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Abstract. Immunosuppressive therapy, a keystone of many treatments, can weaken the immune system, potentially 

worsening viral infections such as Ebolavirus disease (EVD). This study used mathematical modeling and simulations 

to explore the impact of immunosuppression on within-host EVD. The model integrates viral replication, the patient's 

immune response and the effect of immunosuppressive therapy. Simulations explored how varying degrees of 

immunosuppression influence the progression of EVD. Critically, the model predicted a direct correlation: increased 

immunosuppression triggered a noticeable rise in viral replication and a corresponding weakening of the immune 

response. This in silico approach provides valuable understandings of the complex interaction between EVD, the 

immune system and immunosuppressive therapy. The findings stress the potential risks associated with 

immunosuppression during EVD and emphasize the importance of considering these factors when making critical 

treatment decisions for EVD patients requiring such therapy. 

Keywords: ebolavirus disease; immune response; immunosuppressive therapy; mathematical modeling; within-host 

EVD dynamics. 
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1. INTRODUCTION 

     Ebolavirus disease (EVD), caused by the Ebola virus (EBOV), is a terrifying hemorrhagic 

fever with a forbidding reputation for high mortality rates. The 2014-2016 West African Ebola 

virus epidemic tragically demonstrated the overwhelming potential of this pathogen, with over 

28,600 confirmed, probable, and suspected cases and more than 11,300 deceases reported [41]. 

While major steps have been made in developing vaccines and treatments for EVD infection [15, 

17, 35, 44], managing patients with weakened immune systems remains a critical challenge. 

     Organ transplantation, autoimmune diseases and various cancers generally necessitate 

immunosuppressive therapy. This treatment deliberately weakens the body's immune response, 

specifically cytotoxic T lymphocytes (CTLs) and antibody production, to stop organ rejection or 

autoimmune damage [1]. However, this vital therapy leaves patients weak to opportunistic 

infections, including those triggered by viruses like Ebolavirus. In EVD, the aggressive nature of 

the virus and the critical role of both CTLs and antibodies in controlling viral replication make 

the potential consequences of immunosuppression particularly concerning [14]. 

     Understanding the intricate interaction between EBOV infection, the immune response and 

the effects of immunosuppressive therapy is essential for optimizing patient care during EVD 

outbreaks. Mathematical modeling emerges as a powerful tool for investigating these complex 

dynamics. By constructing models that represent the biological processes involved, researchers 

can gain valuable insights into how immunosuppression alters the progression of EVD infection 

[34]. 

     Several recent studies have used mathematical modeling to explore viral dynamics and 

immune response, vaccine efficacy and treatment optimization of within-host EBOV infection [4, 

5, 7, 8, 10, 11, 23, 28, 31, 32, 38, 39, 44]. A 2020 study by Chertow et al. [11] employed a 

mathematical model to investigate the interaction between viral kinetics, host immune response 

and potential treatment effects in EVD patients. Their model provided insights into the complex 

dynamics of viral load and immune cell activity during infection. A 2023 study by Li et al. [28] 

employed a modeling approach to assess the potential impact of different vaccination strategies 

on reducing viral burden and improving patient outcomes. A 2022 study by Wang et al. [44] 

investigated the potential application of Clustered Regularly Interspaced Short Palindromic 

Repeats (CRISPR) gene editing technology for EVD treatment using a mathematical framework. 

This research paves the way for exploring novel therapeutic strategies. Similarly, a 2021 study 

by Gao et al. [8] focused on modeling the immune response to EBOV vaccination. Their model 
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investigated the interaction between different immune cell populations and the development of 

protective immunity, paving the way for optimizing vaccine design. 

     Our current study builds upon this existing body of research by concentrating specifically on 

the impact of immunosuppressive therapy on EBOV infection dynamics within a patient. By using 

a mathematical model that includes viral replication, immune response elements, and the effects of 

immunosuppression, we aim to answer the following main questions: How does the degree of 

immunosuppression influence the rate of viral replication in an EVD patient? What impact does 

immunosuppression have on the effectiveness of the patient's immune response against EBOV? 

Can the model identify potential therapeutic strategies to alleviate the undesirable effects of 

immunosuppression during EVD treatment? By addressing these questions, this study seeks to 

contribute valuable knowledge to the management of EVD in immunocompromised patients. This 

knowledge can enlighten clinical decision-making regarding immunosuppressive therapy and 

guide the development of targeted interventions to improve patient outcomes during EVD 

outbreaks. 

     The existing body of research on EVD has principally focused on understanding the 

transmission dynamics and developing vaccines [9, 12]. While these efforts are crucial, a critical 

gap exists in our understanding of how immunosuppression influences EVD progression in 

individual patients [33]. This gap impedes the development of optimal treatment strategies for 

immunocompromised individuals who contract EVD. Our study aims to bridge this gap using 

mathematical modeling to explore the complex interaction between immunosuppression, viral 

replication and the immune response in the context of EVD. 

2. MATERIALS AND METHODS 

2.1 Model Development 

     This study employed a novel mathematical model built on a system of five ordinary 

differential equations (ODEs). These equations tracked the dynamic changes in key factors of 

EVD infection over time. The model specifically captured the rates of change for: 

1. Susceptible target cell population (S): This variable represents the number of uninfected 

macrophages, dendritic cells and endothelial cells that are prone to Ebolavirus infection. 

2. Infected cell population (I): This variable reflects the number of cells actively harboring 

the virus. 

3. Ebolavirus (V): This variable denotes the number of virus particles present in the patient. 
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4. CTL population (T): This variable tracks the number of CTLs, immune cells crucial for 

eliminating infected cells. 

5. Antibody population (B): This variable tracks the number of antibodies proteins vital for 

clearing the virus from the body. 

     Additionally, the model incorporated the impact of immunosuppressive therapy and how 

EVD infects macrophages and dendritic cells, since these processes significantly influence the 

development of both CTL and antibody responses. 

2.2 Model Parameterization 

     To parameterize the model, we employed existing scientific literature on EVD infection, 

immune response dynamics and the effect of immunosuppressive therapy. A comprehensive list 

and descriptions of these parameters are provided in Table 1. 

TABLE 1. Descriptions of parameters 

Parameter  Description 

η Infection rate of susceptible cells. 

γA Natural death rate of susceptible and infected cells. 

γB Natural death rate of CTLs. 

γC Natural death rate of the virus. 

γD Natural death rate of antibodies. 

μA CTL-mediated infected cell elimination rate. 

μB Clearance rate of the viruses by antibodies. 

μC CTL proliferation rate. 

μD Antibody proliferation rate 

ω Virus replication rate. 

θ1 Immunosuppressive therapy-induced CTL proliferation inhibition rate. 

θ2 Infection-induced CTL proliferation inhibition rate. 

Π Production rate of susceptible cells. 

 

Data sources for parameterization were clearly documented and referenced. 

2.3 Model Assumptions 

All important assumptions for the formulation of the model were clearly specified. 
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2.4 Model Simulations 

     Leveraging our newly developed mathematical model, we conducted simulations to 

understand how immunosuppressive therapy impacts EVD infection dynamics. These simulations 

explored the interaction between viral load and immune (CTL and antibody) response during 

infection. Besides, we used simulations to explore how immunosuppression impacts viral 

replication and CTL and antibody responses. By analyzing the model's behavior under these 

different scenarios, we gained valuable insights into the unique dynamics of EVD infection in this 

specific patient population of immunocompromised individuals. 

2.5 Software Application 

     We used OCTAVE software to conduct an comprehensive analysis of our mathematical 

model. This analysis included two crucial components. Firstly, we performed sensitivity analysis 

using these tools. This entailed calculating sensitivity indices, which quantify how variations in 

key model parameters influence the model's predictions. This allowed us to identify the 

parameters with the most significant influence on the model's behavior. Secondly, we used the 

software to simulate the model's response under various conditions. This simulation method 

offered valuable insights into the potential dynamics of EVD within an immunocompromised 

patient. 

2.6 Model Validation 

     Ethical considerations prevented us from directly validating our model using data from 

Ebola patients undergoing immunosuppressive therapy. To overcome this hurdle, we used a 

technique called sensitivity analysis. This analysis explores how the model's predictions change 

when we adjust key parameters within realistic ranges. By doing this, we can identify the 

parameters that have the most significant impact on the model's behavior. We used a specific 

method called the normalized forward index for this analysis. It is important to note that before 

conducting the sensitivity analysis, we calculated the basic reproduction number (R₀) using the 

next generation matrix method. 

3. RESULTS AND DISCUSSION  

     This study used a novel mathematical model to explore how immunosuppressive therapy 

influences EVD progression within a patient. The model specifically examined the interaction 

between viral replication, the immune response (CTL and antibody responses) and the effect of 

this therapy on disease progression. 



6 

SELEMAN ISMAIL 

3.1 Model Development 

     This section investigates the essential components of our model. We will begin by defining 

how different populations within the host change over time, a concept known as population 

dynamics. A visual representation, called a model flow diagram, will then illustrate the 

interactions between these populations. Finally, to accurately capture the model's behavior, we 

will translate these interactions into mathematical equations. Key assumptions, variables and 

parameters will be crucial for this translation. 

3.1.1 Model Assumptions 

The model was formulated based on the following assumptions 

1. Cell production 

i). Both susceptible cells and viruses are continuously produced at constant rates [2, 3, 26 31, 

32]. 

ii). Both CTLs and antibodies proliferate at constant rates. 

2. Infection 

i). All susceptible cells (macrophages, dendritic and endothelial cells) are equally vulnerable 

to infection and the infection occurs at a constant rate [2, 3, 31, 32]. 

3. Natural cell death 

i). Susceptible cells die naturally at a constant rate [3, 31, 32]. 

ii). Infected cells, viruses and CTLs die naturally at constant rates [31, 32]. 

iii). Susceptible and infected cells have equal natural death rates [31, 32]. 

4. Immune Response 

i). CTLs eliminate infected cells at a constant rate [31, 32]. 

ii). Antibodies clear the viruses at a constant rate [23, 32]. 

iii). Viral infection suppresses CTL proliferation at a constant rate. 

iv). Immunosuppressive therapy inhibits CTL and antibody proliferations at constant rates. 

5. Additional Assumptions 

i). The model excludes the possibility of infected cells dying directly from the disease. 

ii). The host begins to experience ebolavirus infection in the course of immunosuppressive 

therapy. 

iii). Immunosuppressive therapy inhibits both CTL and antibody proliferation. 
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3.1.2 Description of Interactions 

     The model incorporates the complex dynamics between the host's immune response under 

immunosuppression and EVD. Susceptible cells (macrophages, dendritic cells, and endothelial 

cells), represented by S, are continuously produced at a rate of Π and infected by the viruses at a 

rate of η. However, both susceptible cells and viruses (V), undergo natural death at rates of γA and 

γB respectively. 

     Ebolavirus replication occurs in infected cells (I), with new viruses produced at a rate of ω. 

These infected cells die naturally at a rate of γA. The host's cellular immunity is represented by 

CTLs (T) and antibodies (B). These CTLs and antibodies show baseline proliferation rates of μC 

and μD respectively. However, immunosuppressive therapy and infection of antigen-presenting 

cells (APCs) themselves function as immunosuppressive forces, reducing CTL and antibody 

proliferation at rates of θ2 and θ1 respectively.  

     Strengthened and functional CTLs and antibodies are crucial for eliminating infected cells 

and clearing the viruses respectively. This elimination and clearance processes happen at rates of 

μA and μB, proportional to the CTL and antibody populations respectively. Additionally, CTLs die 

naturally at a rate of γC and the antibodies die naturally at a rate of γD. 

3.1.3 Model Flow Diagram  

     Drawing on the established understanding of EVD dynamics, Figure 1 presents a flow 

diagram that summarizes the virus's behavior within an immunosuppressed host. This diagram 

integrates the model's core assumptions, variable definitions and parameter values.  
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FIGURE 1. Model flow diagram demonstrating the interactions between various populations 

within an Ebolavirus-infected host undergoing immunosuppressive therapy. Rectangles represent 
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distinct populations, like uninfected cells or virus particles. Solid arrows indicate the rate of 

change for each population. Dotted lines, on the other hand, represent interactions that do not 

directly affect population size, such as virus-host cell contact. The direction of the arrows 

alongside the rectangles signifies changes in population size: an arrow pointing towards a 

rectangle indicates an increase, while an arrow pointing away signifies a decrease. 

3.1.4 Equations of the Model 

     Using the model's assumptions, complete interaction descriptions and the model flow 

diagram provided in Figure 1, we constructed a system of five non-linear ordinary differential 

equations (ODEs). These equations mathematically capture the dynamic variations in various 

populations within the host throughout the progression of the Ebola virus infection under 

immunosuppression. 
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with initial conditions: 0)0( S , 0)0( I , 0)0( V , 0)0( T  and 0)0( B . 

     The ODE model we formulated captures the dynamic interaction between various 

populations involved in the Ebolavirus infection within an immunosuppressed host. Each equation 

represents the rate of change for a specific population over time: Equation 1.1 describes the 

susceptible cell population (S). It considers cell production, infection by the virus and natural cell 

death. Equation 1.2 focuses on the infected cell population (I). It incorporates the production of 

infected cells through susceptible cell infection, their natural death and the clearance mediated by 

the weakened CTL response. Equation 1.3 represents the viral population (V) dynamics. It 

considers viral production, elimination by antibodies and natural decay. Equation 1.4 models the 

dynamics of the weakened immune response (T), accounting for its natural decline. Finally, 

Equation 1.5 describes the antibody population (B) dynamics, considering their production and 

natural death.  
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     This system of five non-linear ODEs allows us to investigate the complex interactions 

between these elements during EVD infection in individuals receiving immunosuppressive 

therapy. 

3.2 Qualitative Properties of the Model 

     The model's qualitative properties play a crucial role in ensuring its validity as a 

representation of an infectious disease [42]. Mathematically, the solutions generated by the model 

must be positive, reflecting the real-world existence of cell populations [38]. Additionally, these 

solutions need to be bounded, allowing the finite number of cells within the human body. 

Biologically, these mathematical properties translate to realistic scenarios. For example, the model 

should not predict negative viral loads, which are physically impossible. Also, positively bounded 

solutions imply that the viral population, after an initial increase, stabilizes below a detectable 

threshold, preventing the beginning of severe illness [26]. We achieved this validation through 

lemmas that mathematically demonstrate the positivity and boundedness of our Ebola model. 

3.2.1 Positivity of Solutions 

     Using Theorem 1, we demonstrate that all solutions to the ODE system are always positive. 

Theorem 1. If the initial set of variables of the model system )5.1()1.1( −  is 0)0( S , 

0)0( I , 0)0( V , 0)0( T  and 0)0( B , then the solution set )}(),(),(),(),({ tBtTtVtItS  

will remain positive in 5

+R  0t . 

Proof: Positivity. We must prove that the solutions for the state variables )(tS , )(tI , )(tV , 

)(tT  and )(tB  will be positive in 5

+R  for all 0t . Therefore, we can place lower bounds on 

each of the equations given in the model. Thus, we have                                         
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Solving the set of inequalities (2) with standard methods for differential equations produces  
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t
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









−− 

t

BB dssBtVtV  , ( ) 0exp)( 0 − tTtT C  and ( ) 0exp)( 0 − tBtB D . 

     Thus, the variables )(tS , )(tI , )(tV , )(tT  and )(tB  within the model are always positive 

for a given context (Ω). This mathematical property, established by Lemma 1, ensures that the 

model's solutions remain positive in 5

+R  for all time (t) within this context. In simpler terms, the 

model reflects real-world scenarios where these populations cannot have negative values. 

3.2.2 Invariant Region of the Model Solution 

      This section employs Theorem 2 to identify a region where the solutions of our model 

remain uniformly bounded. In simpler terms, we will show that all solutions within this specific 

region will not grow infinitely large over time. 

Theorem 2. If the model system )5.1()1.1( −  has initial conditions 0)0( S , 0)0( I , 

0)0( V , 0)0( T  and 0)0( B , then its solution enters a uniformly bounded region 5

+ R  

0t , where 1112

++++ = RRRRBTVN . 

Proof: Boundedness. We must prove that the solutions for the model variables )(tS , )(tI , 

)(tV , )(tT  and )(tB  will be bounded for all 0t . We achieve this using a piecewise 

approach as the model incorporates heterogeneous populations 

(i). Target Cell Population 

     We prove that all solutions for the target cell population remain positive over time 

(positively invariant) within a specific region. Let us represent this region as )(2 ISNRN += + , 

defined by the initial condition N0, evaluated at both S0 and I0. Then the total population of the 

target cells is given by  

)()()( tItStN += , 0t . 

We deduce that  
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dt

tdI

dt

tdS

dt

tdN )()()(
+= .                )3(  

Then substituting Equations 1.1   and 2.1  into Equation (3) produces 

                           NIT
dt

dN
AA  −−−= )1( 2 .             )4(  

Placing an upper bound on (4) produces                                       

                               N
dt

dN
A− .                     )5(  

Solving the inequality (5) with basic differential equation methods produces                                                         

                       )exp()( 0 tNtN A

AA




−






 
−+


 .              )6(  

     Analysis of (6) reveals the dynamic behavior of the target cell population. When the 

inequality 
AN 0

 holds true, the target cell population asymptotically decreases to A . 

Conversely, the population increases asymptotically to A  when the condition AN 0  

holds.  This implies },max{)( 0

 NNtN
 
for all 0t  and whatever value of N0, wherein 

AN = . This further implies that all solutions for the target cell population enter the region 

N , defined by 

                              + = NtNRISN )(:),( 2 .           )7(  

Hence, all solutions for the target cell population are positively invariant in the region 2

+ RN . 

From  NtN )( , we deduce that  NtS )(  and  NtI )( .  

(ii). Ebola Virus Population 

     We demonstrate that all solutions for the Ebolavirus population always remain positive 

over time (positively invariant) within a defined region. Let us represent this region as 1

+ RV , 

defined by the initial condition V0. Then we have:  

Placing an upper bound on Equation 1.3 produces 

VI
dt

dV
B −  

Then, with  NtI )( , we deduce that 
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                                VN
dt

dV
B − 

                      )8(  

Solving the inequality (8) using basic differential equation methods produces    

                       )exp()( 0 t
N

V
N

tV B

BB









−








−+



                )9(  

     Our analysis of (9) reveals the dynamic behavior of ebolavirus population. When the 

condition BNV  0  holds true, the ebolavirus population asymptotically decreases to 

B
N   . Conversely, when the condition BNV  0  applies, it increases asymptotically to 

B
N   . This implies that },max{)( 0

 VVtV  for all 0t  and any value of V0, where 

BNV  =0 . This further implies that all solutions for ebolavirus population enter the region 

V , defined by 

                             + = VtVRVV )(:1 .                    )10(  

Thus, all solutions for ebolavirus population are positively invariant in the region 1

+ RV . 

 

(iii). CTL Population 

     We prove that all solutions for the CTL population always remain positive over time 

(positively invariant) within a defined region. Let us represent this region as 1

+ RT
, defined by 

the initial condition T0. Then we have:  

Substituting  NtI )(  into Equation 1.4 produces.  

 TTN
dt

dT
CC  −− )1( 1 , 

which can be expressed as 

                             TN
dt

dT
CC ))1(( 1  −− 

.                 )11(  

Solving inequality (11) with basic differential equation methods produces 

                          ]))1exp[(()( 10 tNTtT CC  −−  .              )12(  
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     Analysis of (12) reveals that )(tT  is bounded above only if 0)1( 1 −− 

CC N   for all 

0t . Therefore, 
0)( TtT  . This implies that all solutions for the CTL population are positively 

invariant within the region 1

+ RT
, defined by 

                             })(:{ 0

1 TtTRTT = + .              )13(  

(iv). Antibody Population 

     We demonstrate that all solutions for the antibody population always remain positive over 

time (positively invariant) within a defined region. Let us represent this region as 1

+ RB
, defined 

by the initial condition B0. Then we have: 

Substituting VtV )( into Equation 1.5 produces 

BBV
dt

dB
DD  −− )1( 1 , 

which can be expressed as 

                                                                  

                             BV
dt

dB
DD ))1(( 1  −− 

             )14(                           

Solving inequality (14) with basic differential equation methods produces 

                         ]))1exp[(()( 10 tVBtB DD  −−  .          )15(  

     Analysis of (15) shows that )(tB  is bounded above only if 0)1( 1 −− 

DDV   hold 

true for all 0t . Hence, 0)( BtB  . This implies that all solutions for the antibody population 

are positively invariant the region B , defined by  

                             })(:{ 0

1 BtBRBB = +               )16(  

     With the analytical results (7), (10), (13) and (16), we can establish that all solutions of the 

entire system )5.1()1.1( −  are positively invariant in the region 5

+ R . This is because 

5

+ R  implies that 1112

++++ = RRRRBTVN , where  

   + = NtNRISN )(:),( 2 , 
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                             + = VtVRtVV )(:)( 1 , 

                            })(:)({ 0

1 TtTRtTT = + . 

and                         })(:)({ 0

1 BtBRtBB = + .  

Hence, the model )5.1()1.1( −  is mathematically and biologically realistic [16]. 

3.3 Existence of Model Equilibrium States 

     An infectious disease is endemic whenever it persists in a population and the population is 

free if the disease does not persist in it [13, 20]. The equilibrium state ),,,,(  BTVIS  of the 

model is obtained by setting the model equations )5.1()1.1( −  equal to zero and solving for the 

state variables. Therefore, we have the following system. 
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              )17(  

Using the system (17), we can obtain the model equilibria as follows. 

3.3.1 Disease-Free Equilibrium Point 

     We derive the disease-free equilibrium point (E0) when 0====  BTVI . Therefore, 

the equilibrium point is ( )0,0,0,0,0 AE = . 

3.3.2 Endemic Equilibrium Point 

     We derive the endemic equilibrium point (E*) when 0  BTVI . Therefore, the 

equilibrium point is ( ) = BTVISE ,,,, , where 
Q

S D −
= )1( 1 , 
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)1( 1−
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

)1( 1−
= , 
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)1(

))1()(1(

2

11

−

−−−−
= , 

BD

DBCB


 −
=  and 

DADQ  )1( 1−+= . 
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3.4 Basic Reproduction Number  

     Infectious diseases spread through transmission between individuals. A fundamental metric 

in understanding this spread is the basic reproduction number (R0), defined as the average number 

of secondary cases caused by one infectious individual introduced in a completely susceptible 

population [18, 22]. This number addresses and quantifies the ability of an infectious disease to 

invade a purely susceptible population [18, 22]. The epidemic persists when R0 > 1 and dies out 

when the R0 < 1 [16, 19. 25, 27]. We compute R0 using the next generation method as proposed by 

Van den Driessche and Watmough [27], Diekmann and Heesterbeek [24]. This method has been 

implemented in various studies, including those by Osman et al. [37], Mpeshe et al. [30], Osman et 

al. [36] and Ismail [32].  

     Then, considering our EVD dynamics model, we initially define the system for infections in 

compartments as 

ii
i LK

dt

dY
−= , 

where Yi defines the set of infected class, Ki defines the rate of new infections in compartment i, 

and +− −= iii LLL  defines the total transfer rate, −

iL  describes the transfer rate of individuals out of 

compartment i and +

iL  is the transfer rate of individuals into compartment i through interactions. 

Then using Equations )2.1(  and )3.1( , we have . 
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 )1( 2
.     )18(  

 The corresponding Jacobian matrices K and L are the matrices of the derivatives of Ki and Li 

with respect to )(tI  and )(tV  at the disease-free equilibrium point, E0. They are given by  
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We deduce that 
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Let G  be the next generation matrix defined by 1−= KLG , where  
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Then substituting (19) and (20) into (21) produces 
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The eigenvalues of matrix G are given by 

 01 =−=− −KLIGI  , 
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Thus, we have 

                               001 =

−
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−
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
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From (22), the eigenvalues of G are 

BA 




21
)(


=  and 

BA 




22
)(


−= . 

The basic reproduction number (R0) is the spectral radius of the next generation matrix G , which 

is the dominant eigenvalue [27]. That is,  

BA
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




2210
)(

),max()(


=== . 
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Thus, the basic reproduction number, R0 is  

                                
BA

R



20

)(


= .                   )23(  

     The result shown in (23) reveals that R₀ for this model system is primarily driven by factors 

related to viral transmission and natural lifespans [43]. These factors comprise the rate of virus 

production by infected cells, the rate of susceptible cell infection, and the natural death rates of 

susceptible cells, infected cells, and the virus. Obviously, the model suggests that the immune 

response, characterized by CTLs, does not influence R₀. This is because R₀ focuses exclusively on 

the initial stages of infection before a significant immune response has time to develop [29]. 

     From epidemiological standpoint, the model allows us to predict the fate of the infection 

within the host. If specific parameter values meet a threshold (represented by R₀ < 1), the host's 

immune system effectively controls the infection, leading to its eventual disappearance. On the 

other hand, if these parameters fall below another threshold (represented by R₀ > 1), the infection 

gains a foothold and persists within the host. 

3.5 Sensitivity Analysis 

     To understand how changes in a model's components affect its predictions, we can employ 

a powerful technique called sensitivity analysis. This analysis calculates sensitivity indices, 

which reveal how much each parameter influences key outputs. In this study, we use the 

normalized forward index [21] to perform a sensitivity analysis on R₀ within our Ebola model 

that focused on individual hosts. 

R₀, typically used in population models, represents the average number of secondary infections 

caused by one infected person in a susceptible population. However, by pinpointing the cellular 

factors influencing R₀ within a single host, we can gain valuable insights for controlling Ebola 

outbreaks at their earliest stages. This analysis aims to identify the parameters within the host 

model that have the most significant impact on R₀ by calculating their sensitivity indices. This 

knowledge can then be used to develop targeted strategies to control Ebola transmission during 

the initial stages of infection. 

     We performed the sensitivity analysis using parameter values obtained from relevant 

literature. The specific values used for the analysis include: Π = 1.05 [38], η = 0.0027 [38], ω = 

40.9 [38], γA = 0.02 [38], γB = 1.15 [39]. The following method was employed to calculate the 

sensitivity indices. 
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Definition: The sensitivity index of R₀ with respect to parameter W is defined as  

W

R

R

WR

W



= 0

0

0 , 

provided that R₀ is differentiable with respect to W. 

Hence, the sensitivity indices of R₀ with respect to parameters γA and η are given by  

98445.30

0

0 −=
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AR R

RA 


  and 99222.10

0

0 +=



=






R

R

R . 

The sensitivity indices of other parameters (γA, ω and Π) are obtained similarly, and all indices are 

enumerated in Table 2. 

TABLE 2. Numerical values of sensitivity indices of R₀. 

Parameter Symbol  Sensitivity Index 

γA -3.98445 

γB  -1.99222 

ω +1.99222 

η +1.99222 

Π +1.99222 

 

     Sensitivity indices, as shown in Table 2, provide understandings of how key parameters 

impact R₀ within our model. Positive indices, like those for parameters connected to production 

rate of susceptible cells (Π), virus production rate (ω), and infection rate (η), show that R₀ 

increases as these parameters increase (assuming all others stay constant). This suggests a higher 

potential for the disease to become more widespread. On the other hand, negative indices 

correspond to parameters where a higher value leads to a decrease in R₀. This applies to parameters 

like the natural death rate of susceptible cells (γA) and the natural death rate of the virus (γB). A 

higher natural death rate for either susceptible cells or virus particles obstructs the virus's ability to 

spread, implying a lower disease prevalence. 

     Sensitivity indices shed light on the most critical factors governing our model's outcome. 

The analysis reveals that the natural death rate of susceptible cells (γA) emerges as the most 

sensitive parameter. This implies that even minor fluctuations in the natural death rate of 

susceptible cells can significantly influence the model's predictions. Compared to (γA), other 
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parameters like the natural death rate of the virus (γB), virus production rate (ω), infection rate (η) 

and production rate of new susceptible cells (Π) exert a lesser influence. 

3.6 Numerical Simulations  

     Ebola's complex within-host interactions need computational modeling for comprehensive 

analysis [40]. Numerical simulations serve as virtual laboratories, mimicking viral replication 

and the host's immune response in individuals receiving immunosuppressive therapy [6]. In this 

study, we employed simulations to investigate these dynamics, incorporating parameters listed in 

Table 3. This in silico approach provides a safe and controlled environment to explore potential 

treatment strategies, ultimately accelerating the improvement of effective interventions for 

immunocompromised patients during Ebola outbreaks.  

 

TABLE 3. Parameter values used for simulations of the model. 

Parameter Symbol  Unit Parameter Value Source 

η cell day-1 0.0027 [38] 

γA cell mil-1 day1 0.15 Estimated 

γB virus cell-1 day-1 0.15 Estimated 

γC cell day-1 0.015 Estimated 

γD cell day-1 0.02 [23] 

μA cell day-1 0.01 Estimated 

μB virus day-1. 0.01 Estimated 

μC cell day1 0.001 Estimated 

μD cell day1 0.001 Estimated 

ω virus cell-1 day-1 4.9 Estimated 

θ1  0.9 Estimated 

θ2  0.3 Estimated 

Π cells mil-1 day1 125.5 Estimated 
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FIGURE 2. Trajectories of the model populations demonstrating EVD dynamics. 
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FIGURE 3. The effect of weakened CTL and antibody responses on the infected cell population. 
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FIGURE 4. The effect of weakened CTL and antibody responses on the virus population. 

 

     Figures 2(a), (b) exhibit how immunosuppressive therapy influences EVD within patients. 

Immunosuppression weakens the immune response, obstructing the production of CTLs (cell 

killers) and antibodies (virus neutralizers). This reduces the elimination of infected cells and viral 

deactivation, respectively. Consequently, infected cell and virus populations rise sharply (Figures 

3(a), (b) and Figures 4(a), (b)). With more infected cells persisting, virus production increases, 
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prompting a subsequent rise in antibodies. However, this increase in virus also leads to a decline in 

susceptible cells, as they become infected. 
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FIGURE 5. The effect of immunosuppressive therapy on the CTL population. 
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FIGURE 6. The effect of immunosuppressive therapy on the antibody population. 

0 0.2 0.4 0.6 0.8 1
180

200

220

240

260

280

300

Time(days)

In
fe

c
te

d
 c

e
ll
 p

o
p

u
la

ti
o

n

 

 


1
=0.3


1
=0.6


1
=0.7


1
=0.9

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

Time(days)

In
fe

c
te

d
 c

e
ll
 p

o
p

u
la

ti
o

n

 

 


1
=0.3


1
=0.6


1
=0.7


1
=0.9

(b)(a)  

FIGURE 7. The effect of immunosuppressive therapy on the infected cell population 
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FIGURE 8. The effect of immunosuppressive therapy on the virus population 

 

     Figures 5(a), (b) and Figures 6(a), (b) exhibit that a higher efficacy of immunosuppressive 

therapy suppresses the growth of CTLs (cell killers) and antibodies (virus neutralizers), leading to 

lower populations of each (Figures 5(a), (b) and Figures 6(a), (b)). This translates to an increase in 

infected cells (Figures 7(a), (b)), which in turn rise virus production (Figures 8(a), (b)). With fewer 

antibodies to deactivate viruses, the viral load and infected cell population increase. 

 

4. CONCLUSION 

     This study employed mathematical modeling to explore how immunosuppressive therapy 

impacts EVD within a patient. The model incorporated viral replication, immune responses (CTL 

and antibody) and the effects of varying immunosuppression levels. Simulations revealed a 

critical finding: increased immunosuppression directly correlated with a rise in viral replication 

and a weakened immune response. 

     These findings illuminate the potential risks associated with immunosuppressive therapy 

during EVD outbreaks. While this therapy remains crucial for some patients with underlying 

conditions, it can inadvertently exacerbate the severity and duration of the viral infection. This 

highlights the importance of carefully considering this complex interaction when making 

treatment decisions for EVD patients requiring immunosuppression. 

     The in silico approach employed here provides valuable insights for future research. By 

refining the model with additional biological details and integrating real-world clinical data, 

researchers can further strengthen these conclusions. Ultimately, this study paves the way for 

developing improved treatment strategies for EVD patients, particularly those requiring 

immunosuppressive therapy, by enabling a more balanced approach that considers both the 
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benefits of the therapy and the potential risks of compromising the immune system's ability to 

fight the virus. 
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