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1. Introduction

The geometric sequence Sk = hSk−1 is a basic component of exponential growth

models [2, 3, 5, 10]. In this note, we consider a limiting or harvesting condition on Sk

and describe the resulting piecewise defined sequence. Precisely, we make the

Definition 1. Let h, v and w be natural numbers and let S0 be an integer.

Define for k > 0

Sk = {
h Sk−1 if Sk−1 ≤ v

h Sk−1 − w if Sk−1 > v

∗Corresponding author

E-mail addresses: ahhab@aabu.edu.jo (S. Al-Ashhab), guykerj@buffalostate.edu (J. Guyker)

Received December 18, 2011

793



794 SALEEM AL-ASHHAB,1 AND JAMES GUYKER2,∗

If Sr ≤ 0 for some r, then Sk is geometric for k ≥ r. Hence we restrict our

attention to positive initial values.

We begin with a characterization of Sk, then discuss feasibility when hypotheses fail.

A central condition in the treatment is w = 2v + 1. For example, suppose that h = 2,

v = 5, w = 11 and S0 = 1. Then Sk is periodic and all integers from 1 to w − 1

appear in the sequence:

1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, . . . .

However, if h = 2, v = 3, w = 7 and S0 = 1, then Sk is again periodic but not all

such integers appear: 1, 2, 4, 1, 2, . . . . On the other hand, if h = 3, v = 2, w = 5 and

S0 = 2, then Sk is strictly increasing (to infinity): 2, 6, 13, 34, 97, 286, 853, 2554, 7657,

. . . .

2. The Main Result

In general we have the following.

Theorem 2.1. Let h, v, w and S0 be positive integers.

1. If h = 1, then Sk reaches a point of equilibrium, i.e., there is a nonnegative

integer r such that Sk = S0 − rw for all k ≥ r.

2. Let h ≥ 2.

a. If S0 = w > v, then

Sk =
hk(h− 2) + 1

h− 1
S0 for all k.

b. If S0 > w ≥ v, then Sk is strictly increasing.

3. Let h = 2.

a. Suppose that w = 2v + u for some u = 0, 1 or 2, and 1 ≤ S0 ≤ w − 1.

i. If u = 1, then Sk is periodic and 1 ≤ Sk ≤ w − 1 for all k.
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ii. If u = 0, then Sk either reaches equilibrium at w or is eventually

periodic such that 1 ≤ Sk ≤ w − 1 for all k.

iii. If u = 2, then Sk either reaches equilibrium at 0 or is eventually

periodic such that 1 ≤ Sk ≤ w − 1 for all k.

b. If w > 2v + 2, then S0 ≥ w (in which case, see 2) or Sk is either

eventually nonpositive or eventually periodic.

c. If w ≤ v, then Sk is strictly increasing.

4. If h ≥ 3 and w ≤ 2v + 1, then Sk is strictly increasing.

Proofs. 1. Assume h = 1. There is a nonnegative integer r such that S0 satisfies

0 < v < v + w < · · · < v + (r − 1)w < S0 ≤ v + rw.

If r = 0, then Sk = S0 for all k. And if r > 0, then

S1 = S0 − w > v, . . . , Sr−1 = S0 − (r − 1)w > v,

but

Sr = S0 − rw ≤ v

and it follows that Sk = Sr for k ≥ r.

2. Assume that h ≥ 2.

a. If S0 = w > v, then

S1 = hS0 − w = (h− 1)w ≥ w > v

S2 = hS1 − w = [h(h− 1)− 1]w ≥ w > v

S3 = hS2 − w = {h[h(h− 1)− 1]− 1}w ≥ w > v, etc.

Therefore in general

Sk = (hk − hk−1 − hk−2 − · · · − 1)w = (hk − hk − 1

h− 1
)w =

hk(h− 2) + 1

h− 1
w.
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b. Assume S0 > w ≥ v. Then

S1 = hS0 − w = S0 + [(h− 1)S0 − w] > S0 > w ≥ v

and similarly by induction

Sk = hSk−1 − w = Sk−1 + [(h− 1)Sk−1 − w] > Sk−1 > w ≥ v

for every k ≥ 2. Thus Sk+1 > Sk > v for all k.

3a. Let h = 2, 1 ≤ S0 ≤ w − 1, and w = 2v + u for some u = 0, 1 or 2. If

1 ≤ S0 ≤ v, then

2 ≤ S1 = 2S0 ≤ 2v = w − u. (1)

On the other hand, if v < S0 ≤ w − 1, then 2v + 2 ≤ 2S0 ≤ 2w − 2 and

2− u ≤ S1 = 2S0 − w ≤ w − 2 < w − 1. (2)

i. Suppose that u = 1. By (1) and (2), it follows that 1 ≤ S1 ≤ w − 1, and by

induction, 1 ≤ Sk ≤ w − 1 for all k. Since Sk is a sequence of natural numbers,

we have that some term Sr must repeat. We show that S0 repeats: Suppose that

r > 0 is the least integer such that Sr = Sr+s for some s > 0. If Sr is even, then

Sr = 2Sr−1, since the other possibility 2Sr−1 − w is odd; and since Sr = Sr+s, it

follows that Sr+s = 2Sr+s−1 so that Sr−1 = Sr+s−1 in this case. If Sr is odd, then

similarly Sr−1 = Sr+s−1. Therefore Sr−1 = Sr+s−1 in either case, which contradicts the

minimality of r. Hence Sk is periodic when u = 1.

ii. Assume u = 0. If SN = w for some N , then since h = 2 and w > v, we

have that Sk = w for all k ≥ N . Thus suppose that Sk 6= w for all k. Hence by (1)

and (2), 1 ≤ S1 ≤ w − 1, and an induction argument shows that 1 ≤ Sk ≤ w − 1 for

all k. As above, some term Sr must repeat so Sk is eventually periodic.

iii. Similar to (ii).

3b. Suppose that h = 2, w > 2v + 2, and SN ≥ w for some N . Assume that

N > 0. If SN−1 ≤ v, then

SN = 2SN−1 ≤ 2v < w
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which is impossible. Hence SN−1 > v and SN = 2SN−1 − w ≥ w so SN−1 ≥ w.

Continuing by induction, we have that N = 0 is the only possibility if SN ≥ w.

Therefore, if S0 ≤ w − 1, then Sk ≤ w − 1 for all k. Hence either SN ≤ 0 for

some N or 1 ≤ Sk ≤ w− 1 for all k. It follows that either Sk ≤ 0 for all k ≥ N or

Sk is eventually periodic as in the proof of (3a).

3c. Assume h = 2 and w ≤ v. Let l be the least integer such that 2lS0 > v.

Then Sl > Sl−1 > · · · > S0, Sl = 2lS0, and

Sl+1 = 2l+1S0 − w ≥ 2l+1S0 − v > 2lS0 = Sl

since 2l(2− 1)S0 > v. Hence

Sl+1 > Sl > v.

By induction

Sk+1 > Sk > v for all k ≥ l

and thus Sk (k ≥ 0) is strictly increasing.

4. Assume h ≥ 3 and w ≤ 2v+ 1. We show Sk+1 > Sk for all k. Let l denote

the least integer such that

Sl = hlS0 > v.

Then Sl > Sl−1 > · · · > S0, and

Sl+1 = hSl − w ≥ 3Sl − w > Sl.

The last inequality follows since

Sl ≥ v + 1 and 2Sl ≥ (2v + 1) + 1 ≥ w + 1 > w.

Hence

Sl+1 > Sl > v

and Sk is strictly increasing as in (3c). �
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Corollary 2.2. Let v be a natural number, h = 2, w = 2v + 1, and let R be the

relation defined on the set {1 , 2 , . . . , n = 2v} by: xRy if and only if there exist terms

S0 and Sk such that x = S0 and y = Sk for some k > 0. Then R is an equivalence

relation on {1 , 2 , . . . , n}.

Proof. By (3ai) of Theorem 2.1, for any given S0 in {1 , 2 , . . . , n} there exists a

unique integer p = p(S0) > 0 such that the sequence Sk is

S0, S1, . . . , Sp−1, Sp = S0, Sp+1 = S1, . . . (3)

and S0, S1, . . . , Sp−1 are distinct.

(i) Reflexive: Let x = S0. By (3), x = Sp so xRx.

(ii) Symmetric: Suppose xRy. Thus x = S0 and y = Sk where by (3) we may

assume 1 ≤ k < p. Redefine y = S
′

0 (another starting value). Then by (3), x = S
′

p−k

where p− k > 0 so yRx.

(iii) Transitive: Assume xRy and yRz. As above, by the definition of the

sequence Sk,

x = S0, y = Sk = S
′

0, z = S
′

l = Sk+l

for some positive integers k and l. Therefore x = S0 and z = Sk+l where k+ l > 0,

thus xRz. �

The following is a fundamental result from Algebra [8, 9]:

Let R be an equivalence relation on a set S. For any s in S, the equivalence

class of s under R, denoted [s], is the subset of S consisting of all elements t of S

such that tRs. Then every element of S is in exactly one equivalence class under R.

That is, the equivalence classes partition S into a family of mutually disjoint nonempty

subsets.

The equivalence classes of Corollary 2.2 are, moreover, ordered sets

[S0] = {S0, S1, . . . , Sp−1}

and we have for example
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{1 , 2 , . . . , 14} = [1 ] ∪ [3 ] ∪ [5 ] ∪ [7 ],

{1 , 2 , . . . , 16} = [1 ] ∪ [3 ],

{1 , 2 , . . . , 18} = [1 ],

{1 , 2 , . . . , 20} = [1 ] ∪ [3 ] ∪ [5 ] ∪ [7 ] ∪ [9 ].

An interesting problem in this algebraic context is to determine all even values n such

that {1 , 2 , . . . , n} = [1 ].

Example 1. The following table illustrates possible situations in (3a) and (3b) of

Theorem 2.1 where h = 2:

S0 v w sequence

1 3 8 1, 2, 4, 0, 0, 0, . . .

3 10 20 3, 6, 12, 4, 8, 16, 12, 4, . . .

5 10 20 5, 10, 20, 20, 20, . . .

8 2 7 8, 9, 11, 15, 23, 39, 71, 135, . . .

1 10 24 1, 2, 4, 8, 16, 8, 16, 8, . . .

1 9 22 1, 2, 4, 8, 16, 10,−2,−4, . . .

3. Pathology

Theorem 2.1 describes piecewise defined recursive sequences when either w ≤ v,

w = 2v or w = 2v + 1 for any h and S0. The specific cases not covered are

1. h = 2 and v < w < 2v

2. h ≥ 3 and w > 2v + 1.

In each case, w > v, so by the reasoning in the proofs of (2 ) and (3 ) of Theorem 2.1,

one of the following situations must hold for some N :

i. SN = w (and SN+k = hk(h−2)+1
h−1 w for every k)

ii. SN > w (and Sk is strictly increasing for k ≥ N)

iii. 1 ≤ Sk ≤ w − 1 for all k ≥ N (and Sk is eventually periodic)

iv. SN ≤ 0 (and SN+k = hkSN for every k)
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We illustrate these possibilities as follows.

Example 2. (h = 2 and v < w < 2v) In this case, we show that Sk ≥ 2 for all

k ≥ 1 so (iv) is not feasible: Let l be the least natural number such that Sl = hlS0 > v.

Then

Sl+1 = hl+1S0 − w > hl+1S0 − 2v = 2(hlS0 − v) ≥ 2.

Let l′ be the least natural number such that Sl+l′ = hl
′−1(hl+1S0 − w) > v. Then

Sl+l′+1 = hSl+l′ − w > 2(Sl+l′ − v) ≥ 2.

Continuing similarly by induction, the result follows.

The other situations are possible: with S0 = 1, we have

v w Sk type

9 16 i

7 13 ii

11 20 iii

For case 2, any of (i) - (iv) are feasible:

Example 3. (h = 3 and w > 2v + 1) Choosing S0 = 1 again, we calculate the

table

v w Sk type

11 27 i

7 19 ii

16 72 iii

7 18 iii

7 30 iv

2 9 iv

It is easy to generate periodic Sk with arbitrary initial values from known examples.

If Sk is periodic and α is a positive integer, the piecewise defined sequence S
′

k with

h′ = h, v′ = αv and w′ = αw is periodic and S
′
0 =αS0. For h = 2, periodic sequences

Sk with S0 = 1 are given by the theorem (3a) where w = 2v + u (u = 0, 1, 2). If
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α > 2 and u > 0, then S
′

k is periodic and satisfies (3b). We can similarly modify the

following results.

Example 4. For h ≥ 2, there are general choices of v and w such that w > 2v+1,

S0 = 1, and Sk is either periodic, strictly increasing or reaches an equilibrium point:

a. For any positive integers r and s, let t = (r + 1)s and define

v =
(h− 1)(hr+t − hr)

hr+1 − 1
and w = hv + h− 1.

We begin by showing ht−1 < v < ht. The right inequality is equivalent to

hr + ht < hr+1 + hr+t

which is trivial. The left inequality is equivalent to

ht−1(hr+1 − 1) ≤ hr(ht − 1)(h− 1)

which clearly holds when s = 1 since t = (r + 1)s and h ≥ 2. Thus assume that

s ≥ 2. Then the inequality becomes

2 hr+t + hr+1 ≤ hr+t+1 + hr + ht−1

where 2 hr+t ≤ h hr+t since h ≥ 2, and hr+1 ≤ hr + ht−1 (or h ≤ 1 + ht−(r+1))

since t = (r + 1)s ≥ 2(r + 1) and r ≥ 0. Thus ht−1 < v < ht and straightforward

calculations show that

w =
(h− 1)(hr+t+1 − 1)

hr+1 − 1
and ht+1 − w > v.

More generally, for 1 ≤ k < r,

ht+k − hk − 1

h− 1
w = ht+k − (hk − 1)(hr+t+1 − 1)

hr+1 − 1
> v

if and only if

hr+t + hr+1 + hk > hk+t + hr + 1,

which holds since h ≥ 2.
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It follows that since S0 = 1,

St+k = ht+k − hk − 1

h− 1
w (k = 1, . . . , r).

Since St+r = v + 1, we have that St+r+1 = h(v + 1) − (hv + h − 1) = 1 and Sk is

periodic of period t+ r + 1 = (r + 1)(s+ 1).

For example, if h = 3, r = 1 and s = 3, then v = 546, w = 1640 and the

sequence is

1, 3, 9, 27, 81, 243, 729, 547, 1, . . .

b. Let t be a positive integer, v = ht and w = ht+2 − ht+1 + h− 1 (which satisfy

(3ai) of Theorem 2.1 if h = 2). The sequence Sk is then computed as follows:

1, h, . . . , ht+1, ht+1 − h+ 1, ht+1 − h2 + 1, . . . , ht+1 − ht + 1, 1, . . . .

For example, if h = 4, v = 64 and w = 771, then the sequence is

1, 4, 16, 64, 256, 253, 241, 193, 1, . . . .

c. Let t and v be any positive integers that satisfy

ht−1 < v ≤ ht − ht−1 − 1,

and let w = hv + h− 1 as above. Then Sk = hk (0 ≤ k ≤ t), St > v, and

St+1 = hSt − w = ht+1 − hv − h+ 1 ≥ ht + 1 > St > v.

By induction,

St+k+1 > St+k > v

for all k and thus St+k, and therefore Sk, are strictly increasing.

d. Let t and v be positive integers such that

ht−1 ≤ v < ht,
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and let w = ht+1 − ht. Then Sk = hk for k ≤ t and St+1 = ht+1 − w = ht. Thus

Sk = ht for all k ≥ t.

4. Application in Matrix Theory

The following sparse matrices arose in [1] while considering certain vector spaces of

magic squares.

Definition 2. The C-matrix A = (aij) is the square matrix of order n such that

its nonzero elements are defined as follows where either n = 2k or n = 2k + 1:

aij = {

1 for j = 2i when 1 ≤ i ≤ k

1 for j = 2i− (n+ 1) when n− k < i ≤ n

−2 for j = i

The ones appear as the moves of the knight on a chessboard. Odd ordered C-matrices

are distinguished from even ones by a middle row without ones.

According to Gerschgorin’s Disk Theorem (see [7]), the eigenvalues of C-matrices lie in

the unit circle with centre (−2, 0) in the complex plane. We show that the real bounds

−1 and −3 of the circle will indeed be eigenvalues in many cases. Moreover we note

that 0 is not contained in the Gerschgorin disk so C-matrices are invertible. (This also

follows since they are strictly diagonally dominant.)

For any C-matrix of odd order we note that −2 is an eigenvalue of A since the

matrix A + 2I has the zero row as its middle row. We conjecture that −2 is the only

eigenvalue when the order of A is n = 2l − 1. This is illustrated in the following

Example 5. Let A be the C-matrix of order 15. Suppose by way of contradiction

that β 6= −2 is a (real or complex) eigenvalue of A and let α = β + 2. Since α 6= 0,

by the definition of C-matrix, if x = (x1, x2, ..., x15)
t is a nonzero vector in the kernel
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of A − βI, then x8 = 0 and xi = xi+8 (1 ≤ i ≤ 7). Moreover, if x2i = 0 for some

i = 1, 2, . . . , 7, then xi = 0. It follows in order that

0 = x4 = x2 = x1 = x4+8 = x2+8 = x1+8 = x6 = x3 = x5 = x6+8 = x3+8 = x5+8 = x7 = x7+8.

Thus, x is the zero vector, a contradiction. Therefore, −2 is the only eigenvalue of A.

Another possible eigenvalue of odd ordered C-matrices is −1:

Proposition 4.1. Let A be a C-matrix of order n = 4l + 1. Then −1 is an

eigenvalue of A.

Proof. Let n = 4l + 1. For each row of the matrix A + I except the middle row

we have one entry 1, one entry −1, and the other entries 0. The ones occur in even

numbered cells. Column 2l + 1 is the middle column so it contains no ones. If we sum

the columns of A+ I except the middle column, then we obtain the zero vector. Hence,

the determinant of A+ I is zero. �

We now turn to the eigenvalues of C-matrices of even order. The following is similar

to the above result.

Proposition 4.2. Let A be a C-matrix of order n = 6l + 2. Then −3 is an

eigenvalue of A.

Proof. Let n = 6l+ 2. We show in this case that rows 4l+ 2 and 2l+ 1 of A+ 3I

are identical. By the definition of C-matrix, the main diagonal of A + 3I consists of

ones, and row 2l+ 1 has one in the entries (2l+ 1, 2l+ 1) and (2l+ 1, 2(2l+ 1)) since

2l + 1 < 3l + 1. On the other hand, row 4l + 2 has one in the entries (4l + 2, 4l + 2)

and (4l + 2, 2(4l + 2)− (n+ 1))) = (4l + 2, 2l + 1). �
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We can extend the idea behind the above proof for other C-matrices of even order.

We consider matrices where the sum of several rows of A+ 3I is identical to the sum of

another set of rows. For example, let A be the C-matrix of order 4. We obtain

A+ 3I =


1 1 0 0

0 1 0 1

1 0 1 0

0 0 1 1


The sum of the first and fourth rows is the same as the sum of the second and third rows.

Thus −3 is an eigenvalue of A. In general, we have the following procedure.

Theorem 4.3. Let A be a C-matrix of even order n = 2k. Then −1 is an eigenvalue

of A.

Conversely, if λ is a real eigenvalue of A, then λ = −1 or λ = −3.

Define the sequence Ql of positive integers as follows: let Q0 = 1 and for l ≥ 0

let [Ql, Ql+1] denote the positions in row Ql of the ones in the matrix A+ 3I. Then

the sequence Ql is periodic. If the period of Ql is even, then −3 is an eigenvalue of

A.

Proof. Let A be a C-matrix of order n = 2k. Then each column of A + I has

exactly one entry 1, one entry −1 and the remaining entries 0. Hence, the sum of all

rows of A+ I is the zero row so | A+ I |= 0.

Let λ be a real eigenvalue of A. We argue indirectly. Assume that | λ + 2 |< 1

by Gerschgorin’s theorem. We rearrange the columns Ci of A− λI in the order

C2, C4, ..., Cn, C1, C3, ..., Cn−1.

The resulting matrix is strictly diagonally dominant, and is therefore invertible with

nonzero determinant, a contradiction.

Let Ql be given as above. Note that rows with ones in positions [Ql, Ql+1] and

[Ql+1, Ql+2] have a one in the same position Ql+1. Thus, for l ≥ 1, row Ql also
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shares a one with row Ql−1. By the definition of C-matrix of order 2k, with Q0 = 1,

for l ≥ 1,

Ql = {
2 Ql−1 if Ql−1 ≤ k

2 Ql−1 − (2k + 1) if Ql−1 > k

By (3ai) of Theorem 2.1, Ql is periodic. Hence if the period of Ql is p, then Qp = 1

and row 1 with ones in [Q0, Q1] and row Qp−1 with ones in [Qp−1, Qp] have position

Qp = Q0 in common. Since Q0, Q1, . . . , Qp−1 are distinct, we have that if p is even,

then the sum of the rows Q0, Q2, . . . , Qp−2 coincides with the sum of the rows Q1, Q3,

. . . , Qp−1 and hence the determinant of A+ 3I is zero. �

Example 6. We can readily list the sequences Ql. Two of the first eleven even

ordered C-matrices have sequences Ql with odd periods:

n Ql

2 1, 2, 1, . . .

4 1, 2, 4, 3, 1, . . .

6 1, 2, 4, 1, . . .

8 1, 2, 4, 8, 7, 5, 1, . . .

10 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, . . .

12 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, . . .

14 1, 2, 4, 8, 1, . . .

16 1, 2, 4, 8, 16, 15, 13, 9, 1, . . .

18 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, . . .

20 1, 2, 4, 8, 16, 11, 1, . . .

22 1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, . . .

For example, the period of Ql is even for n = 16 and by Theorem 4.3, the sum of the

rows 1, 4, 16 and 13 of A+ 3I is identical to the sum of the rows 2, 8, 15 and 9.
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We can compute the period of Ql in some general cases:

Corollary 4.4. Let l ≥ 2 be an even integer and let A be a C-matrix of order

n = 2l − 2. Then −3 is an eigenvalue of A.

Proof. We have Q0 = 1, Q1 = 2, Q2 = 4, . . . , Ql−1 = 2l−1 since 2l−2 ≤ n
2
. But

2l−1 = n
2

+ 1 > n
2

so Ql = 2(n
2

+ 1)− (n+ 1) = 1. �

Corollary 4.5. Let A be a C-matrix of order n = 2l where l ≥ 2. Then −3 is

an eigenvalue of A.

Proof. Assume that A is a C-matrix of order n = 2l where l ≥ 2. Then Q0 = 1,

Q1 = 2, Q2 = 4, . . . , Ql = 2l. We prove by induction that

Ql+i = Ql − 2i + 1 > 2l−1 =
n

2

for i = 0, 1, . . . , l − 1. The initialization i = 0 is clear. Assume the statement holds

for some i < l − 1. Then

Ql+i+1 = 2(Ql − 2i + 1)− (n+ 1) = Ql − 2i+1 + 1 > 2l−1

since i+ 1 ≤ l − 1 and 2l−1 + 1 > 2i+1.

In particular,

Q2l−1 = Ql+(l−1) = Ql − 2l−1 + 1 =
n

2
+ 1 >

n

2

so Q2l = 2(n
2

+ 1)− (n+ 1) = 1. Therefore the period of Ql is even. �

If the period of Ql is odd, then we can not deduce any information about the value

−3. For example, the period of Ql is three for the C-matrix A of order six and its

eigenvalues are

−5

2
±
√

3

2
i, − 5

2
±
√

3

2
i, − 1, − 1.
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On the other hand, −3 is an eigenvalue of the C-matrix of order 366 although Ql has

period 183.

We computed the eigenvalues of the C-matrices of even orders up to order 4780 and

found the following orders for which −3 is not an eigenvalue:

6, 22, 30, 46, 48, 70, 72, 78, 88, 102, 126, 150, 160, 166, 190, 198, 216, 222, 232, 238,

262, 270, 310, 328, 336, 342, 358, 430, 438, 496, 510, 552, 600, 622, 630, 712, 720, 880,

888, 910, 918, 936, 960, 1056, 1102, 1288, 1392, 1432, 1456, 1518, 1560, 1678, 1800, 1896,

2046, 2088, 2142, 2200, 2262, 2350, 2358, 2592, 2686, 2758, 2920, 3016, 3190, 3390, 3478,

3472, 3576, 3936, 4056, 4176, 4206, 4512, 4576, 4680.
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