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Abstract. The article analyzes an M/M/2 multiple vacation production inventory system, where a production

facility consists of two heterogeneous servers with multiple vacations. The inventory is restocked according to

(s,S) policy. The production facility takes a vacation once the inventory level reaches S, and after completing the

vacation, if the inventory level exceeds s, the production facility goes on another random vacation with the same

distribution rate. The matrix geometric method is used to estimate the steady state distribution of the obtained

Markov chain. Various performance measures and cost analysis are done along with numerical results.
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1. INTRODUCTION

A production vacation refers to a planned break or downtime in the manufacturing process

during which production activities are temporarily paused. This helps to prevent overproduction

by ensuring that production matches actual demand and allowing time to assess and adjust

inventory levels. Additionally, by aligning production vacations with periods of low demand,

companies can avoid overproduction and better match their output to market needs. The policy

of most manufacturing companies is to make items based on customer demand, stock the items
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at that level, and then begin production based on need. If servers are allowed to take advantage

of vacation time, this vacation time can be used to do some other work, which will improve the

profitability of an organization.

Levy and Yechiali [7] were the first to study the queueing systems with one or more vacations.

Yue and Qin [13] analyzed a production inventory system with single server and production va-

cations. Further understanding of vacation models can be found in studies by Teghem [12]

and Doshi [4], as well as Takagi’s [11] monograph. Baek and Moon [1] analyzed a produc-

tion facility with c servers and lost sales that use a regenerative process to analyze the model.

Beena and Jose [2] investigated a production inventory model and compared the cost function

incurred when using heterogeneous and homogeneous servers. Jeganathan [5] compared two-

server Markovian inventory systems with homogeneous servers and heterogeneous servers with

server interruptions. Beena and Jose [3] analyzed the production inventory system with multiple

servers and production vacation. The impact of production vacation parameter on cost function

is analyzed in the model. Li et al. [8] analyzed a two-state production system (in-control and

out-of-control state) with inventory deterioration, rework process, and back-ordering. Jose and

Beena [6] discussed a retrial inventory system with production and two servers in which one

server is static in the system and another takes multiple vacations. Vishwanath Maurya [9]

demonstrated a mathematical model for analyzing a Markovian queueing system with two het-

erogeneous servers and a working vacation.

The next section, section 2 describes the system model. Section 3 comprises the stability

condition and steady state probability vector. Performance measure and cost analysis are given

in sections 4 and 5. Concluding remarks is given in section 6.

2. SYSTEM MODEL

A (s,S) production inventory model that produces a single type of product is considered,

where demand from customers is identified one by one according to a Poisson process with rate

λ . The production unit takes an exponentially distributed random vacation with rate θ when the

inventory level reaches the maximum S. The production rate is η . When the production facility

returns from vacation, if the level of inventory declines to s, then it is straight away switched

ON and it stops production when the inventory level reaches S. On the other hand if the level of
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stock is greater than s, then it takes another vacation of same length. This goes on until the level

of stock reaches s. Servers avail vacation if there are no customers in the system or inventory

level is zero or both. The servers yield exponential service to customers with rate µ1 and µ2.

The duration of the vacation of server 1 and 2 are assumed to be exponential with parameters

θ1 and θ2. When the server returns from vacation if the system is still empty or inventory

level is zero or both it goes for another vacation. The servers continue in the same manner

until they find the system nonempty with a positive inventory level. Vacation periods taken by

the production system and servers can be used to assess inventory levels, manage surpluses, or

address shortages.

Notations used in this model are

N(t) : Number of customers in the system at time t.

I(t) : Inventory level at time t.

C(t) :



0, if both the servers are on vacation

1, if server 1 is busy and the server 2 is on vacation

2, if server 1 is on vacation and the server 2 is busy

3, if both servers are busy

P(t) :


0, if the production process gets switched OFF

1, if the production process gets switched ON

e : (1,1,1, ...,1)′,column vector of appropriate dimension containing all ones.

It is clear that {X(t) = (N(t),C(t),P(t), I(t))t ≥ 0} is a continuous time Markov chain

(CTMC) with state space Ω = Ω0∪ Ω1∪ Ω2∪ Ω3 where,

Ω0 = (i,0,0,k)|0≤ k ≤ S ∪ (i,0,1,k)|0≤ k ≤ S−1; i≥ 0

Ω1 = (i,1,0,k)|1≤ k ≤ S ∪ (i,1,1,k)|1≤ k ≤ S−1; i≥ 1

Ω2 = (i,2,0,k)|1≤ k ≤ S ∪ (i,2,1,k)|1≤ k ≤ S−1; i≥ 1

Ω3 = (i,3,0,k)|2≤ k ≤ S ∪ (i,3,1,k)|2≤ k ≤ S−1; i≥ 2
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The transitions in the Markov chain is as follows.

a) Transitions due to arrival of customers

(i,k, t, j) λ−−−−→ (i+1,k, t, j);



for k = 0; t = 0, i≥ 0,1≤ j ≤ S

for k = 0; t = 1, i≥ 0,1≤ j ≤ S−1

for k = 1,2; t = 0, i≥ 1,1≤ j ≤ S

for k = 1,2; t = 1, i≥ 1,1≤ j ≤ S−1

for k = 3, t = 0, i≥ 2,2≤ j ≤ S

for k = 3, t = 1, i≥ 2,2≤ j ≤ S−1

b) Transitions due to the completion of service

(1,1, t, j)
µ1−−−−→ (0,0, t, j−1);


for t = 0,1≤ j ≤ S

for t = 1,1≤ j ≤ S−1

(1,2, t, j)
µ2−−−−→ (0,0, t, j−1);


for t = 0,1≤ j ≤ S

for t = 1,1≤ j ≤ S−1

(i,1, t,1)
µ1−−−−→ (i−1,0, t,0); t = 0,1, i≥ 2

(i,1, t, j)
µ1−−−−→ (i−1,1, t, j−1);


for t = 0, i≥ 2,2≤ j ≤ S

for t = 1, i≥ 2,2≤ j ≤ S−1

(i,2, t,1)
µ2−−−−→ (i−1,0, t,0); t = 0,1, i≥ 2

(i,2, t, j)
µ2−−−−→ (i−1,2, t, j−1);


for t = 0, i≥ 2,2≤ j ≤ S

for t = 1, i≥ 2,2≤ j ≤ S−1

(i,3,0,2)
µ2−−−−→ (i−1,1,0,1); i≥ 2

(i,3,0,2)
µ1−−−−→ (i−1,2,0,1); i≥ 2

(i,3, t, j)
µ1 +µ2−−−−→ (i−1,3, t, j−1);


for t = 0, i≥ 2,3≤ j ≤ S

for t = 1, i≥ 2,3≤ j ≤ S−1
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c) Transitions due to the completion of production of an item

(i,k,1, j)
η−−−−→ (i,k,1, j+1);


for k = 0, i≥ 0,0≤ j ≤ S−2

for k = 1,2, i≥ 1,1≤ j ≤ S−2

for k = 3, i≥ 2,2≤ j ≤ S−2

(i,k,1,S−1)
η−−−−→ (i,k,0,S);


for k = 0, i≥ 0

for k = 1,2, i≥ 1

for k = 3, i≥ 2

d) Transitions due to the completion of vacation of the production facility

(i,k,0, j) θ−−−−→ (i,k,0, j);


for k = 0, i≥ 0,0≤ j ≤ s

for k = 1,2, i≥ 1,1≤ j ≤ s

for k = 3, i≥ 2,2≤ j ≤ s

e) Transitions due to the completion of vacation of servers

(i,0, t, j)
θ1−−−−→ (i,1, t, j);


for t = 0, i≥ 2,2≤ j ≤ S

for t = 1, i≥ 2,2≤ j ≤ S−1

(i,0, t, j)
θ2−−−−→ (i,2, t, j);


for t = 0, i≥ 2,2≤ j ≤ S

for t = 1, i≥ 2,2≤ j ≤ S−1

(i,1, t, j)
θ2−−−−→ (i,3, t, j);


for t = 0, i≥ 2,2≤ j ≤ S

for t = 1, i≥ 2,2≤ j ≤ S−1

(i,2, t, j)
θ1−−−−→ (i,3, t, j);


for t = 0, i≥ 2,2≤ j ≤ S

for t = 1, i≥ 2,2≤ j ≤ S−1

The infinitesimal generator of the process is given by
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Q =



C00 C01 0 0 0 . . .

C10 C11 C12 0 0 . . .

0 C21 C1 C0 0 . . .

0 0 C2 C1 C0 . . .
...

...
...

...
... . . .


where C0,C1,C2 are square matrices of order 8S−4

3. STABILITY CONDITION AND COMPUTATION OF STEADY STATE PROBABILITY

VECTOR

The stability of the system can be derived by defining a matrix C̃ = C0 +C1 +C2. C̃ is

irreducible so there exist a row stationary probability vector Π of order 8S−4 satisfying ΠC̃ = 0

and Πe = 1. The matrix C̃ can be written as

C̃ =


D00 D01 D02 0

D10 D11 0 D13

D20 0 D22 D23

0 D31 D32 D33


From the renowned result of the standard drift condition of Neuts [10] ΠC0e < ΠC2e is nec-

essary and sufficient condition for the stability of the QBD process. Under the stability con-

dition of the system, there exist a steady state probability vector X=(X0,X1, . . .) satisfying

XQ = 0,Xe = 1.

X0 = (y0,0,0,0, . . . ,y0,0,0,S,y0,0,1,0 . . . ,y0,0,1,S−1)

X1 = (y1,0,0,0, . . . ,y1,0,0,S,y1,0,1,0 . . . ,y1,0,1,S−1,y1,1,0,1, . . . ,y1,1,0,S,y1,1,1,1 . . . ,y1,1,1,S−1,

y1,2,0,1, . . . ,y1,2,0,S,y1,2,1,1, . . . ,y1,2,1,S−1)

Xi = (yi,0,0,0, . . . ,yi,0,0,S,yi,0,1,0 . . . ,yi,0,1,S−1,yi,1,0,1, . . . ,yi,1,0,S,yi,1,1,1 . . . ,yi,1,1,S−1,

yi,2,0,1, . . . ,yi,2,0,S,yi,2,1,1, . . . ,yi,2,1,S−1,

yi,3,0,2, . . . ,yi,3,0,S,yi,3,1,2, . . . ,yi,3,1,S−1),(i≥ 2)
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. The sub vectors of X can be derived by solving

(1) X0C00 +X1C10 = 0

(2) X0C01 +X1C11 +X2C21 = 0

(3) X1C12 +X2[C1 +RC2] = 0

(4) Xi = Xi−1 ∗R, i = 3,4,5 . . .

The normalizing equation is

(5) X0e+X1e+X2(I−R)−1e = 1

where R is the minimal non-negative solution of the matrix quadratic equation

R2C2 +RC1 +C0 = 0, and is computed from R =−C0(C1)
−1−R2C2(C1)

−1. R is ap-

proximated by the successive substitution method developed by Neuts [10] namely

R0 = 0,Rn+1 =−C0(C1)
−1−R2

nC2(C1)
−1, n = 0,1,2, . . .. The sub vectors X0, X1, and X2 and

Xi, i≥ 3 can be calculated using equations 1,2,3,4 and 5.

4. PERFORMANCE MEASURES

(i) Expected number of buyers in the system:

NEC = X1e+X2[(I−R)−1 +(I−R)−2]e

(ii) Expected inventory level:

NEI =
∞

∑
i=0

S

∑
k=1

kyi,0,0,k +
∞

∑
i=0

S−1

∑
k=1

kyi,0,1,k +
∞

∑
i=1

S

∑
k=1

kyi,1,0,k +
∞

∑
i=1

S−1

∑
k=1

kyi,1,1,k

+
∞

∑
i=1

S

∑
k=1

kyi,2,0,k +
∞

∑
i=1

S−1

∑
k=1

kyi,2,1,k +
∞

∑
i=2

S

∑
k=1

kyi,3,0,k +
∞

∑
i=2

S−1

∑
k=2

kyi,3,1,k

(iii) Expected inventory level when both the servers are active:

NEIACT =
∞

∑
i=2

S

∑
k=2

kyi,3,0,k +
∞

∑
i=2

S−1

∑
k=2

kyi,3,1,k
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(iv) Expected inventory level when both the servers are in vacation:

NEIVAC =
∞

∑
i=0

S

∑
k=1

kyi,0,0,k +
∞

∑
i=0

S−1

∑
k=1

kyi,0,1,k

(v) Mean on-hand inventory level when production unit is ON:

NEIPON =
∞

∑
i=0

S−1

∑
k=1

kyi,0,1,k +
∞

∑
i=1

S−1

∑
k=1

kyi,1,1,k +
∞

∑
i=1

S−1

∑
k=1

kyi,2,1,k +
∞

∑
i=2

S−1

∑
k=2

kyi,3,1,k

(vi) Average on-hand inventory level when production unit is OFF:

NEIPOFF =
∞

∑
i=0

S−1

∑
k=1

kyi,0,0,k +
∞

∑
i=1

S

∑
k=1

kyi,1,0,k +
∞

∑
i=1

S

∑
k=1

kyi,2,0,k +
∞

∑
i=2

S

∑
k=2

kyi,3,0,k

(vii) Expected number of departures after completing service:

NEDS = µ1

[
∞

∑
i=1

S

∑
k=1

yi,1,0,k +
∞

∑
i=1

S−1

∑
k=1

yi,1,1,k

]
+µ2

[
∞

∑
i=1

S

∑
k=1

yi,2,0,k +
∞

∑
i=1

S−1

∑
k=1

yi,2,1,k

]

+(µ1 +µ2)

[
∞

∑
i=2

S

∑
k=1

yi,3,0,k +
∞

∑
i=2

S−1

∑
k=2

yi,3,1,k

]
(viii) Mean Production rate:

NEPR = η

[
∞

∑
i=0

S−1

∑
k=0

yi,0,1,k +
∞

∑
i=1

S−1

∑
k=1

yi,1,1,k +
∞

∑
i=1

S−1

∑
k=1

yi,2,1,k +
∞

∑
i=2

S−1

∑
k=2

yi,3,1,k

]
5. COST ANALYSIS AND NUMERICAL RESULTS

For the construction of cost function, the following costs can be defined as follows:

C : Fixed cost/unit/unit time

c1 : The production unit running cost per unit per unit time

c2 : The holding cost of inventory per unit per unit time

c3 : The holding cost of customers per unit per unit time

c4 : The cost due to service per unit per unit time

The expected total cost (TCOST ) of the system per unit per unit time is given by

TCOST = (C+(S− s)c1)NSWR + c2NEI + c3NEC + c4NEDS

The impact of arrival rate on various system performance measures and expected total cost is

detailed in Table 1.
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TABLE 1. Variations in the arrival rate λ

λ NEI NEC NEDS NEPR TCOST

0.6000 3.9161 0.5741 0.1165 0.5933 114.4509

0.7000 3.7675 0.5793 0.0974 0.5851 107.6813

0.8000 3.6196 0.5851 0.0835 0.5796 102.7802

0.9000 3.4763 0.5944 0.0749 0.5781 100.1402

1.0000 3.3413 0.6117 0.0723 0.5823 100.4174

1.1000 3.2182 0.6445 0.0762 0.5940 104.5807

1.2000 3.1101 0.7044 0.0872 0.6149 114.0046

1.3000 3.0195 0.8103 0.1055 0.6463 130.6794

µ1 = 1.5,µ2 = 1.2,η = 1.5,θ1 = 4,θ2 = 3,θ = 5,S = 10,s = 4

c1 = 350,c2 = 4,c3 = 100,c4 = 1

From table 1, the optimum value of TCOST is 100.1402 and is obtained when λ= 0.9.

The fluctuations in the system measures and expected cost due to the changes in the value

of the production vacation parameter are illustrated in Table 2. The lowest expected cost is

20.6872 and is obtained at θ = 7.5.

TABLE 2. Variations in production vacation parameter θ

θ NEI NEC NEDS NEPR TCOST

4.5000 3.4757 0.5947 0.0749 0.5787 20.6907

5.5000 3.4768 0.5941 0.0749 0.5777 20.6881

6.5000 3.4778 0.5937 0.0749 0.5770 20.6873

7.5000 3.4786 0.5934 0.0749 0.5765 20.6872

8.5000 3.4792 0.5932 0.0749 0.5761 20.6875

9.5000 3.4798 0.5931 0.0749 0.5759 20.6879

10.5000 3.4803 0.5929 0.0749 0.5756 20.6883

µ1 = 1.5,µ2 = 1.2,η = 1.5,θ1 = 4,θ2 = 3,λ = 0.9,S = 10,s = 4

c1 = 3.5,c2 = 4,c3 = 10,c4 = 1
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6. CONCLUDING REMARKS

A detailed study of a production inventory system in which a production facility and two

servers take multiple vacations is considered. A production vacation is a strategic tool that can

lead to long-term gains in cost savings, efficiency, and overall business performance. Based on

the model’s system performance metrics, a cost function was constructed and numerically ana-

lyzed. For future research, extending the model using more than two servers and any arbitrary

distribution for lead time is possible.
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