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Abstract. In this paper, we define and study skew semi-invariant submanifolds ((SSI)subMs) of metallic Riemann-

ian manifold. We calculate the sectional curvature and mean curvature of (SSI)subMs and obtain some interesting

results. We also construct an example of (SSI)subM .
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1. INTRODUCTION

A. Bejancu generalized the geometry of invariant and anti-invariant submanifolds in 1984 to

define (SI)subMs of locally product Riemannian manifolds [11]. Holomorphic (invariant) and

totally real (anti-invariant) submanifolds are generalized to form (SI)subMs. If a (SI)subM is

neither a totally real submanifold nor a holomorphic submanifold, it is said to be proper. Under

the impact of the nearly contact structure, the tangent space of holomorphic submanifolds is in-

variant. On the other hand, the tangent space is anti-invariant in totally real submanifolds, that

is, it is mapped into the normal space. Another generalization of invariant and anti-invariant
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submanifolds were defined by Chen [14] as slant submanifolds. The idea that semi-slant sub-

manifolds can obtain slant submanifolds and CR-submanifolds as specific cases, was first intro-

duced by Papaghine in [21]. Carriazo [13] introduced bi-slant submanifolds as a generalization

of semi-slant submanifolds. One of the cases of such submanifolds is that of anti-slant subman-

ifolds. Since the term anti-slant implies that the submanifold lacks a slant factor, Sahin [23]

named these submanifolds as hemi-slant submanifolds.

Skew CR-submanifolds of a Kahlerian manifold were first defined by Ronsse in [22]. Such

submanifolds are generalizations of bi-slant submanifolds. Consequently, invariant, anti-

invariant, CR, slant, semi-slant and hemi-slant submanifolds are particular cases of skew

CR-submanifolds. We observe that CR-submanifolds in Kahlerian manifolds correspond to

(SI)subMs in local product Riemannian manifolds [11]. Therefore, skew CR-submanifolds

in Kahlerian manifolds correspond to (SSI)subMs in locally product Riemannian manifolds.

Ximin and Shao firstly studied these type of submanifolds in [28].

The generalization of the golden mean is known as the metallic means family or metallic

proportions [1]. The positive solution for the equation x2− ξ x− λ = 0, where ξ and λ are

positive integers, is member of the metallic means family. According to the values of ξ and λ ,

the members of the metallic means family get the name of a metal, such as the golden mean,

the silver mean, the bronze mean, the copper mean, and many others [6], [7]. Hretcanu and

Crasmareanu have examined metallic structure on Riemannian manifolds [19],[20]. Invariant,

anti-invariant and slant submanifolds of a metallic Riemannian manifold have been studied by

Blaga and Hretcanu in [12].

The geometry of (SI)subMs has been studied on several manifolds by many geometers such

as nearly Kenmotsu manifolds [2], [3], [4], golden Riemannian manifolds [15], [17], [18],

Lorentzian para Sasakian manifolds [5], Sasakian manifolds [10], [24] and nearly Sasakian

manifolds [16]. (SSI)subMs have been studied by several geometers in [8], [25], [26], [28].

Ahmad & Qayyoom studied warped product (SSI)subMs on golden Riemannian manifold [9].

We define and investigate (SSI)subMs of a metallic Riemannian manifold in this research,

which is inspired by the studies mentioned above. The following describes how the paper is

structured: We introduce the concept of metallic structure and metallic Riemannian manifold in
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Section 2. Section 3 introduces the term ”skew semi-invariant submanifold”, explores some of

its characteristics, and constructs an example of (SSI)subM of metallic Riemannian manifold.

Abbreviation: We have used following abbreviations in this paper-

(1) (SI)subM : Semi-invariant submanifold

(2) (SSI)subM : Skew semi-invariant submanifold

(3) SC : Sectional curvature

2. DEFINITION AND PRELIMINARIES

Consider an n−dimensional manifold (Q,q) with a (1,1) tensor field ψ such that

(2.1) ψ
2 = ξ ψ +λ I,

where ξ and λ are positive integers and I is the identity transformation on Γ(T Q). Then, the

structure ψ is called a metallic structure. If ψ is a self-adjoint operator with respect to metric

tensor q which is a symmetric (0,2) tensor field on Q, i.e.

(2.2) q(ψF,G) = q(F,ψG)

for all F,G vector fields on Γ(T Q), then the metric q is said to be ψ-compatible and (Q,q,ψ)

is called metallic Riemannian manifold. From (2.1) and (2.2) we have

q(ψF,ψG) = ξ q(F,ψG)+λq(F,G)

for any F,G ∈ Γ(T Q).

Proposition 2.1. [1], [12] The following characteristics pertain to the metallic structure on the

manifold Q:

(i) ψn = Fnψ +λFn−1I,

where {Fn}n∈N is the generalized secondary Fibonacci sequence which is defined by Fn+1 =

ξ Fn +λFn−1,n≥ 1 with F0 = 0,F1 = 1 and ξ ,λ real numbers.

(ii) ψ is an isomorphism on the tangent space TxQ for every x ∈ Q. As a result, ψ is invertible

and its inverse whichis represented as ψ =ψ−1 = (1/λ )ψ−(ξ/λ )I, is not a metallic structure.

Itis still a polynomial, more specifically a quadratic one:

λψ
2 +ξ ψ−1 = 0
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or

ψ
2 =−(ξ/λ )ψ +(1/λ ).

(iii) The characteristic values of ψ are the metallic numbers σ and ξ −σ , where

σξ ,λ =
ξ +

√
ξ 2 +4λ

2
.

(iv) A metallic structure ψ is called integrable if its Nijenhuis tensor field Nψ(F,G) =

[ψF,ψG]−ψ[ψF,G]−ψ[F,ψG]+ψ2[F,G] vanishes.

Proposition 2.2. [20] (i) There are two complementary distributions D and D⊥ on a metallic

manifold (Q,ψ) that correspond to the projection operators

t =
σξ ,λ

2σξ ,λ −ξ
.I− 1

2σξ ,λ −ξ
.ψ

and

f =
σξ ,λ −ξ

2σξ ,λ −ξ
.I +

1
2σξ ,λ −ξ

.ψ.

(ii) The operators t and f verify

t + f = I,

t2 = t, f 2 = f ,

ψt = tψ = (ξ −σξ ,λ )t,

ψ f = f ψ = σξ ,λ f .

Therefore, complementary distributions D and D⊥ for these projections are defined by t and f ,

respectively. So, we have ψ = (ξ −σξ ,λ )t +σξ ,λ f .

(iii) The complementary distributions D and D⊥ are orthogonal with respect to the ψ-

compatible metric q, i.e. q◦ (t× f ) = 0.
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3. SKEW SEMI-INVARIANT SUBMANIFOLDS

Let (Q,q,ψ) be a metallic Riemannian manifold. If the tangent bundle T Q of a submanifold

Q of Q has the following decomposition,

T Q = D0⊕D1⊕Dα

such as, the distribution on Q,

(i) D0 is invariant, that is ψ(D0
x) = D0

x ∀ x ∈ Q,

(ii) D1 is anti-invariant, that is ψ(D1
x)⊂ TxQ⊥ ∀ x ∈ Q,

(iii) Dα is neither invariant nor anti-invariant, that is tFx 6= 0 and f Fx 6= 0 for any x ∈ Q and

Fx ∈ Dx.

Then, Q is said to be (SSI)subM of Q with induced metric q.

Remark 3.1. [26] A (SSI)subM Q of a metallic Riemannian manifold Q is said to be

(i) semi-invariant if Dα = 0,

(ii) semi slant if D1 = 0,

(iii) hemi-slant if D0 = 0,

(iv) slant if D0 = 0 and D1 = 0,

(v) invariant if D1 = 0 and Dα = 0,

(vi) anti-invariant if D0 = 0 and Dα = 0.

We denote the Riemannian connection in Q by ∇, induced Riemannian connection in Q by

∇ and induced normal Riemannian connection in T⊥Q by ∇⊥. We have Gauss and Weingarten

equations respectively

(3.1) ∇FG = ∇FG+ b̄(F,G),

(3.2) ∇Fη =−AηF +∇
⊥
F η

for F,G ∈ T Q and η ∈ T⊥Q. For the second fundamental form b̄ related to A, we have

q(b̄(F,G),η) = q(AηF,G).

Now, for tangent vector F ∈ T Q and normal vector η ∈ T⊥Q we write,
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(3.3) ψF = tF + f F

and

(3.4) ψη = bη + cη ,

where tF,bη ∈ T Q and f F,cη ∈ T⊥Q.

We have,

q(ψF,G) = q(tF,G)

q(ψF,G) = q(F, tG).

So, t and t2 are symmetric operators on the tangent space T Q. Let φ(x) is the characteristic value

of t2 at x ∈ Q. Since, t2 is a composition of an isometry and a projection, hence φ(x) ∈ [0,1].

Now, we set Dφ
x = ker(t2−φ(x)I) for each x∈Q, where I is the identity transformation on TxQ.

Obviously,

D0
x = ker( f ) and D1

x = ker(t).

D1
x is the maximal ψ anti-invariant subspace of TxQ and D0

x is the maximal ψ invariant subspace

of TxQ.

TxQ has the following decomposition as the direct sum of characteristic spaces that are mutually

orthogonal:

TxQ = Dφ1
x ⊕Dφ2

x ⊕ .........⊕Dφk
x ,

where φ1(x),φ2(x), ............,φk(x) are all characteristic values of t2 at x.

Now, we know that

ψ(∇FG) = ∇FψG−G∇Fψ

ψ(∇FG) = ∇FψG.

From (3.1) and (3.3), we get

ψ(∇FG+ b̄(F,G)) = ∇F(tG+ f G).

From (3.1) and (3.2), we obtain

ψ(∇FG)+ψ(b̄(F,G)) = ∇FtG+ b̄(F, tG)−AηF +∇
⊥
F f G
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(3.3) and (3.4) give

t(∇FG)+ f (∇FG)+bb̄(F,G)+ cb̄(F,G)

(3.5) = ∇FtG+ b̄(F, tG)−A f GF +∇
⊥
F f G

for all F,G ∈ T Q. Comparing tangential and normal components in (3.5), we have

(3.6) t(∇FG) = ∇FtG−bb̄(F,G)−A f GF

and

(3.7) f (∇FG) = b̄(F, tG)+∇
⊥
F f G− cb̄(F,G).

Now,

t[F,G] = t∇FG− t∇GF

= ∇FtG−bb̄(F,G)−A f GF

−∇GtF +bb̄(F,G)+A f FG

(3.8) t[F,G] = ∇FtG−∇GtF +A f FG−A f GF.

Similarly,

(3.9) f [F,G] = b̄(F, tG)− b̄(G, tF)+∇
⊥
F f G−∇

⊥
G f F.

Lemma 3.2. [28] Consider a metallic Riemannian manifold (Q, j) and its (SSI)subM Q, then

the distribution

(i) D0 is integrable if and only if AψFG = AψGF ∀ F,G ∈ D0,

(ii) D1 is integrable if and only if b̄(F,ψG) = b̄(ψF,G) ∀ F,G ∈ D1.

Now, we define the covariant derivative of t and f for all F,G ∈ T Q as follows:

(∇Ft)G = ∇FtG− t∇FG,

(∇F f )G = ∇
⊥
F f G− f ∇FG.

Using (3.8) and (3.6), we get

(∇Ft)G = bb̄(F,G)+A f GF
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and using (3.9) and (3.7), we get

(3.10) (∇F f )G = cb̄(F,G)− b̄(F, tG).

Remark 3.3. Let D1 and D2 are any two distributions on a submanifold Q of a metallic Rie-

mannian manifold (Q,q), then D1 is said to be parallel w.r.t. D2 if ∇FG = 0 for all F ∈D1 and

G ∈ D2.

Definition 3.4. [20] A distribution D0 on a submanifold Q of a metallic Riemannian manifold

(Q,q) is said to be totally geodesic if for all F,G ∈ D0 we have b̄(F,G) = 0. For any two

distributions D1 and D2 on Q, we say that Q is D1−D2 mixed totally geodesic if b̄(F,G) = 0

for all F ∈ D1 and G ∈ D2.

Proposition 3.5. Let Dφ be any distribution on a (SSI)subM Q of a metallic Riemannian mani-

fold (Q,q). If AηtF = tAηF ∀ F ∈ Dφ and η ∈ T⊥Q, where φ 6= θ , then Q is Dφ −Dθ mixed

totally geodesic.

Proof. : As we have assumed earlier,

t2AηF−φAηF = 0.

This concludes that AηF ∈ Dφ . So ∀ G ∈ Dθ ,η ∈ T⊥Q,φ 6= θ we have

q(AηF,G) = 0

q(b̄(F,G),η) = 0,

which implies b̄(F,G) = 0 for all F ∈ Dφ and G ∈ Dθ . Therefore, Q is Dφ −Dθ mixed totally

geodesic.

From (3.3), for all Fx ∈ TxQ we have

ψFx = tFx + f Fx

ψ
2Fx = ψ(ψFx)−ψ(tFx + f Fx)

(ξ ψ +λ I)Fx = ψ(ψFx)−ψ(tFx + f Fx)

ξ (tFx + f Fx)+λFx = t2Fx + f tFx +b f Fx + c f Fx.
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Comparing normal parts, we get

ξ f Fx = f tFx + c f Fx

(3.11) c f Fx = ξ f Fx− f tFx.

Similarly, from (3.4) we have

ψη = bη + cη

ψ
2
η = ψ(ψη) = ψ(bη + cη)

(ξ ψ +λ I)η = ψ(bη)+ψ(cη)

ξ (bη + cη)+λη = tbη + f bη +bcη + c2
η .

Comparing normal parts, we get

ξ cη +λη = f bη + c2
η ,

(3.12) f bη = λη +ξ cη− c2
η

for all Fx ∈ TxQ,η ∈ T⊥x Q.

Further, for Fx ∈ Dφi
x ,φ ∈ {φ1,φ2, .....,φk}, we have from (3.11)

c2 f Fx = (ξ +φx) f Fx.

Also, if Fx ∈ D0
x , then it is obvious that t2 f Fx = 0. Therefore, if Fx is an characteristic vector

of t2 w.r.t. the characteristic value φ(x), then f Fx is an characteristic vector of c2 having the

characteristic value (ξ +φ(x)).

From (3.12) if cη = 0, we get

f bη = λη− c2
η

f bη = (λ − c2)η .

(ξ +φ(x)) is an characteristic value of c2, if and only if (λ−ξ −φ(x)) is an characteristic value

of f b. The characteristic spaces of f b and c2 are orthogonal as these are symmetric operators

on the normal bundle T⊥Q. The dimension of the characteristic space of f b that corresponds to

the characteristic value (λ −ξ −φ(x)) is same as that of Dφ . As a result, we conclude
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Lemma 3.6. Consider a metallic Riemannian manifold (Q,q,ψ). A submanifold Q of Q is

a (SSI)subM if and only if the characteristic values of f b are constant and the characteristic

spaces of f b have constant dimension.

Theorem 3.7. Consider a metallic Riemannian manifold (Q, j,ψ), where ∇ψ = 0. If ∇t = 0,

then a submanifold Q of Q is a (SSI)subM. Additionally, all of the t−invariant distributions

D0,D1 and Dφ

i , 1≤ i≤ k are parallel.

Proof. : Consider Gx ∈ Dφi for any x ∈ Q and F,G ∈ T Q. Suppose G be a parallel translation

of TxQ along the integral curve of F . Since (∇Ft)G = 0, we get

∇F((t2−φ(x))G) = t2
∇FG−φ(x)∇FG = 0.

This shows that the characteristic values of t2 are constant. The dimension of each Dφ is con-

stant and Q is a (SSI)subM as the parallel translation of TxQ along any curve is an isometry that

preserves each Dφ .

Now, if G ∈ Dφ , we have

t2G = φG,

where φ is constant.

t2
∇FG = φ∇FG,

which shows that Dφ is parallel.

Theorem 3.8. Consider a submanifold Q of metallic Riemannian manifold Q. If ∇ f = 0, then

Q is (SSI)subM.

Proof. : Consider Fx ∈ Dφ
x ,φ 6= 1 for any point x ∈ Q. Let ηx = f Fx then by (3.12) ηx is an

characteristic vector of f b with characteristic value (λ −ξ −φx).

Now, consider G ∈ T Q and the translation of ηx in TxQ along an integral curve of G is η , we

have

∇
⊥
G( f bη +(ξ −λ +φx)η) = ∇

⊥
G f bη +(ξ −λ +φx)∇

⊥
Gη
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From Lemma 3.6, we get

∇
⊥
G( f bη +(ξ −λ +φx)η) = f b∇

⊥
Gη +(ξ −λ +φx)∇

⊥
Gη

= ( f b+(ξ −λ +φx))∇
⊥
Gη .

Since, ( f bη+(ξ−λ +φx)η)= 0 at x, hence ( f bη+(ξ−λ +φx)η)= 0 on Q. f b are invariable

and their characteristic spaces have constant dimension. Then, according to Lemma 3.6, Q is a

(SSI)subM.

Proposition 3.9. Consider a (SSI)subM Q of metallic Riemannian manifold Q. If ∇ f = 0, then

for all φ 6= θ , Q is a Dφ−Dθ mixed totally geodesic. Further, if F ∈Dφ , then either b̄(F,G) = 0

or b̄(F,G) is a characteristic vector of c2 having characteristic value φ .

Proof. : From (3.10) and ∇ f = 0, for each F,G ∈ T Q, we have

cb̄(F,G) = b̄(F, tG).

If G ∈ Dθ , then

c2b̄(F,G) = cb̄(F, tG) = b̄(F, t2G) = b̄(F,φG)

c2b̄(F,G) = φ b̄(F,G)

(c2−φ)b̄(F,G) = 0

b̄(F,G) = 0.

Therefore, Q is Dφ −Dθ mixed totally geodesic. Obviously, the further result follows.

4. SECTIONAL CURVATURE AND MEAN CURVATURE

We denote the curvature tensor of Q and Q by R and R respectively. The Gauss equation

becomes,

(4.1) q(R(F,G)U,V ) = q(R(F,G)U,V )+q(b̄(F,V ), b̄(G,U))−q(b̄(F,U), b̄(G,V ))

for F,G,U,V ∈ T Q.

For two orthogonal unit vectors F,G ∈ T Q, the SC of a plane section of Q is given as

(4.2) KQ(F ∧G) = q(R(F,G)G,F).
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For two orthogonal unit vectors F,G ∈ T Q, the SC of a plane section of Q is given by

(4.3) KQ(F ∧G) = q(R(F,G)G,F).

(4.4) KQ(F ∧G) =
c
4
{1+q(F,ψtG)2}+q(b̄(F,F), b̄(G,G))−q(b̄(F,G), b̄(G,F)),

where c is constant holomorphic curvature of plane section of Q.

From (4.1), (4.2), (4.3) and (4.4) we get

KQ(F ∧G)−KQ(F ∧G) = q(R(F,G)G,F)−q(R(F,G)G,F)

= q(b̄(F,F), b̄(G,G))−q(b̄(F,G), b̄(G,F))

= q(b̄(F,F), b̄G,G))−| b̄(F,G) |2

(4.5) KQ(F ∧G) = KQ(F ∧G)+q(b̄(F,F), b̄(G,G))−| b̄(F,G) |2.

Remark 4.1. [27] The holomorphic SC H of Q determined by a unit vector F ∈ D is the SC

determined by {F,ψF}.

Hence, from (4.4) we have

H(F) =
c
4
{1+q(F,ψ2tF)2}+q(b̄(F,F), b̄(ψF,ψF))−q(b̄(F,ψF), b̄(ψF,F))

H(F) =
c
4
{1+q(F,(ξ ψ +λ I)tF)2}+q(b̄(F,F), b̄(ψF,ψF))−q(b̄(F,ψF), b̄(ψF,F))

H(F) =
c
4
{1+q(F,λ tF)2}+q(b̄(F,F), b̄(ψF,ψF))−q(b̄(F,ψF), b̄(ψF,F)).

Proposition 4.2. Let (Q,q,ψ) be a metallic Riemannian manifold and Q be its (SSI)subM,

where ∇Fψ = 0. If ∇ f = 0, then

KQ(F ∧G) = KQ(F ∧G)

for unit vectors F ∈ Dφ , G ∈ Dθ , φ 6= θ .
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Proof. : From Proposition 3.5 we have h̄(F,G) = 0 for F ∈ Dφ ,G ∈ Dθ .

By (4.5) we have,

KQ(F ∧G) = KQ(F ∧G)+ j(h̄(F,F), h̄(G,G))−| h̄(F,G) |2.

Now, h̄(F,F)∈Dφ and h̄(G,G)∈Dθ as F ∈ Dφ and G ∈ Dθ , which gives j(h̄(F,F), h̄(G,G)) =

0 as Dφ and Dθ are mutually orthogonal. Thus,

KQ(F ∧G) = KQ(F ∧G).

Lemma 4.3. Let (Q, j,ψ) be metallic Riemannian manifold and ∇Fψ = 0. If Q is a (SSI)subM

of Q, then for all F,G ∈ Dφ , following are equivalent:

(i) (∇F f )G− (∇G f )F = 0,

(ii) b̄(tF,G) = b̄(F, tG),

(iii) f [F,G] = ∇⊥F f G−∇G f F,

(iv) AηtG− tAηG is perpendicular to Dφ for η ∈ T⊥Q.

Proof. : From (3.10), we get

(4.6) (∇F f G) = cb̄(F,G)− b̄(F, tG),

(4.7) (∇G f F) = cb̄(G,F)− b̄(G, tF).

From (4.6) and (4.7), we obtain

(∇F f G)− (∇G f F) = b̄(G, tF)− b̄(F, tG).

Comparing the tangential and normal parts, we get

∇F f G−∇G f F = 0,

b̄(G, tF)− b̄(F, tG) = 0

for all F,G ∈ Dφ . From equality (3.9), i.e.

f [F,G] = b̄(F, tG)− b̄(G, tF)+∇
⊥
F f G−∇

⊥
G f F

f [F,G] = ∇
⊥
F f G−∇

⊥
G f F.
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Now,

q(AηtG− tAηG,G) = 0.

This shows that (AηtG− tAηG) is perpendicular to Dφ .

We assume a local orthonormal basis E1,E2, ....En(φ) for each t invariant Dφ . Dφ mean

curvature vector is determined by Hφ = ∑
n(φ)
i=1 b̄(E i,E i), then mean curvature vector is defined

by

H =
1
n
(H0 +H1 +Hφ ),n = dimQ.

Let Q be metallic Riemannian manifold with ∇ψ = 0 and Q be its (SSI)subM. If Hφ = 0, Q is

called Dφ -minimal and if H = 0, Q is called minimal.

For unit vector F ∈ Dφ ,φ 6= 0 and c≈ 0, we establish the φ -SC of Q and Q respectively, by

Hφ (F) = KQ(F ∧G) and Hφ (F) = KQ(F ∧G),

where G = tF√
φ

. From (4.5), we obtain

Hφ (F) = Hφ (F)+
1
φ

q(b̄(F,F), b̄(tF, tF))− 1
φ
| b̄(F, tF) |2.

Proposition 4.4. Consider a (SSI)subM Q of metallic Riemannian manifold Q alongwith ∇ψ =

0. For non zero φ , if t is φ -commutative, then

Hφ (F) = Hφ (F)+ | b̄(F,F) |2− 1
φ
| b̄(F, tF) |2.

Proof. : From equality (4.5) and G = tF√
φ

, we get

Hφ (F) = Hφ (F)+q(b̄(F,F), b̄(
tF√

φ
,

tF√
φ
)−| b̄(F, tF√

φ
) |

2

Hφ (F) = Hφ (F)+
1
φ

q(b̄(F,F), b̄(F, t2F))− 1
φ
| b̄(F, tF) |2.

Since, t2F = φF,F ∈ Dφ , we have

Hφ (F) = Hφ (F)+
1
φ

q(b̄(F,F), b̄(F,φF)− 1
φ
| b̄(F, tF) |2

Hφ (F) = Hφ (F)+ | b̄(F,F) |2− 1
φ
| b̄(F, tF) |2.
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5. EXAMPLE

Let the metallic Riemannian manifold (R10 = R5×R5, j,ψ) with ∇ψ = 0. We can define ψ

as

ψ(
∂

∂ µi
,

∂

∂νi
) = (σ

∂

∂ µ1
,σ

∂

∂ µ2
,σ

∂

∂ µ3
,σ

∂

∂ µ4
,σ

∂

∂ µ5
,σ

∂

∂ν1
,σ

∂

∂ν2
,σ

∂

∂ν3
,σ

∂

∂ν4
,σ

∂

∂ν5
),

where 0 < i, j ≤ 5.

ψ
2(

∂

∂ µi
,

∂

∂νi
)

= (σ2 ∂

∂ µ1
,σ2 ∂

∂ µ2
,σ2 ∂

∂ µ3
,σ2 ∂

∂ µ4
,σ2 ∂

∂ µ5
,σ2 ∂

∂ν1
,σ2 ∂

∂ν2
,σ2 ∂

∂ν3
,σ2 ∂

∂ν4
,σ2 ∂

∂ν5
)

ψ
2(

∂

∂ µi
,

∂

∂νi
) = ((ξ σ +λ )

∂

∂ µ1
,(ξ σ +λ )

∂

∂ µ2
,(ξ σ +λ )

∂

∂ µ3
,(ξ σ +λ )

∂

∂ µ4
,

ξ (σ +λ )
∂

∂ µ5
,(ξ σ +λ )

∂

∂ν1
,(ξ σ +λ )

∂

∂ν2
,(ξ σ +λ )

∂

∂ν3
,(ξ σ +λ )

∂

∂ν4
,(ξ σ +λ )

∂

∂ν5
)

ψ
2(

∂

∂ µi
,

∂

∂νi
) = ξ ψ(

∂

∂ µ1
,

∂

∂ µ2
,

∂

∂ µ3
,

∂

∂ µ4
,

∂

∂ µ5
,

∂

∂ν1
,

∂

∂ν2
,

∂

∂ν3
,

∂

∂ν4
,

∂

∂ν5
)

+λ (
∂

∂ µ1
,

∂

∂ µ2
,

∂

∂ µ3
,

∂

∂ µ4
,

∂

∂ µ5
,

∂

∂ν1
,

∂

∂ν2
,

∂

∂ν3
,

∂

∂ν4
,

∂

∂ν5
)

ψ
2 = ξ ψ +λ I.

Consider a submanifold Q of Q = (R10,q,ψ) given by

f (µ,ν ,w,x,y) = (µ +ν ,µ−ν ,µcosx,νsinx,w,−w,µ,2ν ,µcosy,µsiny).

Now, we can get T Q = span{ζ1,ζ2,ζ3,ζ4,ζ5} where,

ζ1 =
∂

∂ µ1
+

∂

∂ µ2
+ cosx

∂

∂ µ3
+ sinx

∂

∂ µ4
+

∂

∂ µ5
+ cosy

∂

∂ν4
+ siny

∂

∂ν5
,

ζ2 =
∂

∂ µ1
− ∂

∂ µ2
+

∂

∂ν3
,

ζ3 = i
∂

∂ν1
+

∂

∂ν2
,

ζ4 =−µsinx
∂

∂ µ3
+µcosx

∂

∂ µ4
,

ζ5 =−µsiny
∂

∂ν4
+µcosy

∂

∂ν5
,
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where σ =
ξ+
√

ξ 2+4λ

2 is the metallic ratio and σ = ξ −σ .

We have ψ(ζ2) = σζ2,ψ(ζ4) = σζ4,ψ(ζ5) = σζ5 and

ψ(ζ1) = σ
∂

∂ µ1
+σ

∂

∂ µ2
+σcosx

∂

∂ µ3
+σsinx

∂

∂ µ4
+σ

∂

∂ µ5
+σcosy

∂

∂ν4
+σsiny

∂

∂ν5
,

ψ(ζ3) = iσ
∂

∂ν1
+σ

∂

∂ν2
.

Further, we have

‖ψ(ζ1)‖2 = −ξ σ + 5λ + 3ξ 2,‖ψ(ζ2)‖2 = 3(ξ σ + λ ),‖ψ(ζ3)‖2 = 0,‖ψ(ζ4)‖2 =

µ2(−ξ σ +λ +ξ 2) and ‖ψ(ζ5)‖2 = µ2(−ξ σ +λ +ξ 2).

Now, we can obtain < ψ(ζ1),ζ1 >= 3ξ −σ and < ψ(ζi),ζk)>= 0 ∀ i 6= k and 0 < i,k ≤ 5.

cosφ =
< ψ(ζ1),ζ1 >

‖ζ1‖.‖ψ(ζ1)‖

cosφ =
3ξ −σ√

5(−ξ σ +5λ +3ξ 2)
.

We define Dφ = span{ζ1} is a slant distribution with slant angle φ = arccos[ 3ξ−σ√
5(−ξ σ+5λ+3ξ 2)

]

and D1 = span{ζ3} is an anti-invariant distribution. Since, ψ(ζ3) ⊥ T Q and D0 =

span{ζ2,ζ4,ζ5}, so ψ(D0)⊂D0. Therefore, by above calculation, it can be concluded that Q is

a proper (SSI)subM of Q. Let Dφ be slant and D0 be invariant distribution on Q. If b̄(F,G) = 0,

where F ∈ Dφ and G ∈ D0, then Q is (Dφ ,D0)-mixed totally geodesic.
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