖2 ≤ 1, ‖F‖2 ≤ 1, i = 1,2, . . . ,M
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Theorem 5.1. The numerical solution of the fractional order Crank-Nicolson finite difference

scheme (22)-(25) for fractional order subdiffusion equation (1)-(3), is unconditionally stable.

Proof. To prove the numerical solution of finite difference scheme is unconditionally stable, we

will prove that

‖θ n‖2 ≤ K‖θ 0‖2

where K is positive integer independent of x and t.

For n = 1

θ
1 = A−1 Bθ

0‖θ 1‖2 ≤ ‖A−1‖2 ‖B‖2 ‖θ 0‖2 ≤ K‖θ 0‖2

Thus result is true for n = 1.

For n≤ m, let us assume that ‖θ m‖2 ≤ K‖θ 0‖2

Now, for n = m+1

θ
m+1 = A−1 F θ

m + hA−1
m−1

∑
j=1

[
d j−d j+1

]
θ

m− j +hA−1 dmθ
0

‖θ m+1‖2 ≤ ‖θ m‖2 +
m−1

∑
j=1

h
[
d j−d j+1

]
‖θ m− j‖2 +hdm ‖U0‖2

= ‖θ m‖2 + h
[
(d1−d2)‖θ m−1‖2 +(d2−d3)‖θ m−2‖2 + . . . +(dm−1−dm)‖θ 1‖2

]
+hdm ‖θ 0‖2

≤ K1 ‖θ 0‖2 +h
[
(d1−d2) +(d2−d3) + . . . +(dm−1−dm)

]
K2 ‖θ 0‖2 +hdm ‖U0‖2

≤
[
K1 +hd1 +(1−K2)dm

]
‖θ 0‖2 = K‖θ 0‖2

Hence, by induction, for all n, we have ‖θ n‖2 ≤ K‖θ 0‖2.where K is a positive number inde-

pendent of x and t. Note that, here we use notation d j as common notation for Cd j,
CFd j,

ABCd j.

Therefore, this shows that the solution obtained by the scheme is unconditionally stable. This

completes the proof. �
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5.2. Convergence: In this section, we discuss the convergence of the scheme. Let Ω be the

region [0,L]× [0,T ].

We introduce the vector,

θ
n
=
(

θ(x0, tn), θ(x1, tn), θ(x2, tn), . . . , θ(xM, tn)
)T

,

of size M+1, which represent the exact solution of the fractional order subdiffusion equation

(1)-(3) at time level tn. Let τn =
(

τn
1 , τn

2 , τn
3 , . . . , τn

M

)T
be the vector of truncation error at time

level tn. Since θ
n is the exact solution of the equation(1)-(3), we have

Aθ
1
= Bθ

0
+ τ

1, for n = 0(31)

Aθ
n+1

= F θ
n
+h

n−1

∑
j=1

[
d j−d j+1

]
θ

n− j
+hdnθ

0
+ τ

n+1 for n≥ 1(32)

Lemma 5.5. The coefficient d j, j = 0,1,2,3, . . . satisfy the following conditions [10]

(i) d j > 0

(ii) d j > d j+1 and d j→ 0 as j → ∞

Theorem 5.2. The fractional order Crank-Nicolson finite difference scheme (22)-(25) for frac-

tional order subdiffusion equation (1)-(3), is unconditionally convergent.

Proof. We set, En = θ
n−θ n =

(
en

1, en
2, en

3, . . . , en
M

)T
be the error vector in the solution at time

level tn. Furthermore, we assume that

|en
l |= max

1≤ i≤M
|en

i |= ‖En‖∞

|τn
l |= max

1≤ i≤M
|τn

i |, for l = 1,2,3, . . .

using equation (22) we obtain

|e1
l |= |−r e1

i−1 + (1+2r )e1
i − r e1

i+1|≤ r |e0
i−1|+(1− 2r ) |e0

i |+r |e0
i+1|+|τ1

l |

≤ (r +1− 2r + r ) max
1≤ i≤M

|e0
i |+ max

1≤ i≤M
|τ1

i |≤ ‖E0‖∞ + max
1≤ i≤M

|τ1
i |

∴ ‖E1‖∞ ≤ ‖E0‖∞ + max
1≤ i≤M

|τ1
i |
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Now, from equation (23), we obtain

|em+1
l |= |−r em+1

i−1 + (1+2r )em+1
i − r em+1

i+1 |

≤ r |em
i−1|+(1− 2r −hd1) |em

i |+r |em
i+1|+h

m−1

∑
j=1

[
d j−d j+1

]
|em− j

i |+hdm |e0
i |+|τm+1

l |

= r |em
i−1|+(1− 2r −hd1) |em

i |+r |em
i+1|+h(d1−d2) |em−1

i |+h(d2−d3) |em−2
i |

+ · · ·+h(dm−1−dm) |e1
i |+hdm |e0

i |+|τm+1
l |

≤
[
r +1− 2r −hd1 + r

]
|em

l |+h
[
(d1−d2)+(d2−d3)+ · · ·+(dm−1−dm)

]
|em

l |

+hdm |el
i|+ max

1≤ i≤M
|τm+1

i |

= ‖Em‖∞ + max
1≤ i≤M

|τm+1
i |

This is true for every m, therefore we have

‖Em+1‖∞ ≤ ‖Em‖∞ + max
1≤ i≤M

|τm+1
i |

Hence, by induction, we get

‖En+1‖∞ ≤ ‖En‖∞ + max
1≤ i≤M

|τn+1
i |

As ‖E0‖∞ = 0 implies ‖En‖∞ = 0

Therefore

‖En‖∞ ≤ max
1≤ i≤M

|τn+1
i |.

Since

max
1≤ i≤M

|τn+1
i |→ 0 as (∆x,∆t)→ (0,0)

implies that ‖En‖∞→ 0 uniformaly on Ω an (∆x,∆t)→ (0,0). Therefore, this shows that for

any x and t, as (∆x,∆t)→ (0,0), the vector θ n converges to θ
n.

Hence, this completes the proof. �
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6. NUMERICAL SIMULATIONS

In this section, we represent solution of fractional subdiffusion equations (1)-(3) graphically

with initial condition g(x) = x(1− x),L = 1,T = 1 by using Python software. Also, we ob-

tained absolute error between vales of U(x, t) with Caputo, Caputo-Fabrizio, and Antagana-

Balenau fractional derivatives. We observe that the graph of the solution of the subdiffusion

(A) Solution of subdiffusion

equation with Caputo FD

(B) Solution of subdiffusion

equation with Caputo-Fabrizio

FD

(C) Solution of subdiffusion

equation with Atangana Bale-

nau FD

FIGURE 1. Comparison of temperature profiles along x direction at t = 0.5.

equation with Caputo-Fabrizio and Atangana-Baleneu fractional derivatives are similar while

a solution of the subdiffusion equation with Caputo fractional derivative is slightly different,

this difference is due to the singular and non-singular kernel in Caputo and Caputo-Fabrizio,

Atangana-Baleneu fractional derivatives respectively.
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x (t = 0.5) U(x, t) by using C U(x, t) by using CF |C−CF |

0.1 0.00251619 0.00427791 0.00176172

0.2 0.00476929 0.00814101 0.00337172

0.3 0.00654142 0.01118644 0.00464502

0.4 0.00767103 0.01313604 0.00546501

0.5 0.00805875 0.01380633 0.00574758

0.6 0.00767103 0.01313604 0.00546501

0.7 0.00654142 0.01118644 0.00464502

0.8 0.00476929 0.00814101 0.00337172

0.9 0.00251619 0.00427791 0.00176172

TABLE 1. Absolute difference between values of U(x, t) in the x direction at

t = 0.5 and α = 0.9 by using Caputo and CF FD

x (t = 0.5) U(x, t) by using C U(x, t) by using ABC |C−ABC|

0.1 0.00251619 0.00495264 0.00243645

0.2 0.00476929 0.00940461 0.00463532

0.3 0.00654142 0.0128988 0.00635738

0.4 0.00767103 0.01512721 0.00745618

0.5 0.00805875 0.01589185 0.0078331

0.6 0.00767103 0.01512721 0.00745618

0.7 0.00654142 0.0128988 0.00635738

0.8 0.00476929 0.00940461 0.00463532

0.9 0.00251619 0.00495264 0.00243645

TABLE 2. Absolute difference between values of U(x, t) in the x direction at

t = 0.5 and α = 0.9 by using Caputo and ABC FD
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x (t = 0.5) U(x, t) by using CF U(x, t) by using ABC |CF−ABC|

0.1 0.00427791 0.00495264 0.00067473

0.2 0.00814101 0.00940461 0.0012636

0.3 0.01118644 0.0128988 0.00171236

0.4 0.01313604 0.01512721 0.00199117

0.5 0.01380633 0.01589185 0.00208552

0.6 0.01313604 0.01512721 0.00199117

0.7 0.01118644 0.0128988 0.00171236

0.8 0.00814101 0.00940461 0.0012636

0.9 0.00427791 0.00495264 0.00067473

TABLE 3. Absolute difference between values of U(x, t) in the x direction at

t = 0.5 and α = 0.9 by using CF and ABC FD

From tables, we observe that the absolute difference between values of U(x, t) obtained by

Caputo and Caputo-fabirizio fractional derivative, Caputo and Atangana-Baleneu fractional de-

rivative for various values of α are approximately of order 10−2 while absolute difference be-

tween values of U(x, t) obtained by Caputo-fabirizio and Atangana-Baleneu fractional deriva-

tive for various values of α are approximately of order 10−3. This difference is due to kernel of

fractional derivatives. Caputo fractional derivative having power kernel, Caputo-fabrizio having

exponential kernel and Atangana-baleneu having Mittag-Leffler kernel. Note that Exponential

is particular case of Mittag-Leffler.

7. CONCLUSION

We successfully developed Crank-Nicolson finite difference scheme for fractional subdiffu-

sion equation by using Caputo, Caputo-Fabrizio, and Atangana-Baleneu fractional derivative.

Further, we have shown that the scheme is unconditionally stable and convergent. We developed

Python code successfully to obtain a numerical solution of a fractional subdiffusion equation

and represent it graphically. We compared solutions of the fractional subdiffusion equation ob-

tained by various fractional derivatives. We observe that solution obtained by Caputo-Fabrizio
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and Atangana-Baleneu fractional derivative are strongly agreed than solution obtained by Ca-

puto fractional derivative. This is due to the difference between singular and non-singular ker-

nels.
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