

Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 4, 793-809

ISSN: 1927-5307

PIECEWISE DEFINED RECURSIVE SEQUENCES WITH APPLICATION IN MATRIX THEORY

SALEEM AL-ASHHAB, ${ }^{1}$ AND JAMES GUYKER ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Al-albayt University, P. O. Box 130040, Mafraq, Jordan
${ }^{2}$ Department of Mathematics, Buffalo State College, 1300 Elmwood Avenue, Buffalo, New York

Abstract

In this paper we determine periodicity and boundedness of orbits of a piecewise defined difference equation. A corollary is that the real eigenvalues of certain arbitrarily large, sparse matrices may be computed exactly.

Keywords: piecewise defined sequence; eventually periodic; strictly increasing; sparse matrix; eigenvalue.

2000 AMS Subject Classification: 39A10; 40A05

1. Introduction

The geometric sequence $S_{k}=h S_{k-1}$ is a basic component of exponential growth models $[2,3,5,10]$. In this note, we consider a limiting or harvesting condition on S_{k} and describe the resulting piecewise defined sequence. Precisely, we make the

Definition 1. Let h, v and w be natural numbers and let S_{0} be an integer. Define for $k>0$

$$
S_{k}=\left\{\begin{array}{l}
h S_{k-1} \text { if } S_{k-1} \leq v \\
h S_{k-1}-w \text { if } S_{k-1}>v
\end{array}\right.
$$

[^0]If $S_{r} \leq 0$ for some r, then S_{k} is geometric for $k \geq r$. Hence we restrict our attention to positive initial values.

We begin with a characterization of S_{k}, then discuss feasibility when hypotheses fail. A central condition in the treatment is $w=2 v+1$. For example, suppose that $h=2$, $v=5, w=11$ and $S_{0}=1$. Then S_{k} is periodic and all integers from 1 to $w-1$ appear in the sequence:

$$
1,2,4,8,5,10,9,7,3,6,1,2, \ldots
$$

However, if $h=2, v=3, w=7$ and $S_{0}=1$, then S_{k} is again periodic but not all such integers appear: $1,2,4,1,2, \ldots$. On the other hand, if $h=3, v=2, w=5$ and $S_{0}=2$, then S_{k} is strictly increasing (to infinity): $2,6,13,34,97,286,853,2554,7657$,

2. The Main Result

In general we have the following.

Theorem 2.1. Let h, v, w and S_{0} be positive integers.

1. If $h=1$, then S_{k} reaches a point of equilibrium, i.e., there is a nonnegative integer r such that $S_{k}=S_{0}-r w$ for all $k \geq r$.
2. Let $h \geq 2$.
a. If $S_{0}=w>v$, then

$$
S_{k}=\frac{h^{k}(h-2)+1}{h-1} S_{0} \quad \text { for all } k
$$

b. If $S_{0}>w \geq v$, then S_{k} is strictly increasing.
3. Let $h=2$.
a. Suppose that $w=2 v+u$ for some $u=0,1$ or 2 , and $1 \leq S_{0} \leq w-1$.
i. If $u=1$, then S_{k} is periodic and $1 \leq S_{k} \leq w-1$ for all k.
ii. If $u=0$, then S_{k} either reaches equilibrium at w or is eventually periodic such that $1 \leq S_{k} \leq w-1$ for all k.
iii. If $u=2$, then S_{k} either reaches equilibrium at 0 or is eventually periodic such that $1 \leq S_{k} \leq w-1$ for all k.
b. If $w>2 v+2$, then $S_{0} \geq w$ (in which case, see 2) or S_{k} is either eventually nonpositive or eventually periodic.
c. If $w \leq v$, then S_{k} is strictly increasing.
4. If $h \geq 3$ and $w \leq 2 v+1$, then S_{k} is strictly increasing.

Proofs. 1. Assume $h=1$. There is a nonnegative integer r such that S_{0} satisfies

$$
0<v<v+w<\cdots<v+(r-1) w<S_{0} \leq v+r w .
$$

If $r=0$, then $S_{k}=S_{0}$ for all k. And if $r>0$, then

$$
S_{1}=S_{0}-w>v, \quad \ldots, \quad S_{r-1}=S_{0}-(r-1) w>v
$$

but

$$
S_{r}=S_{0}-r w \leq v
$$

and it follows that $S_{k}=S_{r}$ for $k \geq r$.
2. Assume that $h \geq 2$.
a. If $S_{0}=w>v$, then

$$
\begin{gathered}
S_{1}=h S_{0}-w=(h-1) w \geq w>v \\
S_{2}=h S_{1}-w=[h(h-1)-1] w \geq w>v \\
S_{3}=h S_{2}-w=\{h[h(h-1)-1]-1\} w \geq w>v, \text { etc. }
\end{gathered}
$$

Therefore in general

$$
S_{k}=\left(h^{k}-h^{k-1}-h^{k-2}-\cdots-1\right) w=\left(h^{k}-\frac{h^{k}-1}{h-1}\right) w=\frac{h^{k}(h-2)+1}{h-1} w .
$$

b. Assume $S_{0}>w \geq v$. Then

$$
S_{1}=h S_{0}-w=S_{0}+\left[(h-1) S_{0}-w\right]>S_{0}>w \geq v
$$

and similarly by induction

$$
S_{k}=h S_{k-1}-w=S_{k-1}+\left[(h-1) S_{k-1}-w\right]>S_{k-1}>w \geq v
$$

for every $k \geq 2$. Thus $S_{k+1}>S_{k}>v$ for all k.

3a. Let $h=2,1 \leq S_{0} \leq w-1$, and $w=2 v+u$ for some $u=0,1$ or 2 . If $1 \leq S_{0} \leq v$, then

$$
\begin{equation*}
2 \leq S_{1}=2 S_{0} \leq 2 v=w-u \tag{1}
\end{equation*}
$$

On the other hand, if $v<S_{0} \leq w-1$, then $2 v+2 \leq 2 S_{0} \leq 2 w-2$ and

$$
\begin{equation*}
2-u \leq S_{1}=2 S_{0}-w \leq w-2<w-1 \tag{2}
\end{equation*}
$$

i. Suppose that $u=1$. By (1) and (2), it follows that $1 \leq S_{1} \leq w-1$, and by induction, $1 \leq S_{k} \leq w-1$ for all k. Since S_{k} is a sequence of natural numbers, we have that some term S_{r} must repeat. We show that S_{0} repeats: Suppose that $r>0$ is the least integer such that $S_{r}=S_{r+s}$ for some $s>0$. If S_{r} is even, then $S_{r}=2 S_{r-1}$, since the other possibility $2 S_{r-1}-w$ is odd; and since $S_{r}=S_{r+s}$, it follows that $S_{r+s}=2 S_{r+s-1}$ so that $S_{r-1}=S_{r+s-1}$ in this case. If S_{r} is odd, then similarly $S_{r-1}=S_{r+s-1}$. Therefore $S_{r-1}=S_{r+s-1}$ in either case, which contradicts the minimality of r. Hence S_{k} is periodic when $u=1$.
ii. Assume $u=0$. If $S_{N}=w$ for some N, then since $h=2$ and $w>v$, we have that $S_{k}=w$ for all $k \geq N$. Thus suppose that $S_{k} \neq w$ for all k. Hence by (1) and (2), $1 \leq S_{1} \leq w-1$, and an induction argument shows that $1 \leq S_{k} \leq w-1$ for all k. As above, some term S_{r} must repeat so S_{k} is eventually periodic.
iii. Similar to (ii).

3b. Suppose that $h=2, w>2 v+2$, and $S_{N} \geq w$ for some N. Assume that $N>0$. If $S_{N-1} \leq v$, then

$$
S_{N}=2 S_{N-1} \leq 2 v<w
$$

which is impossible. Hence $S_{N-1}>v$ and $S_{N}=2 S_{N-1}-w \geq w$ so $S_{N-1} \geq w$. Continuing by induction, we have that $N=0$ is the only possibility if $S_{N} \geq w$.

Therefore, if $S_{0} \leq w-1$, then $S_{k} \leq w-1$ for all k. Hence either $S_{N} \leq 0$ for some N or $1 \leq S_{k} \leq w-1$ for all k. It follows that either $S_{k} \leq 0$ for all $k \geq N$ or S_{k} is eventually periodic as in the proof of (3a).

3c. Assume $h=2$ and $w \leq v$. Let l be the least integer such that $2^{l} S_{0}>v$. Then $S_{l}>S_{l-1}>\cdots>S_{0}, \quad S_{l}=2^{l} S_{0}$, and

$$
S_{l+1}=2^{l+1} S_{0}-w \geq 2^{l+1} S_{0}-v>2^{l} S_{0}=S_{l}
$$

since $2^{l}(2-1) S_{0}>v$. Hence

$$
S_{l+1}>S_{l}>v
$$

By induction

$$
S_{k+1}>S_{k}>v \text { for all } k \geq l
$$

and thus $S_{k}(k \geq 0)$ is strictly increasing.
4. Assume $h \geq 3$ and $w \leq 2 v+1$. We show $S_{k+1}>S_{k}$ for all k. Let l denote the least integer such that

$$
S_{l}=h^{l} S_{0}>v
$$

Then $S_{l}>S_{l-1}>\cdots>S_{0}$, and

$$
S_{l+1}=h S_{l}-w \geq 3 S_{l}-w>S_{l} .
$$

The last inequality follows since

$$
S_{l} \geq v+1 \text { and } 2 S_{l} \geq(2 v+1)+1 \geq w+1>w
$$

Hence

$$
S_{l+1}>S_{l}>v
$$

and S_{k} is strictly increasing as in (3c).

Corollary 2.2. Let v be a natural number, $h=2, w=2 v+1$, and let R be the relation defined on the set $\{1,2, \ldots, n=2 v\}$ by: $x R y$ if and only if there exist terms S_{0} and S_{k} such that $x=S_{0}$ and $y=S_{k}$ for some $k>0$. Then R is an equivalence relation on $\{1,2, \ldots, n\}$.

Proof. By (3ai) of Theorem 2.1, for any given S_{0} in $\{1,2, \ldots, n\}$ there exists a unique integer $p=p\left(S_{0}\right)>0$ such that the sequence S_{k} is

$$
\begin{equation*}
S_{0}, S_{1}, \ldots, \quad S_{p-1}, S_{p}=S_{0}, S_{p+1}=S_{1}, \ldots \tag{3}
\end{equation*}
$$

and $S_{0}, S_{1}, \ldots, S_{p-1}$ are distinct.
(i) Reflexive: Let $x=S_{0}$. By (3), $x=S_{p}$ so $x R x$.
(ii) Symmetric: Suppose $x R y$. Thus $x=S_{0}$ and $y=S_{k}$ where by (3) we may assume $1 \leq k<p$. Redefine $y=S_{0}^{\prime}$ (another starting value). Then by (3), $x=S_{p-k}^{\prime}$ where $p-k>0$ so $y R x$.
(iii) Transitive: Assume $x R y$ and $y R z$. As above, by the definition of the sequence S_{k},

$$
x=S_{0}, \quad y=S_{k}=S_{0}^{\prime}, \quad z=S_{l}^{\prime}=S_{k+l}
$$

for some positive integers k and l. Therefore $x=S_{0}$ and $z=S_{k+l}$ where $k+l>0$, thus $x R z$.

The following is a fundamental result from Algebra [8, 9]:
Let R be an equivalence relation on a set S . For any s in S , the equivalence class of s under R, denoted $[s]$, is the subset of S consisting of all elements t of S such that tRs. Then every element of S is in exactly one equivalence class under R. That is, the equivalence classes partition S into a family of mutually disjoint nonempty subsets.

The equivalence classes of Corollary 2.2 are, moreover, ordered sets

$$
\left[S_{0}\right]=\left\{S_{0}, S_{1}, \ldots, S_{p-1}\right\}
$$

and we have for example

$$
\begin{aligned}
& \{1,2, \ldots, 14\}=[1] \cup[3] \cup[5] \cup[7], \\
& \{1,2, \ldots, 16\}=[1] \cup[3], \\
& \{1,2, \ldots, 18\}=[1], \\
& \{1,2, \ldots, 20\}=[1] \cup[3] \cup[5] \cup[7] \cup[9] .
\end{aligned}
$$

An interesting problem in this algebraic context is to determine all even values n such that $\{1,2, \ldots, n\}=[1]$.

Example 1. The following table illustrates possible situations in (3a) and (3b) of Theorem 2.1 where $h=2$:

S_{0}	v	w	sequence
1	3	8	$1,2,4,0,0,0, \ldots$
3	10	20	$3,6,12,4,8,16,12,4, \ldots$
5	10	20	$5,10,20,20,20, \ldots$
8	2	7	$8,9,11,15,23,39,71,135, \ldots$
1	10	24	$1,2,4,8,16,8,16,8, \ldots$
1	9	22	$1,2,4,8,16,10,-2,-4, \ldots$

3. Pathology

Theorem 2.1 describes piecewise defined recursive sequences when either $w \leq v$, $w=2 v$ or $w=2 v+1$ for any h and S_{0}. The specific cases not covered are

1. $h=2$ and $v<w<2 v$
2. $h \geq 3$ and $w>2 v+1$.

In each case, $w>v$, so by the reasoning in the proofs of (2) and (3) of Theorem 2.1, one of the following situations must hold for some N :
i. $\quad S_{N}=w \quad\left(\right.$ and $S_{N+k}=\frac{h^{k}(h-2)+1}{h-1} w$ for every $\left.k\right)$
ii. $S_{N}>w \quad\left(\right.$ and S_{k} is strictly increasing for $\left.k \geq N\right)$
iii. $1 \leq S_{k} \leq w-1$ for all $k \geq N \quad$ (and S_{k} is eventually periodic)
iv. $S_{N} \leq 0 \quad$ (and $S_{N+k}=h^{k} S_{N}$ for every k)

We illustrate these possibilities as follows.

Example 2. $(h=2$ and $v<w<2 v)$ In this case, we show that $S_{k} \geq 2$ for all $k \geq 1$ so (iv) is not feasible: Let l be the least natural number such that $S_{l}=h^{l} S_{0}>v$. Then

$$
S_{l+1}=h^{l+1} S_{0}-w>h^{l+1} S_{0}-2 v=2\left(h^{l} S_{0}-v\right) \geq 2
$$

Let l^{\prime} be the least natural number such that $S_{l+l^{\prime}}=h^{l^{\prime}-1}\left(h^{l+1} S_{0}-w\right)>v$. Then

$$
S_{l+l^{\prime}+1}=h S_{l+l^{\prime}}-w>2\left(S_{l+l^{\prime}}-v\right) \geq 2
$$

Continuing similarly by induction, the result follows.
The other situations are possible: with $S_{0}=1$, we have

v	w	S_{k} type
9	16	i
7	13	$i i$
11	20	$i i i$

For case 2, any of (i) - (iv) are feasible:
Example 3. $(h=3$ and $w>2 v+1)$ Choosing $S_{0}=1$ again, we calculate the table

v	w	S_{k} type
11	27	i
7	19	$i i$
16	72	$i i i$
7	18	$i i i$
7	30	$i v$
2	9	$i v$

It is easy to generate periodic S_{k} with arbitrary initial values from known examples. If S_{k} is periodic and α is a positive integer, the piecewise defined sequence S_{k}^{\prime} with $h^{\prime}=h, v^{\prime}=\alpha v$ and $w^{\prime}=\alpha w$ is periodic and $S_{0}^{\prime}=\alpha S_{0}$. For $h=2$, periodic sequences S_{k} with $S_{0}=1$ are given by the theorem (3a) where $w=2 v+u \quad(u=0,1,2)$. If
$\alpha>2$ and $u>0$, then S_{k}^{\prime} is periodic and satisfies (3b). We can similarly modify the following results.

Example 4. For $h \geq 2$, there are general choices of v and w such that $w>2 v+1$, $S_{0}=1$, and S_{k} is either periodic, strictly increasing or reaches an equilibrium point:
a. For any positive integers r and s, let $t=(r+1) s$ and define

$$
v=\frac{(h-1)\left(h^{r+t}-h^{r}\right)}{h^{r+1}-1} \text { and } w=h v+h-1 .
$$

We begin by showing $h^{t-1}<v<h^{t}$. The right inequality is equivalent to

$$
h^{r}+h^{t}<h^{r+1}+h^{r+t}
$$

which is trivial. The left inequality is equivalent to

$$
h^{t-1}\left(h^{r+1}-1\right) \leq h^{r}\left(h^{t}-1\right)(h-1)
$$

which clearly holds when $s=1$ since $t=(r+1) s$ and $h \geq 2$. Thus assume that $s \geq 2$. Then the inequality becomes

$$
2 h^{r+t}+h^{r+1} \leq h^{r+t+1}+h^{r}+h^{t-1}
$$

where $2 h^{r+t} \leq h h^{r+t}$ since $h \geq 2$, and $h^{r+1} \leq h^{r}+h^{t-1} \quad$ (or $h \leq 1+h^{t-(r+1)}$) since $t=(r+1) s \geq 2(r+1)$ and $r \geq 0$. Thus $h^{t-1}<v<h^{t}$ and straightforward calculations show that

$$
w=\frac{(h-1)\left(h^{r+t+1}-1\right)}{h^{r+1}-1} \text { and } h^{t+1}-w>v
$$

More generally, for $1 \leq k<r$,

$$
h^{t+k}-\frac{h^{k}-1}{h-1} w=h^{t+k}-\frac{\left(h^{k}-1\right)\left(h^{r+t+1}-1\right)}{h^{r+1}-1}>v
$$

if and only if

$$
h^{r+t}+h^{r+1}+h^{k}>h^{k+t}+h^{r}+1
$$

which holds since $h \geq 2$.

It follows that since $S_{0}=1$,

$$
S_{t+k}=h^{t+k}-\frac{h^{k}-1}{h-1} w \quad(k=1, \ldots, r)
$$

Since $S_{t+r}=v+1$, we have that $S_{t+r+1}=h(v+1)-(h v+h-1)=1$ and S_{k} is periodic of period $t+r+1=(r+1)(s+1)$.

For example, if $h=3, r=1$ and $s=3$, then $v=546, w=1640$ and the sequence is

$$
1,3,9,27,81,243,729,547,1, \ldots
$$

b. Let t be a positive integer, $v=h^{t}$ and $w=h^{t+2}-h^{t+1}+h-1$ (which satisfy (3ai) of Theorem 2.1 if $h=2$). The sequence S_{k} is then computed as follows:

$$
1, h, \ldots, h^{t+1}, h^{t+1}-h+1, h^{t+1}-h^{2}+1, \ldots, h^{t+1}-h^{t}+1,1, \ldots .
$$

For example, if $h=4, v=64$ and $w=771$, then the sequence is
$1,4,16,64,256,253,241,193,1, \ldots$.
c. Let t and v be any positive integers that satisfy

$$
h^{t-1}<v \leq h^{t}-h^{t-1}-1
$$

and let $w=h v+h-1$ as above. Then $S_{k}=h^{k}(0 \leq k \leq t), S_{t}>v$, and

$$
S_{t+1}=h S_{t}-w=h^{t+1}-h v-h+1 \geq h^{t}+1>S_{t}>v .
$$

By induction,

$$
S_{t+k+1}>S_{t+k}>v
$$

for all k and thus S_{t+k}, and therefore S_{k}, are strictly increasing.
d. Let t and v be positive integers such that

$$
h^{t-1} \leq v<h^{t}
$$

and let $w=h^{t+1}-h^{t}$. Then $S_{k}=h^{k}$ for $k \leq t$ and $S_{t+1}=h^{t+1}-w=h^{t}$. Thus $S_{k}=h^{t}$ for all $k \geq t$.

4. Application in Matrix Theory

The following sparse matrices arose in [1] while considering certain vector spaces of magic squares.

Definition 2. The C-matrix $A=\left(a_{i j}\right)$ is the square matrix of order n such that its nonzero elements are defined as follows where either $n=2 k$ or $n=2 k+1$:

$$
a_{i j}=\left\{\begin{array}{l}
1 \text { for } j=2 i \text { when } 1 \leq i \leq k \\
1 \text { for } j=2 i-(n+1) \text { when } n-k<i \leq n \\
-2 \text { for } j=i
\end{array}\right.
$$

The ones appear as the moves of the knight on a chessboard. Odd ordered C-matrices are distinguished from even ones by a middle row without ones.

According to Gerschgorin's Disk Theorem (see [7]), the eigenvalues of C-matrices lie in the unit circle with centre $(-2,0)$ in the complex plane. We show that the real bounds -1 and -3 of the circle will indeed be eigenvalues in many cases. Moreover we note that 0 is not contained in the Gerschgorin disk so C-matrices are invertible. (This also follows since they are strictly diagonally dominant.)

For any C-matrix of odd order we note that -2 is an eigenvalue of A since the matrix $A+2 I$ has the zero row as its middle row. We conjecture that -2 is the only eigenvalue when the order of A is $n=2^{l}-1$. This is illustrated in the following

Example 5. Let A be the C-matrix of order 15 . Suppose by way of contradiction that $\beta \neq-2$ is a (real or complex) eigenvalue of A and let $\alpha=\beta+2$. Since $\alpha \neq 0$, by the definition of C-matrix, if $x=\left(x_{1}, x_{2}, \ldots, x_{15}\right)^{t}$ is a nonzero vector in the kernel
of $A-\beta I$, then $x_{8}=0$ and $x_{i}=x_{i+8}(1 \leq i \leq 7)$. Moreover, if $x_{2 i}=0$ for some $i=1,2, \ldots, 7$, then $x_{i}=0$. It follows in order that
$0=x_{4}=x_{2}=x_{1}=x_{4+8}=x_{2+8}=x_{1+8}=x_{6}=x_{3}=x_{5}=x_{6+8}=x_{3+8}=x_{5+8}=x_{7}=x_{7+8}$.

Thus, x is the zero vector, a contradiction. Therefore, -2 is the only eigenvalue of A.

Another possible eigenvalue of odd ordered C-matrices is -1 :

Proposition 4.1. Let A be a C-matrix of order $n=4 l+1$. Then -1 is an eigenvalue of A.

Proof. Let $n=4 l+1$. For each row of the matrix $A+I$ except the middle row we have one entry 1 , one entry -1 , and the other entries 0 . The ones occur in even numbered cells. Column $2 l+1$ is the middle column so it contains no ones. If we sum the columns of $A+I$ except the middle column, then we obtain the zero vector. Hence, the determinant of $A+I$ is zero.

We now turn to the eigenvalues of C-matrices of even order. The following is similar to the above result.

Proposition 4.2. Let A be a C-matrix of order $n=6 l+2$. Then -3 is an eigenvalue of A.

Proof. Let $n=6 l+2$. We show in this case that rows $4 l+2$ and $2 l+1$ of $A+3 I$ are identical. By the definition of C-matrix, the main diagonal of $A+3 I$ consists of ones, and row $2 l+1$ has one in the entries $(2 l+1,2 l+1)$ and $(2 l+1,2(2 l+1))$ since $2 l+1<3 l+1$. On the other hand, row $4 l+2$ has one in the entries $(4 l+2,4 l+2)$ and $(4 l+2,2(4 l+2)-(n+1)))=(4 l+2,2 l+1)$.

We can extend the idea behind the above proof for other C-matrices of even order. We consider matrices where the sum of several rows of $A+3 I$ is identical to the sum of another set of rows. For example, let A be the C-matrix of order 4. We obtain

$$
A+3 I=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

The sum of the first and fourth rows is the same as the sum of the second and third rows. Thus -3 is an eigenvalue of A. In general, we have the following procedure.

Theorem 4.3. Let A be a C-matrix of even order $n=2 k$. Then -1 is an eigenvalue of A.

Conversely, if λ is a real eigenvalue of A, then $\lambda=-1$ or $\lambda=-3$.
Define the sequence Q_{l} of positive integers as follows: let $Q_{0}=1$ and for $l \geq 0$ let $\left[Q_{l}, Q_{l+1}\right]$ denote the positions in row Q_{l} of the ones in the matrix $A+3 I$. Then the sequence Q_{l} is periodic. If the period of Q_{l} is even, then -3 is an eigenvalue of A.

Proof. Let A be a C-matrix of order $n=2 k$. Then each column of $A+I$ has exactly one entry 1 , one entry -1 and the remaining entries 0 . Hence, the sum of all rows of $A+I$ is the zero row so $|A+I|=0$.

Let λ be a real eigenvalue of A. We argue indirectly. Assume that $|\lambda+2|<1$ by Gerschgorin's theorem. We rearrange the columns C_{i} of $A-\lambda I$ in the order

$$
C_{2}, C_{4}, \ldots, C_{n}, C_{1}, C_{3}, \ldots, C_{n-1}
$$

The resulting matrix is strictly diagonally dominant, and is therefore invertible with nonzero determinant, a contradiction.

Let Q_{l} be given as above. Note that rows with ones in positions $\left[Q_{l}, Q_{l+1}\right]$ and $\left[Q_{l+1}, Q_{l+2}\right]$ have a one in the same position Q_{l+1}. Thus, for $l \geq 1$, row Q_{l} also
shares a one with row Q_{l-1}. By the definition of C-matrix of order $2 k$, with $Q_{0}=1$, for $l \geq 1$,

$$
Q_{l}=\left\{\begin{array}{l}
2 Q_{l-1} \text { if } Q_{l-1} \leq k \\
2 Q_{l-1}-(2 k+1) \text { if } Q_{l-1}>k
\end{array}\right.
$$

By (3ai) of Theorem 2.1, Q_{l} is periodic. Hence if the period of Q_{l} is p, then $Q_{p}=1$ and row 1 with ones in $\left[Q_{0}, Q_{1}\right]$ and row Q_{p-1} with ones in $\left[Q_{p-1}, Q_{p}\right]$ have position $Q_{p}=Q_{0}$ in common. Since $Q_{0}, Q_{1}, \ldots, Q_{p-1}$ are distinct, we have that if p is even, then the sum of the rows $Q_{0}, Q_{2}, \ldots, Q_{p-2}$ coincides with the sum of the rows Q_{1}, Q_{3}, \ldots, Q_{p-1} and hence the determinant of $A+3 I$ is zero.

Example 6. We can readily list the sequences Q_{l}. Two of the first eleven even ordered C-matrices have sequences Q_{l} with odd periods:

n	Q_{l}
2	$1,2,1, \ldots$
4	$1,2,4,3,1, \ldots$
6	$1,2,4,1, \ldots$
8	$1,2,4,8,7,5,1, \ldots$
10	$1,2,4,8,5,10,9,7,3,6,1, \ldots$
12	$1,2,4,8,3,6,12,11,9,5,10,7,1, \ldots$
14	$1,2,4,8,1, \ldots$
16	$1,2,4,8,16,15,13,9,1, \ldots$
18	$1,2,4,8,16,13,7,14,9,18,17,15,11,3,6,12,5,10,1, \ldots$
20	$1,2,4,8,16,11,1, \ldots$
22	$1,2,4,8,16,9,18,13,3,6,12,1, \ldots$

For example, the period of Q_{l} is even for $n=16$ and by Theorem 4.3, the sum of the rows $1,4,16$ and 13 of $A+3 I$ is identical to the sum of the rows $2,8,15$ and 9 .

We can compute the period of Q_{l} in some general cases:

Corollary 4.4. Let $l \geq 2$ be an even integer and let A be a C-matrix of order $n=2^{l}-2$. Then -3 is an eigenvalue of A.

Proof. We have $Q_{0}=1, Q_{1}=2, Q_{2}=4, \ldots, Q_{l-1}=2^{l-1}$ since $2^{l-2} \leq \frac{n}{2}$. But $2^{l-1}=\frac{n}{2}+1>\frac{n}{2}$ so $Q_{l}=2\left(\frac{n}{2}+1\right)-(n+1)=1$.

Corollary 4.5. Let A be a C-matrix of order $n=2^{l}$ where $l \geq 2$. Then -3 is an eigenvalue of A.

Proof. Assume that A is a C-matrix of order $n=2^{l}$ where $l \geq 2$. Then $Q_{0}=1$, $Q_{1}=2, Q_{2}=4, \ldots, Q_{l}=2^{l}$. We prove by induction that

$$
Q_{l+i}=Q_{l}-2^{i}+1>2^{l-1}=\frac{n}{2}
$$

for $i=0,1, \ldots, l-1$. The initialization $i=0$ is clear. Assume the statement holds for some $i<l-1$. Then

$$
Q_{l+i+1}=2\left(Q_{l}-2^{i}+1\right)-(n+1)=Q_{l}-2^{i+1}+1>2^{l-1}
$$

since $i+1 \leq l-1$ and $2^{l-1}+1>2^{i+1}$.
In particular,

$$
Q_{2 l-1}=Q_{l+(l-1)}=Q_{l}-2^{l-1}+1=\frac{n}{2}+1>\frac{n}{2}
$$

so $Q_{2 l}=2\left(\frac{n}{2}+1\right)-(n+1)=1$. Therefore the period of Q_{l} is even.

If the period of Q_{l} is odd, then we can not deduce any information about the value -3 . For example, the period of Q_{l} is three for the C-matrix A of order six and its eigenvalues are

$$
-\frac{5}{2} \pm \frac{\sqrt{3}}{2} i,-\frac{5}{2} \pm \frac{\sqrt{3}}{2} i,-1,-1
$$

On the other hand, -3 is an eigenvalue of the C-matrix of order 366 although Q_{l} has period 183.

We computed the eigenvalues of the C-matrices of even orders up to order 4780 and found the following orders for which -3 is not an eigenvalue:
$6,22,30,46,48,70,72,78,88,102,126,150,160,166,190,198,216,222,232,238$, $262,270,310,328,336,342,358,430,438,496,510,552,600,622,630,712,720,880$, 888, 910, 918, 936, 960, 1056, 1102, 1288, 1392, 1432, 1456, 1518, 1560, 1678, 1800, 1896, 2046, 2088, 2142, 2200, 2262, 2350, 2358, 2592, 2686, 2758, 2920, 3016, 3190, 3390, 3478, 3472, 3576, 3936, 4056, 4176, 4206, 4512, 4576, 4680.

References

[1] A. Al-Zahawi, S. Al - Ashhab, Linear systems resulting from pandiagonal magic squares, Almanara journal, Al-Albayt University, Vol. 13, No. 6, pp 179-199, 2007.
[2] P. Blanchard, R. L. Devaney, and G. R. Hall, Differential Equations, Brooks/Cole, Pacific Grove, California, 2002.
[3] C. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, Wiley, New York, 1976.
[4] G. J. Etgen and W. L. Morris, An Introduction to Ordinary Differential Equations with Difference Equations, Numerical Methods and Applications, Harper \& Row, New York, 1977.
[5] E. G. Hutchinson, An Introduction to Population Ecology, Yale University Press, New Haven, Connecticut, 1978.
[6] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, New York, 1995.
[7] E. Kresyzig, Advanced Engineering Mathematics, 7th ed., John Wiley \& sons, 1993.
[8] S. MacLane and G. Birkhoff, Algebra, Macmillan, New York, 1968.
[9] D. Saracino, Abstract Algebra: A First Course, Waveland Press, Prospect Heights, Illinois, 1992.
[10] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer Verlag, New York, 1990.
[11] T. Yi and Z. Zhou, Periodic solutions of difference equations, J. Math. Anal. Appl. 286 (2003), pp. 220-229.
[12] L. Zhang, G. Zhang, and H. Liu, Periodicity and attractivity for a rational recursive sequence, J. Appl. Math. Comput. 19 (2005), pp. 191-201.

[^0]: *Corresponding author
 E-mail addresses: ahhab@aabu.edu.jo (S. Al-Ashhab), guykerj@buffalostate.edu (J. Guyker)
 Received December 18, 2011

